Method of cooling a solar concentrator

Information

  • Patent Grant
  • 9157657
  • Patent Number
    9,157,657
  • Date Filed
    Friday, August 31, 2012
    12 years ago
  • Date Issued
    Tuesday, October 13, 2015
    9 years ago
Abstract
A method of cooling a solar concentrator includes absorbing heat from solar energy collectors into a chamber section. The chamber section is arranged below, in a heat exchange relationship, the solar energy collectors.
Description
BACKGROUND

The present invention relates to solar concentrators, and more specifically, to a multi-point cooling system for a solar concentrator.


Solar power systems fall generally into two categories: fixed position flat panel systems, and tracking concentrator systems. Fixed position flat panel systems employ one or more stationary panels that are arranged in an area having an unobstructed view of the sun. As the earth rotates, the sun's rays move over the stationary panel(s) with varying degrees of intensity depending upon geographic location, time of day and time of the year. In contrast, solar concentrator systems collect, and focus the sun's rays onto one or more solar cells. Certain solar concentration systems employ tracking systems that follow the sun's path in order to enhance energy collection. Simply put, fixed position flat panel systems represent a passive solar collection system, while solar concentrator systems represent a more active energy collection system.


Solar concentrator systems utilizing photovoltaic cells typically operate at or below about 500 suns concentration. Operating at higher sun concentration levels creates cooling challenges. At present, solar concentrator cooling systems are large unwieldy systems and/or possess limited cooling capacity. Thus, one major constraint that limits solar concentrator systems is the ability to adequately cool the photovoltaic cells.


SUMMARY

According to an exemplary embodiment, a method of cooling a solar concentrator includes absorbing heat from solar energy collectors into a chamber section. The chamber section is arranged below, in a heat exchange relationship, the solar energy collectors.


Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention. For a better understanding of the invention with the advantages and the features, refer to the description and to the drawings.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The forgoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:



FIG. 1 is a schematic plan view of a solar concentrator including a multipoint cooling system in accordance with an exemplary embodiment; and



FIG. 2 is a schematic plan view of a solar concentrator including a multipoint cooling system in accordance with another aspect of the exemplary embodiment.





DETAILED DESCRIPTION

With reference to FIG. 1, a solar concentrator constructed in accordance with an exemplary embodiment is indicated generally at 2. Solar concentrator 2 includes an optical member or lens 4 having a plurality of focal points 6-8. A plurality of solar energy collectors 10-12 are positioned at each of the respective focal points 6-8. With this arrangement, incident solar radiation passing through optical member 4 is guided to focal points 6-8 and, by extension, onto solar energy collectors 10-12. The solar energy collectors 10-12 convert the solar energy into electrical energy. As will be discussed more fully below, solar energy collectors 10-12 take the form of triple junction photovoltaic concentrator cells that operate at high solar concentrations, e.g., concentrations greater than 50 W/cm2 (about 500 suns). In accordance with one aspect of the exemplary embodiment, solar energy collectors 10-12 can operate at concentration levels as high as 200 W/cm2 (about 2000 suns) or more. As such, solar concentrator 2 requires a cooling system that will absorb and dissipate heat generated at solar energy collectors 10-12 operating at such concentration levels. At this point it should be understood that while only three solar energy collectors are shown, solar concentrator 2 could include many more solar energy collectors without departing from the scope of the claims.


In accordance with an exemplary embodiment, solar energy collectors 10-12 are mounted to a multi-point cooling system 14. More specifically, solar energy collectors 10-12 are mounted to a support member 16 formed from a metal or ceramic material having a high heat dissipation co-efficient. In accordance with one aspect of an exemplary embodiment, support member 16 is formed from one or more of Aluminum Nitride (AlN), Aluminum Oxide (Al2O3), Nickel and Copper. Solar energy collectors 10-12 are mounted to support member 16 via a corresponding plurality of thermal interface members 17-19. In the exemplary embodiment shown, a layer of insulation is mounted to support member 16 about solar energy collectors 10-12. Electrical connections 23-25 extend from respective ones of solar energy collectors 10-12 along insulation layer 20. Electrical connections 23-25 lead to an energy storage device (not shown).


