The present application relates to a system for transporting goods.
The present application also relates to a container, such as a bag, for transporting goods, such as e.g. chilled goods and/or frozen goods. The present application also relates to a collapsible temperature retaining bag. It also relates to a method for providing a collapsible bag, and to a method for providing a bag. The present application also relates to a method of delivering goods. The present application also relates to a handle-carryable carrier bag package.
It also relates to a kit of parts including a bag, and to a transport system. It also relates to a kit of parts including a box, and to a transport system wherein such a box may be used.
The transport of goods, such as e.g. fragile goods, often require some sort of packaging for wrapping and enclosing the goods. The goods may include one or several articles, an article being for example a book, an electronic device, a piece of clothing, and/or a Compact disc. There are a number of known shipping or mailing envelopes, i.e. envelopes that are provided with packing or cushioning material to help protect fragile or breakable articles. Cushioning material is often used to help protect articles that are shipped or mailed in envelopes. For instance, a person may wrap an article inside cushioning material and then place the wrapped article inside an envelope.
Also, envelopes may be manufactured with cushioning material secured in the envelope, commonly in the form of a liner or inner envelope inside an outer envelope. In use, a person inserts an article inside the liner or inner envelope and then closes and mails the outer envelope. Plastic sheets impregnated with a multitude of bubbles are a common cushioning material used in the above-discussed situations. This packing material, commonly referred to as bubble wrap, has several disadvantages, however. For example, toxic wastes are produced when these materials are made. In addition, the disposal of these materials has become a significant environmental problem. Further, bubble wrap is somewhat bulky, and it is often not practical to store large quantities of bubble wrap for extended periods of time.
Small, pieces of styrofoam are also used as packing material. However, important environmental problems are associated with the manufacture and disposal of these styrofoam pieces.
U.S. Pat. No. 5,544,473 discloses a protective envelope comprising an outer envelope forming an interior and a top back edge; and a packing material secured in the interior of the outer envelope and forming a pocket for receiving an article. The packing material is comprised of a flexible and expandable paper material forming a multitude of slits arranged to allow the packing material to be pulled into a three-dimensional honeycomb shapes, and the packaging material extends above the top back edge of the outer envelope to facilitate pulling the packing material into said three-dimensional shape. In order to obtain the three-dimensional honeycomb shapes, a person, i.e. a user, must pull sections of the flexible and expandable paper material upwards relative to the outer envelope to twist those sections into three-dimensional honeycomb shapes, and the user can thereafter place an article between the expanded sections.
In some instances the goods to be transported has an initial temperature which it is desirable to maintain during transport of the goods. Moreover, the goods-to-be-transported may be both fragile and temperature sensitive. This is often the case e.g. in relation to food items, i.e. groceries. Once the customer in a grocery store has purchased a number of collected food item packages, the customer faces the problem of transporting the collected grocery items from the grocery store. Accordingly, grocery stores commonly provide carrier bags for enabling their customers to carry the groceries from the store in a convenient manner.
The German Utility Model Application DE 89 04 678 discloses a bag for groceries. The bag according to DE 89 04 678 is made solely of paper and it has handles attached to the open upper part of the side walls for enabling convenient carrying of the grocery carrier bag. According to DE 89 04 678, the production of a paper bag involves forming a tubular paper web from a planar piece of paper by placing two edges so that they overlap. The overlapping area is glued so as to form the tubular paper web. The tubular paper web is folded to form a carrier bag having four sides and a square bottom. The carrier bag example disclosed in DE 89 04 678 also has two handles made of reinforced paper strips. Each handle is made by a folding a paper strip to form a U-shape. The two end portions of the U-shaped handle strip of a handle are glued, at a distance a from each other, to the exterior surface of one side wall of the carrier bag.
Additionally, there is a growing market for delivery of goods for on-line market customers. Again, the transport of the ordered goods requires packaging of the goods during transport. In the current logistics market, various goods, such as e.g. foods requiring different storage temperatures are separately delivered using specially designed logistic vehicles. That is, some goods to be kept at room temperature is delivered using a logistic vehicle providing a room temperature storage space, and goods that needs to be kept at low temperature is delivered using a logistic vehicle providing a refrigerating or a freezing storage space, i.e. the specially designed logistic vehicle for goods that needs to be kept at low temperature includes an active energy consuming refrigerator device or active energy consuming freezer device. Additionally, the refrigerating or a freezing storage space of such a logistic vehicle is typically provided with modified walls, ceiling and floor in order to thermally insulate the refrigerating or a freezing storage space from the environment.
However, it is inefficient and ineffective to deliver logistic articles using so many vehicles providing different storage space requirements, particularly when there are so many different types of less than load articles to be delivered. With these difficulties, the investment and transit costs in the logistics business is largely increased. Moreover, the conventional insulated logistic container does not withstand high temperature and high-pressure washing water and tends to grow bacteria, which obviously adversely affects the service quality of the logistics business for delivering temperature-controlled foods. US 2007/087087 teaches that it was desirable to develop an improved insulated logistic container having good insulating performance and capable of withstanding disinfecting and washing, so as to facilitate the logistics management. US
2007/087087 discloses an insulated logistic container having an insulating material disposed in an insulation space between an outer case and an inner case. The outer case and the inner case are made of a plastic material, and the insulating material disposed in the insulation space between the outer case and the inner case may be independently replaced. US 2007/087087 also discloses a delivery system using the insulated container. Moreover US 2007/087087 also teaches that the effect attained, according to the solution presented in US 2007/087087, is preventing washing water from entering the insulation space to adversely affect the performance of the insulating material. This effect is achieved by an airtight structure which is sandwiched between a first and a second engaging section to effectively seal the insulation space.
In view of the state of the art, a problem to be addressed by an aspect of the invention, is how to achieve an improved, yet cost-efficient, transportation of goods using a bag and/or a rigid container.
This problem is addressed by solutions according to examples and claims disclosed in this disclosure, and it is also addressed by a method of delivering chilled and/or frozen goods, comprising the steps of providing (S6375) a rigid container (6420) to be used in an air environment having an air humidity, the rigid container comprising a bottom wall (6430); and a side wall (6440); said side wall (6440) cooperating with said bottom wall (6430) to form a rigid container interior storage space (6465) of at least 60 metric litres; and wherein a rim portion (6445) of said side wall (6430) facing away from the bottom wall (6430) provides a container opening (6450) for enabling packing of articles into said rigid container interior storage space (6465) and for enabling removal of articles from said rigid container interior storage space (6465), wherein said side wall, and/or said bottom wall, comprises expanded polypropylene (EPP) having a density in the range from 40 kg/cubic metre to 90 kg/cubic metre, and a thermal conductivity in the range from 0.035 W/(m*K) to 0.045 W/(m*K); and wherein said side wall, and/or said bottom wall, comprises expanded polypropylene (EPP) being substantially water vapour impermeable, and/or substantially water impermeable; wherein said side wall, and/or said bottom wall, has an external surface facing said air environment, and an internal surface facing said rigid container interior storage space (6465); the material of the wall stretching from the external surface to the internal surface; wherein the material of the wall stretching from the external surface to the internal surface is expanded polypropylene (EPP); wherein said side wall (6440) has a first wall portion, adjacent to said bottom wall (6430); and said side wall (6440) has a second wall portion, adjacent to said container opening (6450); said side wall comprises a shoulder portion, the shoulder portion being positioned between said first wall portion and said second wall portion; wherein the rigid container exhibits a first outer width between the shoulder portion and the bottom wall (6430); and the rigid container exhibits an inner width between the shoulder portion and said container opening (6450); said first outer width being smaller than said inner width so that said rigid container is stackable; the method further comprising the steps of cleaning and/or disinfecting the rigid container using hot liquid and/or a disinfectant; drying the cleaned and/or disinfected rigid container; placing said chilled and/or frozen goods in the rigid container interior storage space (6465) of the rigid container; placing said lid over said opening so as to close said container opening (6450); transporting said rigid container to a delivery destination.
Whereas the insulated logistic container disclosed in US 2007/087087 includes an insulating material that is adversely affected by washing water when the performance of the airtight structure deteriorates after aging so as to allow an amount of washing water to enter into the insulation space, the rigid container (6420) advantageously comprises a material that acts not only as a sturdy outer material, but it also provides a very good insulation, and it is substantially water vapour impermeable, and/or substantially water impermeable.
According to an embodiment, the above problem is also addressed by providing a bag (20) for transporting goods in an air environment having an air humidity; the bag being a collapsible bag having a collapsed state (20A) for enabling transportation of the collapsible bag in a substantially flat state, and an expanded state (20B) such that the collapsible bag (20), in its expanded state, provides a bag interior storage space for transporting goods, the collapsible bag comprising: at least one wall; and a bag opening; and wherein the collapsible bag has an open expanded state (20C) for loading and/or unloading said goods via the bag opening, and a closed expanded state (20D) such that the collapsible bag (20), in its closed expanded state (20D), provides a closed interior storage space for transporting goods; wherein the bag opening is a closable opening which, in the closed expanded state (20D) of the collapsible bag, cooperates with said at least one wall so as to minimize or prevent exchange of air between the environment and the interior storage space; said wall (110, S1A, 120, S1B, 130A, S2A, 130B, S2B, 140) comprising: an outer paper layer; and an inner paper layer; and a thermally insulating intermediate space between the outer paper layer and the inner paper layer; said wall being shaped and folded so as to form a front wall panel (110, S1A), a back wall panel (120, S1B), and a bottom panel (140); wherein the wall panels and the bottom panel cooperate to form said interior storage space (100) to a volume of between four metric litres and fifty metric litres in the expanded state of the chill bag (20); wherein a rim portion of the wall panels facing away from the bottom panel provides the a bag opening (160, 420); the bag opening being closable by folding said rim portion (150, 25b) of the bag (20) such that the chill bag (20) in its closed state seals, or substantially seals, the interior storage space (100) from the environment so as to minimize or prevent entry of air from the environment into the interior storage space (100); and wherein the method further comprises the steps of placing said chilled and/or frozen goods in the interior storage space of the chill bag, and closing (S370) said closable opening of the chill bag (20) so as to seal said packed amount of chilled or frozen goods from said air atmosphere environment; and then performing the above step of placing said chilled and/or frozen goods in the interior storage space (6465) of the rigid container by placing the closed and sealed chill bag (20) in the interior storage space (6465) of the rigid container.