In further accordance with the exemplary embodiment, multi-point cooling system 14 includes a base member 36. Support member 16 is mounted to a base member 36 via a peripheral wall 40. In a manner similar to that described above, base member 36 is formed from a metal or ceramic material having a high heat diffusion co-efficient. Base member 36 is spaced from support member 16 so as to define a chamber section 44. In accordance with one aspect of the invention, chamber section 44 is filled with a vapor formed from, for example, water or ammonia, that enhances heat dissipation from solar energy collectors 10-12. Base member 36 is also coupled to support member 16 via a plurality of structural supports 47-50. Each structural support 47-50 is covered by a wicking material 52-55. In accordance with one aspect of an exemplary embodiment, wicking material 52-55 is formed from sintered copper particles or from a material having machined grooves. Wicking material 52-55 enhances heat transferred from solar energy connectors 10-12 into chamber section 44. In order to further enhance heat transfer, a plurality of nucleation membranes 59-61 is mounted to support member 16 within chamber section 44. Each nucleation membrane 59-61 is positioned adjacent a corresponding one of solar energy collectors 10-12. In accordance with an aspect of an exemplary embodiment, nucleation membranes 59-61 are formed from sintered copper particles arranged in a body formed from copper or aluminum. With this arrangement, vapor travels in wicking material 52-55 and or nucleation membranes 59-61. Heat from the vapor is dissipated through, for example, base member 36 forming a condensate that returns to chamber section 44.


In order to facilitate heat energy transfer from chamber section 44, solar concentrator 2 includes a plurality of cooling fins 66 mounted to base member 36. Cooling fins 66 transfer heat energy from chamber section 44 to be dissipated via air currents passing across base member 36. In accordance with one aspect of the invention, heat energy dissipation is further enhanced by a plurality of conduits 71-74 extending through chamber section 44. Conduits 71-74 are configured and disposed to absorb heat energy from chamber section 44. In accordance with one aspect of the invention of the present embodiment, conduits 71-74 are filled with a liquid that is circulated within chamber section 44. The liquid absorbs heat energy that is passed to, for example, a cooling medium after which the liquid is re-circulated back to chamber section 44.


Reference will now be made to FIG. 2, wherein like reference numbers represent corresponding parts in the respective use, in describing another aspect of the exemplary embodiment. In accordance with the embodiment shown, solar concentrator 2 includes a finned cold plate 86 mounted to base member 36. More specifically, finned cold plate 86 includes a body 88 having a first substantially planar surface 90 and an opposing, second substantially planar surface 91. First substantially planar surface 90 is provided with a plurality of cooling fins 95 that dissipate heat energy in a manner similar to that described above. Second substantially planar surface 91 is attached to base member 36 via a thermal interface member 98. Thermal interface member 98 enhances energy transfer from base member 36 to finned cold plate 86. In accordance with an aspect of an exemplary embodiment, finned cold plate 86 is formed from one of copper, aluminum or a high heat dissipation coefficient ceramic material.


At this point, it should be understood that the exemplary embodiments provide a system for removing heat energy from a solar concentrator. That is, the present exemplary embodiments enable a solar concentrator to operate above 2000 suns while remaining cool. In contrast to existing systems that must operate substantially below 2000 suns, the exemplary embodiments provide sufficient cooling to enable the solar concentrator to operate at much higher solar concentration levels in order to enhance energy conversion.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, element components, and/or groups thereof.


While the preferred embodiment to the invention had been described, it will be understood that those skilled in the art, both now and in the future, may make various improvements and enhancements which fall within the scope of the claims which follow. These claims should be construed to maintain the proper protection for the invention first described.