This solution advantageously provides a very good thermal insulation between the chilled and/or frozen goods and the air environment.
The above problem is also addressed by solutions according to examples and claims disclosed in this disclosure, and it is also addressed by a method of delivering chilled and/or frozen goods, comprising the steps of providing a bag (20) for transporting goods in an air environment having an air humidity; the bag being a collapsible bag having a collapsed state (20 A) for enabling transportation of the collapsible bag in a substantially flat state, and an expanded state (20B) such that the collapsible bag (20), in its expanded state, provides an interior storage space for transporting goods, the collapsible bag comprising: at least one wall; and a bag opening; and wherein the collapsible bag has an open expanded state (20C) for loading and/or unloading said goods via the bag opening, and a closed expanded state (20D) such that the collapsible bag (20), in its closed expanded state (20D), provides a closed interior storage space for transporting goods; wherein the bag opening is a closable opening which, in the closed expanded state (20D) of the collapsible bag, cooperates with said at least one wall so as to minimize or prevent exchange of air between the environment and the interior storage space; said wall (110, S1A, 120, S1B, 130A, S2A, 130B, S2B, 140) comprising: an outer paper layer; and an inner paper layer; and a thermally insulating intermediate space between the outer paper layer and the inner paper layer; said wall being shaped and folded so as to form a front wall panel (110, S1A), a back wall panel (120, S1B), and a bottom panel (140); wherein the wall panels and the bottom panel cooperate to form said interior storage space (100) to a volume of between four metric litres and fifty metric litres in the expanded state of the chill bag (20); wherein a rim portion of the wall panels facing away from the bottom panel provides the a bag opening (160, 420); the bag opening being closable by folding said rim portion (150, 25b) of the bag (20) such that the chill bag (20) in its closed state seals, or substantially seals, the interior storage space (100) from the environment so as to minimize or prevent entry of air from the environment into the interior storage space (100); and wherein the method further comprises the steps of closing (S370) said closable opening of the chill bag (20) so as to seal said packed amount of chilled or frozen goods from said air atmosphere environment; and providing (S6375) a rigid container (6420) to be used in an air environment having an air humidity, the rigid container comprising a bottom wall (6430); and a side wall (6440); said side wall (6440) cooperating with said bottom wall (6430) to form a rigid container interior storage space (6465) of at least 60 metric litres; and wherein a rim portion (6445) of said side wall (6430) facing away from the bottom wall (6430) provides a container opening (6450) for enabling packing of articles into said rigid container interior storage space (6465) and for enabling removal of articles from said rigid container interior storage space (6465), wherein said container opening (6450) is closeable by placing a lid (6460) over the rigid container rim portion (6445) so as to provide a closed state of the rigid container (6420), wherein the rigid container rim portion (6445), in the closed state of the rigid container, co-operates with the lid such that the rigid container seals, or substantially seals, said interior storage space (6465) from the environment so as to minimize or prevent exchange of air between the environment and the rigid container interior storage space (6465); and wherein the method further comprises the steps of placing (S6380) the packed and closed bag (20) inside the rigid container (6420); closing and sealing the rigid container (6420); transporting the closed chill bag (20) to a delivery destination (DD) while keeping the closed chill bag (20) inside of the rigid container (6420) during the transport; and wherein the method further comprises the steps of opening the rigid container (6420) and removing the packed and closed chill bag (20) from the inside of the rigid container (6420), e.g. when the delivery destination (DD) has been reached.
In view of the state of the art, a problem to be addressed by an aspect of the invention, is how to achieve an improved, yet cost-efficient, transportation of goods using a bag and/or a transportation container. This problem is addressed by solutions according to examples and claims disclosed in this patent application.
In view of the state of the art, a problem to be addressed is to provide an improved bag.
This problem is addressed by a protective bag for transporting goods comprising at least one wall panel being shaped and adapted to form an interior storage space (100) for transporting said goods; the at least one wall panel including an outer yield-able material layer; an inner yield-able material layer; and a cushioning layer disposed between the outer layer and the inner layer; wherein the protective bag has a collapsed state (20A) for enabling transportation of the protective bag in a substantially flat state, and an expanded state (20B) such that the protective bag (20), in its expanded state, provides said interior storage space for transporting goods, the protective bag further comprising: a bag opening; wherein the protective bag has an open expanded state (20C) for loading and/or unloading said goods via the bag opening, and a closed expanded state (20D) such that the protective bag (20), in its closed expanded state (20D), provides a closed interior storage space for transporting goods; wherein the bag opening is a closable opening which, in the closed expanded state (20D) of the protective bag cooperates with said at least one wall panel so as to protect said goods, when placed in the interior storage space, against impact damage.
This solution advantageously provides a protective bag that may be produced at low cost while enabling the transportation of goods, such as fragile goods and/or impact sensitive goods, in the interior storage space. The at least one wall panel of the protective bag may be adapted to enclose said goods so that said cushioning layer thereby protects the goods against impact damage and/or breakage by impact during transport of the protective bag.
Further advantageous features are described in the following disclosure and appended claims.
For simple understanding of the present invention, it will be described by means of examples and with reference to the accompanying drawings, of which:
In the following description similar features in different examples will be indicated by the same reference numerals.
This disclosure relates i.a. to a laminated rectangular protector strip 5 for wrapping and enclosing goods. The goods may include one or several articles, an article being for example a book, an electronic device, and/or a Compact disc.
Such a protector strip 5 may be used for producing a bag 20, including a bag of the kind which may be also be referred to as “envelope”. Hence, the term “bag” is used herein to include bags of a variety of size, including a bag of the kind which may be also be referred to as an “envelope”. Such a protective bag 20, or protective envelope 20, includes a cushioning material. A bag 20 may also be referred to as container 20 in this disclosure and/or in accompanying drawings.
The rectangular protector strip 5 may comprise parallel, elongated sheets of strong paper, of which one sheet may be wider than the other sheet, adhesive coatings on the opposed faces of said sheets holding the sheets together adjacent their margins T1, T2 fragmented stuffing material disposed between said coated faces, said stuffing material being adhesively attached to at least one of said coatings, said stuffing material being lightly compressed and applied across an area which is less than the width of said other sheet, said one sheet having outwardly projecting longitudinal side extension portions folded inwardly over said other sheet and outwardly lapping the marginal edges thereof, said extensions being secured in said folded over position by said adhesive.
To manufacture the protector strip it has been found most satisfactory to provide a continuous method, according to which rolls of a relatively heavy strong paper are fed to an assembly position so that they may be laminated or joined together to form a protector strip which, if desired, may be further formed into a package such as an envelope or bag.
The disclosure also relates to a package made from a laminated rectangular protector strip as defined herein. Desirably, before the sheets are brought together on their adjacent faces or at least on one adjacent face, they may be suitably covered with an adhesive e.g. a hot resinous adhesive material, or less preferably with glue, asphalt or similar adhesives, which will retain its adhesiveness for a predetermined period of time.
During this predetermined period of time the stuffing material, whether it be cut up paper or paper fragments, waste paper material, fibrous material or like fragmented stuffing material, is fed between the sheets, and desirably, so that each fragment will adhere to that adhesive before it is converted into a dry flexible material.
Generally the adhesive is applied to the opposed inner faces of the paper sheets by roller coating, and after the fragmented stuffing material has been dropped, or sprayed onto, or inserted, between the meeting sheets as they come together, there is a substantial compression so that the adhesively connected sheets will be compressed whereby the inserted stuffing material will also be compressed so as to assure contact of the stuffing material with the adhesive surfacings. Thereupon the pressure is released and the sheets spring apart so that in the finished protector strip the stuffing material is lightly compressed. After this compression and release with resultant expansion, the edges of the combined sheets may be folded over so that there will be a smooth non-cutting edge.
One, two or more thin facing sheets, as of a tissue or other paper of light weight may optionally be added to the protector strip, which will be folded into the adhesive edge bond when the edges are folded over. These facing sheets should be wider than the other sheet but narrower than the one sheet, so that they are independently adhesively connected.
After assembly the laminated protector strip may be cut into sections, and this is desirably done by forcing a serrated knife transversely through the protector strip into a slot formed in a receiver positioned at the opposite side of said strip with the result that a serrated pointed edge will be formed which is less likely to cut the hands of a person handling the strip.
Referring to
Between the sheets F and G, as they come together, is spread an intermediate material H. The intermediate material H may be a fragmented stuffing material H e.g. that is spread from a hopper feed J. The fragmented stuffing H may be provided to hopper feed J with a screw feed means, as well as suitable shaker means to assure uniform distribution for the lateral width of the strip as it is being assembled. It is noted that the fragmented stuffing material H may be applied by any suitable device, and it may be sprayed onto the adhesive E covered faces AOF and BOF of the paper sheets F and/or G. As an alternative to hopper feed J, the fragmented stuffing material H may be applied e.g. by spraying or sprinkling fragmented stuffing material H onto the opposed faces AOF and BOF of the paper sheets F and G, the spraying or sprinkling being performed by a controllable stuffing material applier JS. The provision of controllable stuffing material applier JS enables controlled provision of the fragmented stuffing material H onto the selected portions of the opposed faces AOF and BOF of the paper sheets F and G.
The sheets F and G with the stuffing material H therebetween are then lightly compressed without substantial flattening between pressure rollers K and L, assuring compression of the material H, as well as contact of the material H with the thin layers of adhesive E before it hardens. In position M the material H will spring back and expand. It will be noted that, since the upper sheet F is narrower than the lower sheet G, there will be provided extensions N which are then coated by adhesive by means of optional roller coaters P1, P2.
Where it is desired to have extra surfacing paper sheets, rolls of such extra surfacing paper may optionally be provided at Q to supply sheets thereof, indicated at R, on top of the uppermost sheet F or terminating short of the edges of the sheet G, so that the adhesive applied by the optional roller coaters P1, P2 will be effective to hold them in position when the sheets are acted upon by optional in-folders S to optionally form folded smooth edges T1 and or T2.
A vertical reciprocating cutter U has a serrated edge V, which extends into a slotted receiver W so as to cut and downwardly deflect the end edges of the protector strip. The final laminated protector strip 5 is shown in
An area Z of the laminated protector strip 5 is centrally located to contain the intermediate material H also referred to as stuffing material H, the area Z thereby constituting a filler area Z (See
Referring particularly to
The optional extra surfacing paper facings may be movable relatively to each other and to the surface of the upper sheet F so as to prevent abrasion or scuffing of the articles disposed thereagainst. As the result of the pressure which has been applied between the rollers K and L, the stuffing material H will have some adhesive connection to either the adhesive E on the upper sheet F or to the adhesive E on the lowermost sheet G. Moreover, the folding over of the lowermost sheet G, as indicated at 19 in
A controller 23 may be provided to control the operation of adhesive sprayers CS and DS, and stuffing material applier JS, as well as the speed VPF of protector strip paper layers, and the operation of the reciprocating cutter U. The coordinated control 23CS, 23DS, 23JS, 23VPF, 23U of the adhesive sprayers CS and DS, stuffing material applier JS, speed of transport of protector strip paper layers, and operation of the reciprocating cutter U, advantageously enables control of the length of the centrally located filler area Z as well as control of the lengths of the protector strip front edge portion 25b and a protector strip back edge portion 25c. It is to be understood that control of the transport speed VPF is illustrated in a very simplified manner, and that the control of the transport speed VPF involves controlling e.g. the drive speed of the various rollers illustrated in
The protector strip 5 described may be used for making paper bags, paper envelopes, boxes or other enclosures. The protector strip described may also be used for making multi-laminar sheet materials where paper is to be provided with filling or stuffing H so that it may be used for a protective envelope, protective bag or protective cover. The back edge portion 25c of protector strip 5 may be folded so as to form at least a part of a flat bottom panel, or substantially flat bottom panel. The protector strip 5 may form at least one wall of a bag so that a protector strip front edge portion 25b the wall panel 110, 120 facing away from a bag bottom panel 140 may provide a bag opening 160, described and illustrated elsewhere in this document, e.g. in
Moreover, the described protector strip may be used to form a package in which the laminated paper material having stuffing or protective material enclosed therein, the edges of which have been so formed as not to cause any cutting or abrasion of the section in contact therewith and so that the filling material will be held securely in position without undue shifting or movement and without too great loss if the package may be ruptured.
Furthermore, the described protector strip is simple to make, involves a minimum of manual labour and a maximum of production at low cost, and can provide packages without serrating or cutting edges likely to cause injury to the hands or fingers of those who prepare said packages. A stuffed protective envelope or laminated paper package or cover made from the described protector strip will have its stuffing material held securely in place without displacement or lumping up during usage, and with a reduced fall-out of stuffing material upon ripping of the package.
As indicated by
According to an example, the paper F may be 60 grams per m2 and the paper G may be 90 grams per m2.
In one embodiment of the bag 20, the outer material layer F of the bag is formed by kraft paper having the following characteristics:
The above Kraft paper layer example may also be used for forming the inner material layer G of the bag.
According to an example, the paper sheets F and G may be of a water resistant paper quality. Basis weight of the water resistant paper F and/or G may be 60 grams per m2 or more. Hence, the paper sheets F and/or G, respectively, may form an outer material layer, and/or an inner material layer, respectively, of a bag. As mentioned above, the term “bag” is used herein to include bags of a variety of size, including a bag of the kind which may be also be referred to as an “envelope”. When air in the environment is humid and goods in the interior of the bag is chilled and/or frozen, there may be water generated by condensation on the outside surface of the bag. This solution, i.e. providing a water resistant paper quality for forming an outer material layer of the bag, advantageously eliminates or minimizes seepage of such water into the wall. Thereby, the integrity of the bag is maintained or substantially maintained. Moreover, the water resistant paper quality on the outer material layer of the bag, advantageously reduces or eliminates an increased thermal conduction in the wall which may otherwise occur due to water having a high thermal conductivity of about 0.6 W/(m*K).
According to another example, the water resistant paper F and/or G may be supercalendered paper, thus having a high density, the supercalendered paper being a glassine paper. The glassine paper is a smooth and glossy paper that is air, water and grease resistant. The glassine paper is manufactured by supercalendering: after pressing and drying, the paper web is passed through a stack of alternating steel and fiber-covered rolls called a supercalender at the end of the paper machine such that the paper fibres flatten facing in the same direction. Hence, the upper paper roll A and/or the lower paper roll B may feed sheets of kraft or other strong paper that is water resistant. The upper paper roll A and/or the lower paper roll B may feed sheets of kraft paper that is glassine, manufactured by supercalendering.
Additionally, the supercalendered paper F and/or G may optionally be treated in a size press to fill pores or treat the paper chemically to make it fat repellent.
As mentioned above, the adhesive E and the fragmented stuffing material H may be applied onto part of faces AOF and BOF of the paper sheets F and/or G so as to leave other parts of faces AOF and BOF without fragmented stuffing material H and without adhesive E. Thus, the provision of controllable adhesive sprayers CS and DS, respectively, enables controlled provision of adhesive onto selected portions of the opposed faces AOF and BOF of the paper sheets F and G. Moreover, the provision of controllable stuffing material applier JS enables controlled provision of the fragmented stuffing material H onto the selected portions of the opposed faces AOF and BOF of the paper sheets F and G, the selected portions of the opposed faces AOF and BOF corresponding to the centrally located filler area Z, as illustrated in
With reference to
With reference to
Whereas
Thus, one or several pieces of goods may be inserted into an interior storage space 100 of the bag 20 through the opening 160, and the flap 26 may be folded down and secured in position by the use of the adhesive layer 29. As illustrated by the partially sectioned view, provided by
The adhesive applied by the roller coater P2 on the far edge T2 of upper surface of the rectangular protector strip, as shown in
It is to be noted that the assembly operation 15 may alternatively operate to produce a tubular protector strip 5T having paper layer G as inner layer facing the interior storage space 100 of the bag 20, and paper layer F as outer layer. With reference to
It is noted that the tubular elongate protector strip, when traveling out of the tubular folder device S2, has not yet been cut. By appropriate and coordinated control, via controller 23, of the adhesive sprayers Cs and Ds, stuffing material applier JS, speed of transport of protector strip paper layers, and operation of the reciprocating cutter U, the assembly operation 15 machinery illustrated in
It is noted that the filler area Z, also referred to as intermediate space Z, may be provided with different intermediate materials H, as discussed elsewhere in this document and as discussed herebelow (See
This solution advantageously provides a biodegradable intermediate material. According to another example, the intermediate material comprises flax fibers. Flax fiber can be extracted from the bast beneath the surface of the stem of the flax plant. The flax fibres form soft, lustrous, and flexible bundles of fiber, and hence this solution advantageously provides a good biodegradable intermediate material.
According to another example, the intermediate material comprises hemp refined into a thermally insulating material. It is noted in this connection, that hemp, or industrial hemp, is a strain of the Cannabis sativa plant species that is grown specifically for industrial uses of its derived products. The plant is spun into usable fibres, and the fibres are then refined into a thermally insulating material. Hence, this solution advantageously provides a biodegradable thermally insulating material.
According to another example, the intermediate material comprises shredded paper. This solution advantageously allows for a low cost insulating material that is also very high in air content, and since air has a very low thermal conductivity, the shredded paper also provides very good insulation properties. According to another example, the shredded paper is shredded recycled paper. This solution advantageously adds to the environmental friendliness of the bag in that the carbon dioxide print of the bag production is reduced by using a recycled paper as source material instead of making the intermediate material from a freshly produced source material.