Claims
  • 1. A method of cooling a solar concentrator, the method comprising: absorbing heat from solar energy collectors into a chamber section defined between a base member and a support member spaced from the base member, the chamber section being arranged, in a heat exchange relationship, below the solar energy collectors;passing a portion of the heat solely through one or more nucleation membranes arranged in the chamber section in a direct heat exchange relationship with a plurality of conduits containing a heat exchange medium extending through the chamber section and directly contacting a surface of the base member;absorbing the portion of the heat into the plurality of conduits;absorbing another portion of the heat into a wicking material arranged in the chamber section, the wicking material abutting the base member and the support member; andtransporting the heat exchange medium in a heat exchange relationship with a working fluid in the chamber section.
  • 2. The method of claim 1, wherein absorbing the heat into a plurality of conduits includes absorbing heat into a plurality of conduits having a non-circular cross-section.
  • 3. The method of claim 1, further comprising: passing the heat into a fluid forming the heat exchange medium passing through the plurality of conduits.
  • 4. The method of claim 1, further comprising: dissipating the heat from the chamber section through a plurality of cooling fins.
  • 5. The method of claim 4, wherein dissipating the heat through a plurality of cooling fins includes dissipating the heat through a plurality of fins provided on the base member.
  • 6. The method of claim 1, wherein absorbing heat into a vapor includes absorbing heat into one of a water vapor and an ammonia vapor.
  • 7. The method of claim 1, further comprising: passing the heat from the solar energy collector to the chamber section through a thermal interface member.
  • 8. The method of claim 1, further comprising: absorbing the heat into a vapor present within the chamber section.
  • 9. The method of claim 8, further comprising: passing the heat from the solar energy collector into the vapor through the one or more nucleation membranes.
  • 10. The method of claim 9, wherein passing the vapor through the nucleation membrane includes passing the vapor through a membrane including sintered copper particles.
  • 11. The method of claim 10, wherein passing the vapor through a membrane including sintered copper particles includes passing the vapor through sintered copper particles arranged in a body formed from one of copper and aluminum.
  • 12. The method of claim 1, further comprising: passing solar energy through a lens onto a plurality of solar energy collectors.
  • 13. The method of claim 12, wherein passing solar energy onto a plurality of solar energy collectors includes focusing solar energy onto solar energy collectors configured and disposed to operate at concentrations of at least 50 W/cm2 (about 500 suns).
  • 14. The method of claim 13, wherein passing solar energy onto a plurality of solar energy collectors includes focusing solar energy onto solar energy collectors configured and disposed to operate at concentrations of at least 200 W/cm2 (about 2000 suns).
  • 15. The method of claim 1, further comprising: passing electrical energy from the solar energy collectors into one or more electrical connections.
  • 16. The method of claim 1, wherein passing the heat through the one or more nucleation membranes includes passing the heat through one or more nucleation membranes arranged adjacent corresponding ones of the solar energy collectors.
  • 17. The method of claim 1, wherein passing the heat through the one or more nucleation membranes includes passing the heat through one or more nucleation membranes formed from sintered copper particles arranged in a body formed from one of copper and aluminum.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 12/686,675 filed Jan. 13, 2010, the disclosure of which is incorporated by reference herein in its entirety.