According to another example, the intermediate material (H) comprises fibres made from pine tree wood. This solution advantageously provides a biodegradable intermediate material. According to another example, the intermediate material (H) comprises cellulose wadding. This solution advantageously provides a biodegradable intermediate material. According to another example, the intermediate material (H) comprises cotton wool. This solution advantageously provides a biodegradable intermediate material. According to another example, the intermediate material (H) comprises a plurality of interconnected superposed sheets (SY) of a yieldable material wherein such a superposed sheet is provided with a multiplicity of adjacent lengthwise and widthwise offset discrete areas of embossed, three dimensional patterns defined by mounds and recesses, the patterns of mounds and recesses in adjacent discrete areas being different, the superposed sheets being so disposed relative to each other that areas having identical patterns are at least partly offset from the identical patterned areas in the adjacent sheets so that air filled spaces are formed between adjacent interconnected superposed sheets. This solution advantageously provides a large number of three-dimensional spaces that are filled with air and separated by the interconnected superposed sheets of a yieldable material. The large number of air filled spaces, formed by the interconnected superposed sheets, in combination with the fact that air has a very low thermal conductivity, as mentioned elsewhere in this document, advantageously renders an intermediate material that has excellent thermally insulating properties. Thus, the bag, provided with this type of intermediate material has excellent thermally insulating properties. Additionally, this type of intermediate material enables the bag to provide excellent protection for fragile objects in the goods placed in the interior storage space of the bag.
The intermediate material H is indicated in an enlarged fragmentary view in
The sheets SY from one side may each have a series of mounds MU and recesses RV which are next to each other and arranged in rows extending longitudinally or diagonally. Instead of diagonally, they may also extend at varying angles of 30 to 60° or even other intermediate angular displacements. The intermediate material comprising a plurality of inter-connected superposed sheets of a yieldable material may be as described in GB 1373428, the content of which is hereby incorporated by reference.
With reference to
According to another example, the intermediate material comprises dried plant material which is shaped and arranged to provide multiple air pockets while keeping at least a portion of the outer material layer separated from the inner material layer so as to thermally insulate the interior storage space from the air environment. According to an example, the dried plant material comprises mosses. This solution advantageously provides a renewable and biodegradable intermediate material. In this connection it is noted that mosses are small flowerless plants that typically form dense green clumps or mats, often in damp or shady locations. The individual plants are usually composed of simple leaves that are generally only one cell thick, attached to a stem that may be branched or unbranched. The irregular shape of mosses renders, also in a dried state of the mosses, to the formation of multiple air pockets.
In this connection it is noted that air has a very low heat conductivity of about 0.024 W/(m K), and thus an increased proportion of air in the intermediate layer proves to have a dramatic effect in terms reducing heat conductivity of the intermediate layer.
The handle 35 is built into the body of the bag 20, formed by a die cut opening 37 in the edge portion 25b of the bag 20. The die cut opening 37 located at sufficient distance from the top edge of the bag to enable a users fingers to conveniently go through the die cut opening 37 in order to carry the bag. The die cut opening 37 may be only partly cut so as to allow the cut out portion of the outer paper layer to fold into the opening so as to allow a users fingers to rest against a folded paper surface. This solution advantageously enables a comfortable handle 35 and eliminates the risk of injury to hands, since the fingers do not have to touch any paper edge.
As mentioned above, the bag 20 has a bag opening 160 which may be closable. The example bag 20 of
According to an example, the adhesive layer 39 may extend across the whole inner circumference of the initially tubular protector strip 5T. With reference to
A first surface 230 A of the first reinforcement sheet 230 faces the paper strip end portion 210A of the first handle 170 A and said rim portion 150 of the front wall panel 110, S1A. The first surface 230A of the first reinforcement sheet 230 may be bonded to the paper strip end portion 210A and to said rim portion 150 of said front wall panel 110 S1A so as to distribute lifting force from said paper strip end portions to said front wall panel via said first reinforcement sheet.
The first handle comprising a material layer strip formed in a U-shape 4530, 4520 and having two material layer strip end portions, the material layer strip end portions of the first handle being attached to said rim portion 25b of one of the wall panels. The second handle comprising a material layer strip formed in a U-shape and having two material layer strip end portions, the material layer strip end portions of the second handle being attached to said rim portion 25b of the other one of the wall panels. The first and the second handle are in cooperation with each other for enabling carrying the bag when used in an expanded state.
Further, the material layer strip end portions are attached to said rim portions 25b by means of a glue layer. The glue layer may be any kind of adhesive material inclusive self-adhesive tape, glue, etc.
The material layer strips end portions may be glued to at least one adhesive reinforcement sheet 4620 as shown in
The shown shape of the handle 4520 is only an example. Other form of a handle, for example the handle 4530 may also be used and would thus provide an opening similar to the opening 4510. As long as the opening 4510 is large enough for introducing fingers of a human hand, the shape may be of any form.
The providing of the handle and/or a closure may be quite independent of how the other parts of the bag 20 have been provided. It should thus be understood that everything which is discussed in relation to the handle and/or the closure can be easily interchanged and/or combined between different embodiments and/or examples of bags which are described in this disclosure.
In alternative embodiments only one if the loops 4714, 4715 is provided. In one embodiment the string is attached vertically to the front panel S1A and/or the back panel S1B. The material of the string is in one example cotton twine. In one example the string comprises plastics.
The top portion 4810 is an intumed portion folded towards a front side of the wall panel 4811. The top portion 4810 has a pair of openings formed on the front side of the wall panel 4811 and on a rear side of the wall panel 4816, which are adapted to receive at least one cord 4813 or tape configured to form a cord handle attached to a rim portion 4810 for carrying the bag in the expanded state. The cord handle is slidably attached to the rim portion. The cord handle is formed by introducing the cord into a pair of openings, wherein the ends of the cord may be fastened with blocking means. The blocking means maybe made of plastic or similar and be of any geometrical shape with a radius larger that the radius of the openings to avoid siding all the cord of the handle to the bottom.
The rest of the cord is extending on the external surface of the bag and attached with slidably attached means. When the bag is not used, it may be practical to carry it in a collapsed state by pulling the cord of the cord handle. The two pairs of openings are at the same position on the top portion 4810 so the at least one cord 4813 may easily be passed through.
As shown in
The bottom panel 4820 may further comprise as shown in
Thus,
The width of the folded bottom portion 4818, 140 may be adjusted according the desired width of the bottom of the bag. Preferably, the bottom portion 4818, 140 has a width of at least 8 cm.
In step S2, the bag wall edge portion 25c is folded so that opposing triangles TR1 and TR2 are formed on each side of the bottom-portion-to-be 140, 4818.
In step S3, a third fold line FL3 is formed on the front wall part of edge portion 25c, and another third fold line FL3 is formed on the back wall part of edge portion 25c. The third fold lines FL3 are parallel with the second fold line FL2, or substantially parallel with the second fold line FL2. After the folding along the third fold lines FL3, a part of the front wall part of edge portion 25c may overlap a part of the back wall part of edge portion 25c, as illustrated in
Thus, with reference to
It is also noted that the second fold line FL2 is parallel with the third fold lines FL3; and the second fold line FL2 is a fold line on said front wall. Alternatively the second fold line FL2 is a fold line on said back wall.
It is also noted that the bag is collapsible into said collapsed state 20A by folding said front wall and/or said back wall along the second fold line FL2. When the bag is folded into the collapsed state 20A, a first angle between a plane of said bottom panel 140 and a plane of said front wall and/or said back wall is between zero and 45 degrees when the bag is in the collapsed state 20A.
With reference to
As illustrated in
As mentioned elsewhere in this disclosure, a rectangular protector strip 5 may comprise parallel, elongated sheets of strong paper, of which one sheet may be wider than the other sheet, adhesive coatings on the opposed faces of said sheets holding the sheets together adjacent their margins T1, T2 fragmented stuffing material disposed between said coated faces, said stuffing material being adhesively attached to at least one of said coatings, said stuffing material being lightly compressed and applied across an area which is less than the width of said other sheet, said one sheet having outwardly projecting longitudinal side extension portions folded inwardly over said other sheet and outwardly lapping the marginal edges thereof, said extensions being secured in said folded over position by said adhesive.
Thus, a grocery store customer 60 may select to purchase food by selecting a plurality of food item packages 40. The purchasing process may typically involve the customer walking through the grocery store while collecting several food item packages 40 in a physical transportation cart 70, and transporting the cart to a check out 80, or cash register 80, for paying.
The grocery packages 40 collected by a customer 60 may comprise fresh produce, such as fruit or mushroom, which may be provided in separate portion sized packages or containers 40 A. Fresh produce may be provided at a cool temperature of about 15-18 degrees Centigrade, being held in a slightly cooled part of the grocery store. Thus, some grocery goods may be provided at a first, cool, temperature range of about 15-18 degrees Centigrade.
The grocery may comprise dairy products, such as milk, cream and butter. The dairy products may be provided in separate individual packages, and they may be provided in fridges at a temperature of about 6-8 degrees Centigrade. An individual dairy product package may typically range in size from around 100 grams to about 4 kg. Dairy product packages intended for use in private household commonly have a size of between 200 grams to 2 kg. For example milk may be provided in a carton package, such as a Tetra Pak® package containing e.g. 1 litre of milk, weighing about 1 kg. Thus, some grocery goods may be provided at a second, cold non-freezing, temperature range. The cold non-freezing temperature range may be a range of about +6 to +8 degrees Centigrade. Alternatively, the cold non-freezing temperature range may be a range of about +1 to +4 degrees Centigrade.
The grocery, which may be collected by the customer, may also comprise frozen food packages 40, provided in a freezer within the grocery store. Thus, the frozen food items 40B, for delivery at a temperature of e.g. about −18 degrees Centigrade, may be collected by the customer directly from a freezer. The frozen food 40B may be separately packaged e.g. in a carton box 40A. The frozen food may, for example include frozen fish, meat, or vegetables. The frozen food may have been frozen in a raw state, or, alternatively, it may be provided in a prepared manner such that it is ready to eat after thawing or heating. Thus, some grocery goods may be provided at a freezing temperature range of about −18 degrees Centigrade, or colder. In general, frozen goods does not suffer any harm from being chilled to a lower temperature than −18 degrees Centigrade, and accordingly frozen grocery goods may be provided at a freezing temperature in a range of between −25 to −40 degrees Centigrade.
Providing frozen goods within such a low temperature range advantageously extends the time required for the frozen goods to warm towards minimum freezing temperatures, such as e.g. −10 or −4 degrees Centigrade.
In order to achieve cost-efficient handling of the goods 40, sold in the grocery store, the grocery store typically receives a large variety of food items, each food item typically being received in bulk, i.e. an individual received food item type is received as a large number of smaller packages. As mentioned above, the smaller packages are adapted to contain an amount of packaged food 40B intended to be convenient for the customer, who typically buys just one or a few packs of each item.
Similarly, it is important to provide the collapsible bags 20 in bulk to the grocery store, so as to allow cost-efficiency. Accordingly, the collapsible bag 20 may be a collapsible grocery bag 20. The collapsible bag 20 may advantageously be delivered in bulk to the grocery store, thus requiring a very small storage volume, thereby contributing to cost-efficiency. Hence, a large plurality of collapsible bags may advantageously be delivered in a collapsed state 20A, thereby enabling transportation of the carrier bag in a substantially flat state 20A. In this manner, a large plurality of collapsible bags may be conveniently provided at a location in the grocery store. In this manner, customers can conveniently collect and bring a desired number of collapsible bags for transporting groceries.
According to another example, the bag 20 may be shaped in such a manner that plural bags 20 can be piled on top of each other in a space conservative manner. An example of such a space saving shape is a cone shaped container. In this manner plural cone shaped containers may be stacked by placing one cone container on top of the other such that the space required for storing ten containers is only slightly larger than the space required for storing one cone container. According to an example the bag may be shaped as a truncated cone such that there is provided a substantially flat bottom area inside the truncated cone container, the cone wall leaning outwardly from the bottom area. In this manner the truncated cone container may also be stacked or piled so that one container fits inside the next substantially identical container, thus enabling transport of a large number of stacked bags within a very small space. This feature of the bag advantageously contributes to enable transporting bags 20 in bulk at a low cost.
The collapsed collapsible bag 20A comprising kraft paper, as described below, has a balanced rigidity and flexibility allowing it to be easily expanded. In its expanded state 20C the carrier bag provides an interior storage space which is sufficiently large for transporting a plurality of grocery packages, even when the individual grocery packages are larger than 1 litre. According to some examples, the carrier bag 20 has a volume of between 10 litres and 50 litres in the expanded state of the carrier bag.
Having collected the desired combination of grocery packages 40 in the physical transportation cart 70, the customer 60 may transport the cart to a check-out 80, or cash register 80, for paying.
With reference to
As illustrated in
Accordingly, an example of the collapsible handle-carryable goods carrier bag 20 is suitable for use in an air atmosphere environment. The carrier bag has a collapsed state 20A (See
As mentioned above, the carrier bag may also have an expanded state 20B, 20C such that the carrier bag, in its expanded state, provides an interior storage space 100 (
The carrier bag may comprise a protector strip 5, as described in this disclosure, being shaped and folded so as to form a bag.
The wall panels may cooperate to form said interior storage space 100. The interior storage space 100 may be of a volume larger than 10 litres, or larger than four litres, in the expanded state of the carrier bag. The volume depends on the dimensions of the bottom panel and the wall panels.
A rim portion 150 of the wall panels 110, 120, 130A and 130B facing away from the bag bottom panel 140 may provide a bag opening 160 (
As mentioned above, the carrier bag may have an open expanded state 20B (
In the bag 20, the choice of material forming the wall panels and the bottom panel contributes to the advantageous cold keeping properties. It is to be noted that the design of the bag walls is not limited to the shapes described above. Instead, the term “wall” is to be understood as a material forming the boundaries of the interior storage space of the bag 20. A bag 20 may also be referred to as container 20 in this disclosure and in accompanying drawings. The wall or walls of the bag 20 forms the boundaries of the interior storage space for transporting chilled and/or frozen goods.
According to some examples the walls of the bag 20 comprise a paper layer. Paper is a material which is available at a reasonable cost, and it is readily available in large quantities. Paper is advantageous in that it is biodegradable and environmentally friendly. According to some examples the walls of the bag 20 comprise a kraft paper layer. Kraft paper is a material which is available at a reasonable cost, and it is readily available in large quantities. Kraft paper is advantageous in that it is biodegradable and environmentally friendly.
The kraft paper layer may have a surface weight in the range between 40 and 240 grams per square metre, and a density lower than 1200 kg per cubic metre. The surface weight of the kraft paper may be selected in dependence on the tensile strength to which the bag will be exerted when in use. In this connection it is noted that a carrier bag may be produced in various sizes, such as e.g. a five litre bag, a ten litre bag, a twenty litre bag, a thirty litre bag, a forty litre bag, or a fifty litre bag. It is possible to use kraft paper with as low surface weight as 40 g/square metre and a density lower than 1200 kg/cubic metre, at least for the small size bags of five, ten or twenty litre storage space, when the small size bag will be used for carrying lower weights. The maximum weight of the goods to be transported will, to some extent, be limited by the size of the bag.
Thus, the walls, including the bottom panel, may comprise protector strip 5 as disclosed in relation to
Measurements have been made so as to establish the thermal conductivity 1 of kraft paper layer used in a bag prototype, as discussed in connection with
Alternatively, a wall of the bag 20 may comprise plural material layers, i.e. an outer yield-able material layer F; an inner yield-able material layer G; and an intermediate material layer H disposed between the outer layer and the inner layer.
In order to achieve a good balance between the mechanical properties of the kraft paper while also achieving a relatively high thermal resistance of the kraft paper wall, it has been concluded that the kraft paper density may be as low as 350 kg/m3. The tensile strength needed is generally higher for a larger bag, since a larger bag will enclose a larger volume, i.e. a higher weight, of goods. Thus, when transporting a certain amount of frozen or chilled goods, an appropriate size bag should the selected. The bag size should be selected sufficiently large that the chilled goods fits inside, of course, but for optimum chill conserving ability of the bag, the chilled or frozen goods should preferably fill more than 30% of the inside volume of the bag 20. Hence, when packing chilled goods into the bag, the bag size should be selected sufficiently small so that, when packed with the cold or frozen goods, the cold or frozen goods fill up more than 30% of the inside volume of the selected bag 20. The selection of an appropriate size container contributes to the chill conserving properties of the packed container, since the thermal resistance of the wall is decreased in dependence on an increased wall surface area.
According to an example of the disclosure it was found that a good filling degree of a bag 20 is between 25% and 75%. In terms of designing the bag, the step of determining the desired tensile strength therefore may begin by assuming a 100% filling degree of goods having a mean density of about 0.5 kg per cubic decimetre or 50% filling degree of goods having a mean density of about 1 kg per cubic decimetre.
Thus, in one example it is assumed that a bag with an interior storage space of X litres should be designed to enable carrying a mass of at least 0.5*X kg. Therefore, in one example it is assumed that a bag with an interior storage space of 10 litres should be designed to enable carrying a mass of at least 5 kg. Likewise, a bag with an interior storage space of 20 litres may be designed to enable carrying a mass of 10 kg, and so on. A bag with an interior storage space of four litres would according to this example be able to carry a mass of 2 kg.
In one example, the bag comprises walls with a layer of wall material, the layer having a pre-determined tensile strength. For a bag designed to carry 5 kg, said pre determined tensile strength exceeds 0.133 N/mm2. For a bag designed to carry 10 kg, said pre-determined tensile strength exceeds 0.267 N/mm2. For a bag designed to carry 15 kg, said pre-determined tensile strength exceeds 0.399 N/mm2. For a bag designed to carry 20 kg, said pre-determined tensile strength exceeds 0.533 N/mm2. For a bag designed to carry 25 kg, said pre-determined tensile strength exceeds 0.667 N/mm2.
This can be seen in the following way: The tensile strength δ is defined as δ=F/A, where F denotes a force and A an area. The force F which a mass m will exhibit can be determined as F=g−m, where g denotes the acceleration due to gravity, which in one example is assumed to be g=9.82 m/s2. The mass m is in principle the added mass of the bag and the goods carried in it. In practice, the mass of the goods might be predominant. The area A is an area over which the force F is distributed.
A principle of determining the relevant area is shown in
In the example of
Especially the tensile strength of the bottom portion has to be taken into account. In practice, however, the tensile strength of the bottom can in principle be orders of magnitudes weaker than the tensile strength at the part of the bag where the handle is attached.