US Referenced Citations (113)
Number Name Date Kind
2604601 Menzel Jul 1952 A
3070699 Lehmann et al. Dec 1962 A
3293440 Mueller Dec 1966 A
3370293 Green Feb 1968 A
3866285 Clark Feb 1975 A
3984685 Fletcher et al. Oct 1976 A
3984686 Fletcher et al. Oct 1976 A
4027651 Robbins, Jr. Jun 1977 A
4045246 Mlavsky et al. Aug 1977 A
4081289 Campbell, III Mar 1978 A
4086485 Kaplow et al. Apr 1978 A
4107521 Winders Aug 1978 A
4146785 Neale Mar 1979 A
4200472 Chappell et al. Apr 1980 A
4223214 Dorian et al. Sep 1980 A
4225781 Hammons Sep 1980 A
4262195 White et al. Apr 1981 A
4278829 Powell Jul 1981 A
4320246 Russell Mar 1982 A
RE30961 Robbins Jun 1982 E
4432343 Riise et al. Feb 1984 A
4586488 Noto May 1986 A
4592129 Legge Jun 1986 A
4687923 Bauck Aug 1987 A
4691075 Murphy Sep 1987 A
4730602 Posnansky et al. Mar 1988 A
4794909 Eiden Jan 1989 A
4868379 West Sep 1989 A
4909316 Kamei et al. Mar 1990 A
5153778 Sasian-Alvarado Oct 1992 A
5483060 Sugiura et al. Jan 1996 A
5498297 O'Neill et al. Mar 1996 A
5593544 Fahlgren et al. Jan 1997 A
5593549 Stirbl et al. Jan 1997 A
6018122 Hibino et al. Jan 2000 A
6034319 Falbel Mar 2000 A
6127620 Tange et al. Oct 2000 A
6337129 Watanabe et al. Jan 2002 B1
6399874 Olah Jun 2002 B1
6465725 Shibata et al. Oct 2002 B1
6583349 Tanaka Jun 2003 B2
6617506 Sasaki Sep 2003 B2
6686533 Baum et al. Feb 2004 B2
6689949 Ortabasi Feb 2004 B2
6696637 Lawheed Feb 2004 B2
6897423 Redler et al. May 2005 B2
6901994 Jin-Cherng et al. Jun 2005 B1
6992276 Blauvelt et al. Jan 2006 B2
7100680 Dussinger et al. Sep 2006 B2
7109461 Lasich Sep 2006 B2
7148465 Blauvelt et al. Dec 2006 B2
7177140 Clarke et al. Feb 2007 B2
7202457 Janus et al. Apr 2007 B2
7208674 Aylaian Apr 2007 B2
7476832 Vendig et al. Jan 2009 B2
7579551 Van Marion et al. Aug 2009 B2
7709730 Johnson et al. May 2010 B2
7732918 Dangelo et al. Jun 2010 B2
7847228 Lin Dec 2010 B2
8119962 Lam Feb 2012 B2
8129668 Chang et al. Mar 2012 B2
8153944 Hines et al. Apr 2012 B2
8178775 Taylor, II et al. May 2012 B2
8188413 Kats et al. May 2012 B2
8188414 Linke May 2012 B2
8188415 Kats et al. May 2012 B2
20010006066 Cherney et al. Jul 2001 A1
20040011395 Nicoletti et al. Jan 2004 A1
20040216777 Pan Nov 2004 A1
20040231660 Nakamura Nov 2004 A1
20050103378 Pu et al. May 2005 A1
20050161581 Michiyama et al. Jul 2005 A1
20060041345 Metcalf Feb 2006 A1
20060090747 Harrington May 2006 A1
20060225778 Brabec et al. Oct 2006 A1
20060243319 Kusek et al. Nov 2006 A1
20070033828 Hartkop et al. Feb 2007 A1
20070051360 Rhee Mar 2007 A1
20070144574 Yada Jun 2007 A1
20070215199 Dold et al. Sep 2007 A1
20070272295 Rubin et al. Nov 2007 A1
20080017784 Hoot et al. Jan 2008 A1
20080087274 Chen Apr 2008 A1
20080110594 Martin et al. May 2008 A1
20080128586 Johnson et al. Jun 2008 A1
20080138634 Morris et al. Jun 2008 A1
20080164135 Slook Jul 2008 A1
20080172256 Yekutiely Jul 2008 A1
20080245930 Nayfeh et al. Oct 2008 A1
20080276929 Gerwing et al. Nov 2008 A1
20080283121 Guerra Nov 2008 A1
20080308152 Grip Dec 2008 A1
20080314438 Tran et al. Dec 2008 A1
20090043253 Podaima Feb 2009 A1
20090056790 Tian et al. Mar 2009 A1
20090084435 Guha et al. Apr 2009 A1
20090095342 Lin et al. Apr 2009 A1
20090188488 Kraft et al. Jul 2009 A1
20090199846 Collins et al. Aug 2009 A1
20090229794 Schon Sep 2009 A1
20090288656 Lin Nov 2009 A1
20090308377 Kleinwaechter Dec 2009 A1
20100000518 Chen et al. Jan 2010 A1
20100023138 McDonald et al. Jan 2010 A1
20100031991 Mochizuki et al. Feb 2010 A1
20100095955 Carrasco Martinez Apr 2010 A1
20100101560 Olsson et al. Apr 2010 A1
20100180886 Chang Jul 2010 A1
20100192940 Yoon Aug 2010 A1
20100218758 Guha et al. Sep 2010 A1
20100326427 Chen Dec 2010 A1
20110139145 Mackamul Jun 2011 A1
20130233305 Guha et al. Sep 2013 A1
Foreign Referenced Citations (25)
Number Date Country
101388420 Mar 2009 CN
2749992 May 1979 DE
4116894 Nov 1992 DE
19801213 Jul 1999 DE
0405678 Jan 1991 EP
2105683 Sep 2009 EP
58018059 Feb 1983 JP
5846684 Mar 1983 JP
6176848 Apr 1986 JP
62206612 Sep 1987 JP
6479609 Mar 1989 JP
1270607 Oct 1989 JP
2291912 Dec 1990 JP
3256580 Nov 1991 JP
5052702 Mar 1993 JP
7334767 Dec 1995 JP
87619 Jan 1996 JP
8095641 Apr 1996 JP
8122420 May 1996 JP
8321630 Dec 1996 JP
11125765 May 1999 JP
2003322418 Nov 2003 JP
200664203 Mar 2006 JP
2008124381 May 2008 JP
2008034423 Mar 2008 WO
Non-Patent Literature Citations (5)
Entry
International Preliminary Report on Patentability for PCT Application No. PCT/US2011/020654, dated Jul. 26, 2012, pp. 1-7.
International Search Report and Written Opinion for PCT Application No. PCT/US2011/020654, dated Jan. 10, 2011, pp. 1-10.
Lee et al., “Sun Tracking Systems: A Review”, Sensors 2009, pp. 3875-3890.
International Search Report and Written Opinion for PCT Application No. PCT/US2011/020654, dated Mar. 9, 2011, pp. 1-10.
Merriam Webster's Collegiate Dictionary, 10th Edition, 1997, p. 451.
Related Publications (1)
Number Date Country
20120318327 A1 Dec 2012 US
Continuations (1)
Number Date Country
Parent 12686675 Jan 2010 US
Child 13600482 US