Another example protector strip 5 comprises a plastic material and/or a rubber material as wall material, e.g. in the cushioning layer H disposed between the outer layer F and the inner layer G, and/or as material in the outer layer F and/or the inner layer G. Here below there is a list of some example materials that may be comprised in the wall panels and/or bottom panel of the bag 20:
Another example protector strip 5 comprises non-woven as wall material, e.g. in the cushioning layer disposed between the outer layer and the inner layer. Hence, the at least one wall panel of the bag 20 may include an outer yield-able material layer F; an inner yield-able material layer G; and a cushioning layer H disposed between the outer layer and the inner layer, the cushioning layer comprising non-woven. This advantageously enables a non-expensive bag with a material having high air content, and it is therefore a good alternative. Non-woven material may comprise slender fibers which are not woven or knitted but are kept together in other ways, such as by entanglement. Non-woven materials may include textile-like materials. Here below there is a list of some example materials that may be comprised in the wall panels and or bottom panel of the bag 20:
Said non-woven materials and conventional textiles have a tensile index value exceeding 50 kNm/kg. All these container wall materials are selected to have a thermal conductivity value less than 0.15 W/(m K): λ<0.15 W/(m K).
Hence, according to examples of the disclosure the wall panels and/or bottom panel of the bag 20 may comprise one, or several, of the above listed materials, i.e. paper, a Non-woven material, a Conventional textile, a film of foamed or porous thermoplastic, a film of foamed or porous rubber.
Preferably, bag size should be selected such that an air gap is allowed to form between the inner surface of the bag and the outer surface of the cold or frozen goods. Such an air gap is advantageous in that the air gap renders extra insulation against the exterior environment, which may be warm. According to an example, the middle portion of interior the surface of the bag bottom may be marked so as to indicate that it is a loading zone for chilled goods. This advantageously indicates to the user of the chill container that goods to be transported should preferably be placed within the indicated area for optimum chill conserving effect during transport. In this manner a simple marking of the bag bottom will be indicative of a three-dimensional bag loading zone volume within the bag, the bag loading zone volume being separated from the side wall(s) of the bag by an air gap.
According to another example, there is provided a number of strips, e.g. kraft paper strips, having lengths commensurate with a width and a breadth of the paper bag; the strips being attached to the inner surfaces of the walls such that, when the bag is in its expanded state, the strips are arranged to stretch from wall to wall. In this manner the strips may advantageously provide a visual indication of the loading zone volume of the bag. The strips may also advantageously provide support for goods to be transported so as to prevent such goods from leaning against the bag wall when the bag is transported.
According to an example, the middle portion of interior the surface of the bag bottom may be marked so as to indicate that it is a loading zone for chilled goods (as described above), and the strips may be attached and positioned to the bag walls so that when goods-to-be-transported is stacked on the marked loading zone on the bag bottom (which may lead to the marked bottom area being covered), the paper strips will still indicate the loading zone volume of the bag.
Thus, for optimum cold conserving properties of the packed bag, the bag size should be selected sufficiently small so that, when packed with the cold or frozen goods, the cold or frozen goods fill up more than 30% of the inside volume of the selected bag 20, while also allowing for an air gap to be formed between the cold or frozen goods and the inner surface of the bag wall or walls.
Moreover, the protector strip 5 may have a substantially water vapour impermeable membrane 190 bonded to at least one side of the protector strip 5. The substantially water vapour impermeable membrane 190 may be bonded to the outer surface of the protector strip 5.
As mentioned above the bag 20 may be based on a protector strip 5, and/or on a tubular protector strip 5T, both of which are described elsewhere in this document. Thus, at least one of the wall panels, comprises an outer material layer F; and an inner material layer G; and a thermally insulating intermediate material H between the outer material layer and the inner material layer.
Some example bags may comprise a substantially water vapour impermeable membrane 190. The substantially water vapour impermeable membrane 190 may be provided on one or both of the surfaces of outer material layer F. Alternatively, the substantially water vapour impermeable membrane 190 may be provided on one or both of the surfaces of the inner material layer G.
According to an example the substantially water vapour impermeable membrane 190 may comprise a polymer membrane layer 190, which may comprise Low-density polyethylene (LDPE). The LDPE membrane may have a density in the range from 910 to 940 kg/m3. The LDPE-membrane layer may have an air permeability of less than 0.35 μm/(Pa·s) in accordance with ISO 5636-3:2013.
According to a preferred example the polymer membrane layer 190 may comprise a biodegradable plastic, such as e.g. Polylactic acid (PLA), polyhydroxyallkanoates (PHAs) such as poly-3-hydroxybutyrate (PHB). The polymer membrane layer 190 may alternatively comprise a biodegradable plastic such as polyhydroxyvalerate (PHV), or polyhydroxyhexanoate (PHH), polybutylene succinate (PBS), polycaprolactone (PCL), polyvinyl alcohol (PVA). The polymer membrane layer 190 may alternatively comprise biodegradable plastics such as a starch based plastics, plastics based on natural oils and fats (fatty acid esters obtained by transesterification of naturally occurring fats and oils).
The polymer membrane layer 190 may alternatively comprise a biodegradable plastic such as a cellulose-based plastics (e.g. cellulose acetate).
The polymer membrane layer 190 comprising a biodegradable plastic as defined above may be extrusion coated on a kraft paper layer.
Alternatively a biodegradable plastic as defined above may be dispersion coated on a kraft paper layer. The dispersion coated biodegradable plastic can advantageously be recycled in a conventional paper recycling process.
The use of biodegradable plastic for the polymer membrane layer 190 is preferred since it may be combined with a wall material having a sufficient tensile strength and also being biodegradable, such as e.g. kraft paper, thus rendering a kraft paper bag which, not only provides outstanding chill retaining properties, but also is fully biodegradable.
According to an example the an outer material layer F; and/or an inner material layer G may comprise paper, as mentioned elsewhere in this disclosure. Moreover, a substantially water vapour impermeable membrane 190 may be provided on one or on both of the surfaces of outer material paper layer G, or F. Alternatively, the substantially water vapour impermeable membrane 190 may be provided on one or on both of the surfaces of the inner material paper layer F, or G. The substantially water vapour impermeable membrane 190 may be a polymer coating as described in EP 1,094,944, the content of which is hereby incorporated by reference.
According to an example a water impermeable and water vapour impermeable membrane 190 may be provided on the surface the kraft paper layer facing the interior of the bag. In this connection it is noted that the closeable opening of the bag 20 may be closed and sealed by heat sealing 39HS. For example, when the inner paper layer G, F of the bag 20 comprises a coated paperboard according to
According to another example, the polymer membrane layer 190 comprises a non-biodegradable plastic which may be produced from fossil oil. Such a plastic membrane advantageously provides a good water vapour barrier. Such a plastic membrane may also be used for heat sealing 39HS, as discussed above.
According to an example, the water vapour impermeable membrane 190 is distributed over substantially all of the surface on one side of the paper layer.
According to an example the water vapour impermeable membrane 190 comprises a polymer. According to an example the polymer layer 190 may be a layer of PE or Polyethylene.
As shown, e.g. in
A first substantially planar reinforcement sheet 230 (See
The first substantially planar reinforcement sheet 230 may have a first sheet surface 230 A and a second sheet surface 230B on opposite sides of the substantially planar reinforcement sheet 230. The first reinforcement sheet 230 may be attached to the paper strip end portion 210A of the first handle 170A and to said rim portion 150 of said front wall panel 110, S1A such that said paper strip end portion 210A of the first handle 170 is located between the front wall panel 110, S1A and the reinforcement sheet 230.
The first surface 230A of the first reinforcement sheet 230 faces the paper strip end portion 210A of the first handle 170A and said rim portion 150 of the front wall panel 110, S1A. The first surface 230 A of the first reinforcement sheet 230 may be bonded to the paper strip end portion 210A and to said rim portion 150 of said front wall panel 110 S1A so as to distribute lifting force from said paper strip end portions to said front wall panel via said first reinforcement sheet.
With reference to
The second substantially planar reinforcement sheet being bonded to the second sheet surface of the first substantially planar reinforcement sheet advantageously achieves two effects. On the one hand, the elongated closure device is thereby attached to the bag wall, and on the other hand the second substantially planar reinforcement sheet 250 A also acts to distribute lifting force from said first substantially planar reinforcement sheet to said front wall panel via said second reinforcement sheet, the lifting force originating from the handle when the bag is carried by lifting the handle 170A (See
The second substantially planar reinforcement sheet 250A may be attached to an interior surface of the rim portion 150 of the front panel 110 and to a part of an interior surface of the rim portion 150 of a side panel, as shown in
The paper strip end portions of the first handle and said first reinforcement sheet are sized and dimensioned so as to withstand a force exceeding 100 Newton.
The kraft paper layer comprises a certain amount of air being trapped within the kraft paper layer. This trapped air is believed to contribute to good insulating property of the bag walls and bag bottom. In fact, examples of the carrier bag have been tested and the tests included a measurement with an Infra-red camera for a duration of more than 24 hours, while the closed carrier bag was placed in a warm room at a temperature of 25° Centigrade. The bag was placed such that the bottom panel 140 was placed on the floor, and the bag was standing with the rim portion 150 facing upwards. During this testing, the temperature on the outer surface of a closed carrier bag was detected and the temperature development was registered as time passed. The closed carrier bag was packed with a number of chilled and frozen grocery packages. Whereas, these measurements indicated that outer surface of the lower part of the bag side walls stayed colder than the outer surface of the upper rim portion 150, the tests also indicated that it was not possible to detect, from the outer surface temperature as detected with the IR camera the shape of the collapsible bag contents. In other words, individual frozen or chilled packages 40 which were positioned in the interior storage space 100 (
A Kraft paper layer of more than 140 grams per square metre may be advantageous for certain uses of the carrier bag, but the example of the goods carrier bag intended for use in grocery stores, allowing end user customers to pack their groceries into the bag, will preferably have a Kraft paper layer of 140 grams per square metre, or less than 140 grams per square metre. This is because the Kraft paper layer of more than 140 grams per square metre may be experienced to be a bit too stiff, whereas a Kraft paper layer of 140 grams per square metre or less than 140 grams per square metre will be more flexible, and thus more convenient to handle.
According to one example the kraft paper layer comprises a plurality of Kraft Pulp Fibres which are arranged one above the other so as to form plural air gaps within the kraft paper layer, and at least some of the Kraft Pulp Fibres have a length in the range between 1 and 3 mm and/or a width in the range between 10 and 50 micrometer. At least some of the plural air gaps have a volume exceeding 200 000 cubic micrometers according to that example.
According to an example the substantially water vapour impermeable membrane is bonded to the side of the kraft paper layer facing the outside of the bag. This solution advantageously allows user to place bag on ground even when its rainy and wet without causing deteriorated strength of the bag, since the water vapour impermeable membrane may prevent or minimize the absorption, by the kraft paper, of any water deposited on the exterior surface of the bag.
According to an example an elongated cavity of the first elongated closure element 240A forms an elongated tubular hollow which is adapted to receive the protrusion of the second elongated closure element 240B.
A movable pressure device 280, also referred to as “runner” 280, may be provided, according to an example, for the purpose of forcing the protrusion of the second elongated closure element 240B to enter into the elongated cavity of the first elongated closure element 240A. This solution provides for an advantageously simple handling of the bag 20. In particular, a customer, having loaded chilled groceries into the bag 20, may easily close the bag by simply sliding the movable pressure device 280 from one edge 290 to the other edge 300 (see
In this connection it is noted that the collapsible bag 20 exhibits an ability to maintain the frozen state of initially frozen groceries during a remarkably long time, thereby maintaining the initial quality and/or flavour of the frozen food stored in the bag.
With reference to
Another example of providing a closure device 4910 is shown in
The first elongated closure element 5010 may comprise an elongated cavity with lips forming a slit along its length so as to enable a mating protrusion provided by the second elongated element 5020 to enter the slit between the lips.
The closure device 4910 may further comprise a movable pressure device (not shown) adapted to force the mating protrusion of the second elongated closure element 5020 to enter the elongated cavity of the first elongated closure element 5010.
In embodiments, the bag may comprise a substantially planar reinforcement sheet attached to the interior surface of the rim portion of one of the at least one wall so as to withstand gravity of the goods when loaded in the bag.
In other embodiments, the elongated closure elements 5010, 5020 may comprise permanent magnets of different polarities adapted to be attractive to each other.
The closure device 4910 is provided at the inner and/or outer side of the front panel S1A and/or the back panel S1B. This closure device can have the size of a stripe and has preferable substantially the width of the upper side of the front panel S1A and/or the back panel S1B. The closure device 4910 can be attached to the front panel S1A and/or the back panel S1B. The attaching can be done by gluing or bonding. The closure element 4910 can be a glue strip. The closure device 4910 can be an adhesive tape. Thus, when pressing the front panel S1A to the back panel S1B, the glue strip and/or the adhesive tape can keep the front panel S1A and the back panel S1B close to each other, thus providing a closing of the transport container.
In one example the front panel S1A and the back panel S1B are kept attached to each other by the closure device 4910 once they touch each other via the closure device 4910. In one example the closure element 4910 is only at the front panel S1A or only at the back panel S1B. This might be enough for providing a closure of the bag via adhesive forces. The closure element 4910 can comprise an additional strip 29 of protection material shown in
In one example the closure element 4910 is on the outside of the front panel S1A and/or the back panel S1B. Assuming the closure element 4910 being on the outside of the front panel S1A, the back panel S1B could have a larger vertical height than the front panel S1A. A folding edge could be provided at the back panel S1B. The folding edge can be substantially parallel to the upper side of the back panel S1B. The folding edge could be situated at a distance from the upper side of the back panel S1B. Said distance could be approximately the distance of which the vertical height of the back panel S1B differs from the vertical height S1A of the front panel. One could then fold the back panel S1B along the folding edge in the direction of the front panel S1A. The folded section of the back panel S1B can then be put over the front panel S1A so that it covers the outer part of the front panel which comprises the closure device 4910. In that way a closure of the bag can be provided as well. Of course the closure device 4910 could also or instead be situated at the inner side of the folded part of the back panel S1B. The role of the front panel S1A and the back panel S1B can also easily be interchanged.
The closure device 4910 can also be an element which allows closing the transport element with the help of an external closure device. As an example, the closure device 4910 can comprise a welding strip. The welding strip can be formed from a layer of PE. The welding strip can be made of a weldable material so as to enable closing the bag opening by heat welding such that entry of air into the bag interior is minimized or prevented. Said external element is in one example a sealing element, for example a hot sealing element. It could also be an impulse sealing element. The external element could be a welding element. The external element could be a so-called hot weld pistol. One could, for example, attach said external element at the upper side of the front panel S1A and the back panel S1B so that it encloses said upper side of the front panel S1A and the back panel S1B at the part where the closure device 4910 is situated. One could thus close the transport container at a later state with the help of the external element. In one example, the closure device is part of sheet which is provided for being cut in a method like method 1305. Thus, in one example the closure device 4910 is not an additional element which has to be attached to the front panel S1A and/or the back panel S1B, but is already part of the front panel S1A and the back panel S1B. The closure device 4910 is in one example of the same material as the front panel S1A and/or the back panel S1B. According to an embodiment a part the water vapour impermeable membrane 190 forms the welding strip.
The closure device 4910 can also be provided at the outside of the front panel S1A and/or the back panel S1B when the front panel S1A and the back panel S1B have the same size. This might be advantageous when providing a closure as described in relation to
Other examples of closure devices are presented in
What is said in relation to
Yet another possibility is described in
The front panel S1A and/or the back panel S1B could have a rim portion 5110c extending to its upper side. This rim portion 5110c could be substantially rectangular. The rim portion of each wall panel of the bag in
This closure device 5170c could have any of the properties of the closure device 4910 which has been described before. Especially the closure device 5170c could provide adhesive force. The closure device 5170c could also be thus that a closure could be provided with the help of an external element which has been described before.
The front panel S1A and/or the back panel S1B could have a protrusion or rim portion 5110c extending to its upper side. This protrusion 5110c could be substantially rectangular. The protrusion could have an opening 5120c. The opening 5120c could be such that it provides a handle. How openings can provide handles has been described before. At a part of the rim portion 5110c which is between the opening 5120c and the front panel S1A and/or back panel S1B a closure device 5170c could be provided. This closure element 5170c could have any of the properties of the closure element 4910 which has been described before. Especially the closure element 5170c could provide adhesive force. The closure device 5170c could also be thus that a closure could be provided with the help of an external element which has been described before.
The location of the closure device advantageously enables the provision of a handle formed by a die cut opening in the wall panels above the closure elements while also enabling the closing and sealing of the interior storage space.
The folding of
In one example, before starting the now described folding scheme, the back panel S1B is put into contact with the front panel S1A. This could be done by putting the upper side of the back panel S1B in contact with the upper side of the front panel. In one example there are enclosed areas FS1, FS2, FS3, . . . between two adjacent folding edges FI 1/F12 and/or between a folding edge FI 1/F12 and the upper side of the front panel S1AJ the upper side of the rim portion 25b. Preferably, the contact between the back panel S1B and the front panel S1A is along the enclosed areas FS1, FS2, FS3. What is said regarding bringing the back panel S1B in contact with the front panel S1A applies in one example also to the rim portion 25b, which could be brought into contact with a corresponding rim portion 25b at the back panel S1B, for example the rim portion 25b of
The folding is in one example done in the way that the enclosed area FS1 between the upper side of the rim portion 25b/the upper side of the front panel S1A and the uppermost folding edge, in the shown example F11.1, faces the enclosed area FS2 between the uppermost folding edge F11/F12, in the shown example F11.1, and the second most upper folding edge F11/F12, in the shown example F11.2. When folding edges corresponding to F11/F12 exist at the back panel S1B/at rim portions from the back panel S1B, and when a folding along these corresponding folding edges is performed in the same direction as a folding at the front panel S1A/the protrusion 4320, a closure of the transport container is provided. The term same direction thus implies that the folding at the back panel S1B has to be towards the second sheet surface of the back panel S1B when the folding at the front panel S1A is towards the first sheet surface of the front panel S1A, and vice versa. The contact between the front panel S1A and the back panel S1B and/or the corresponding rim portions is preferable kept throughout the folding procedure, so that the first sheet surface of the front panel S1A and the back panel S1B and/or the corresponding rim portions always touch each other.
In a next folding step, an enclosed area FS2 between the uppermost folding edge F11.1 and the second uppermost folding edge F11.2 is folded towards the enclosed area FS3 between the second uppermost folding edge F11.2 and the third uppermost folding edge F11.3. The enclosed area FS1, and preferably its counterpart on the back panel S1B, will thus be situated between the areas FS2 and FS3.
The folding can be continued along several or all of the folding edges F11/F12.
According to an example the insulator device comprises paper and a substantially water vapour impermeable material. This solution advantageously enables the insulator device to withstand a damp or wet environment without absorbing water. According to an example the substantially water vapour impermeable material of the insulator device comprises at least one layer of a polymer material.
According to another example the insulator device comprises at least one layer of a plastic material. This solution advantageously enables the insulator device to withstand a damp or wet environment without absorbing water. According to an example the insulator device comprises Bubble Wrap®.
The collapsible grocery inner chill bag 400 is suitable for use inside of the carrier bag 20. In likeness to the goods carrier bag 20, the inner chill bag 400 may have: a collapsed state 20A for enabling transportation of the inner chill bag in a substantially flat state, and an expanded state such that the inner chill bag, in its expanded state, provides a second interior storage space 410 for transporting chilled and/or frozen grocery packages. The inner chill bag 400 may comprise: inner walls and an inner bottom cooperating to form said second interior storage space; wherein a second rim portion of the inner walls facing away from the inner bottom provides an inner bag opening 420. The inner chill bag 400 may have an open expanded state for loading and/or unloading grocery packages to be transported, and a closed expanded state such that the inner chill bag, in its closed expanded state, provides a substantially closed second interior storage space for transporting chilled and/or frozen grocery packages. The inner bag opening 420 may be closable opening which, in the closed expanded state of the inner chill bag cooperates with said inner walls and said inner bottom so as to minimize or prevent entry of air from the environment into the second interior storage space.
According to an example the collapsible grocery inner chill bag 400, in its expanded state, is shaped and dimensioned to fit inside of the carrier bag 20.
An example of the handle-carryable goods carrier chill bag package 450 may thus comprise a collapsible handle-carryable goods carrier chill bag 20 and a collapsible grocery inner chill bag 400. Hence, the handle-carryable goods carrier chill bag package, in use, may include the collapsible grocery inner chill bag 400 in its closed expanded state: and the collapsible handle-carryable goods carrier chill bag 20 in its closed expanded state, wherein the collapsible grocery inner chill bag is placed in the interior storage space 100 of the collapsible handle-carryable goods carrier chill bag 20.
This solution advantageously enables the packing of frozen grocery packages in the second interior storage space 410. This solution therefore enjoys a high thermal resistance from a frozen grocery package in the second interior storage space to the environment outside of the outer handle-carryable goods carrier bag, since any air inside of the first interior storage space 100 functions as insulation between the second interior storage space and the environment outside of the outer handle-carryable goods carrier bag. Additionally, there are double barriers for minimizing or preventing entry of air from the environment outside of the outer handle-carryable goods carrier bag into the second interior storage space when both of the bags are in their closed expanded states, since the second interior storage space is sealed by the closed inner bag as well as by the closed outer bag.
As mentioned above, the interior of the bag 20, when in use, may be initially chilled by the low temperature of frozen or chilled grocery packages which are placed in the interior storage space 100. Although this is sufficient for maintaining the frozen or chilled state of frozen or chilled grocery packages for an extended period of time, the inventor realized that this time period may be further extended.
According to an example, there is provided a means 460 for cooling the interior of the bag 20 so as to enable a further extended period of time during which the frozen or chilled state of frozen or chilled grocery packages is maintained.
According to an example the handle-carryable goods carrier chill bag package 450 may, in use, further comprise a means 460 for cooling the interior 100 of the bag 20 and/or for cooling the second interior storage space 410.
According to an example of the means 460 for cooling the interior of the bag, there is provided a cooling agent. A piece of dry ice is an example of such a cooling agent.
Dry ice is the solid form of carbon dioxide. The chemical formula of carbon dioxide is CO2. Thus a carbon dioxide molecule comprises two oxygen atoms bonded to a single carbon atom. It is colourless, non-flammable, and slightly acidic. Carbon dioxide can change from a solid to a gas with no intervening liquid form, through a process called sublimation. The opposite process is called deposition, where CO2 changes from the gas to solid phase (dry ice). At earth atmospheric pressure, sublimation/deposition occurs at −78.5° C. Its enthalpy of sublimation is 571 kJ/kg (25.2 kJ/mol).
The density of dry ice varies, but usually ranges between about 1.4 and 1.6 g/cm3. The low temperature and direct sublimation to a gas makes dry ice an effective coolant, since it is colder than water ice and leaves no residue as it changes state. According to an example of the Dry Ice cooling agent, there is provided pellets of dry ice, the size of the pellets being suitable for placing in the interior storage space 100 of the bag 20, when the bag 20 is in use as a chill bag. Thus, as the dry ice pellets gradually change from a solid form to gaseous carbon dioxide with no intervening liquid form (sublimation) there is a corresponding energy consumption of 571 kJ/kg which causes a decrease of the temperature of any food packages surrounding the dry ice pellets. The dry ice may be provided in a piece of a suitable size, dependent on the amount of refrigeration desired. According to an example, a single piece of dry ice may comprise one kilogram of dry ice. According to another example, a single piece of dry ice may comprise e.g. 10 grams of dry ice. According to yet another example, a single piece of dry ice may comprise e.g. 100 grams of dry ice. Such relatively small pieces of dry ice may be referred to as dry ice pellets. One or several dry ice pellets may be used simultaneously in the interior storage space 100 of the chill bag 20, dependent on duration of the period of time it is desired to keep the interior storage space 100 at freezing temperatures.
According to an example, the carrier bag 20 may advantageously be used by on-line shops, for delivery of frozen or chilled groceries which have been ordered e.g. via the Internet. The advantageous ability of the bag 20 to preserve the frozen or cold state of groceries for an extended length of time may enable a reduction in the cost for delivery of frozen or chilled groceries.
A server computer 540 is also connected to the communications network 530. The server computer 540 may comprise a database 560, user input/output interfaces 570 and data processing hardware 580, and a communications port 590. The server computer 540 is located on a server location 592, which is geographically separate from the client location 500. The server location 592 may be in a first city, such as the Swedish capital Stockholm, and the client location may be in another city, such as Berlin, Germany. Alternatively, the server location 592 may be in a first part of a town and the client location may be in another part of the same town. The server location 592 may also be referred to as supplier part 592, or supplier part location 592. The server computer may be part of an on-line business entity 595 for the sales and delivery of goods that needs to be kept chilled, cold or frozen.
The on-line business also includes a storage facility 600 for goods 40. A storage computer 610 is connected to the communications network 530. The storage computer 610 may comprise user input/output interfaces 620 and data processing hardware 630, and a communications port 640.
The storage facility 600 also comprises one or several storage rooms 650. According to an example of the invention, the storage room 650 has a controlled environment, in that the temperature and the relative humidity of the air in the storage room 650 is controlled so that it is kept within certain predetermined ranges.
The goods may comprise a plurality of different types of goods, and the goods may be sorted into different temperature ranges TI, TII, TIII, and TIV, each type of gods being stored in a corresponding storage room 650TI, 650TII, 650TIII, and 650TIV having a temperature in accordance with the corresponding goods temperature range TI, TII, TIII, or TIV (See
According to an example, the ambient air temperature in goods loading room 660 is kept lower than +18 degrees Centigrade. The air humidity is advantageously kept low in the environment where chilled or frozen goods is to be packed into bags 20 so as to eliminate or minimize the occurrence of condensation or frosting on chilled or frozen goods. According to an example the relative air humidity is kept lower than 40% RH. According to another example the relative air humidity is kept lower than 20% RH.
In this connection it may be noted that the occurrence of condensation can cause significant heating of chilled, non-frozen, goods. If air humidity causes condensation on the surface of a piece of chilled, non-frozen, goods the increase of the mean temperature of a piece of chilled, non-frozen, goods is:
DT
chg=2260*mCond/(Wchg*mchg), where
For frozen goods the impact of frosting is even more severe. When air humidity causes water droplets to be formed on frozen goods the condensed water may also freeze. The formation of condensed water from air humidity, the condensed water subsequently also freezing to form ice, or frost, is herein also referred to as “frosting”. If air humidity causes frosting on the surface of a piece of frozen goods the increase of the mean temperature of a piece of frozen goods is:
DT
FRG=2594*mCond/(WFRG*m), where
Accordingly, an object and an advantageous feature of the invention is to eliminate or minimize warming of chilled or frozen goods during packing into a bag 20 by eliminating or minimizing the occurrence of frosting and/or condensation on chilled or frozen goods. According to an example, the ambient air temperature in goods loading room 660 is therefore kept lower than +10 degrees Centigrade, and the air humidity is also kept low in the environment where chilled or frozen goods is to be packed into bags 20 so as to eliminate or minimize the occurrence of condensation or frosting on chilled or frozen goods. According to an example the relative air humidity is kept lower than 30% RH. According to another example the relative air humidity is kept lower than 20% RH.
In fact, the energy released by 1 gram of water vapour being turned into a layer of ice on a package containing one kilogram of frozen water is actually sufficient to warm that whole kilogram of frozen water by 1.18 degrees. Thus, if e.g. 12 grams of water vapour is allowed to turn into a frost layer of ice on a package of frozen grocery, that energy (just over 31 kJ) may suffice to warm that grocery by several degrees. The exact temperature change depends on the specific heat capacity WFRG of that particular piece of grocery, as illustrated by the equations listed above. Pure fresh water ice has a specific heat capacity of 2200 J/(kg*K), and thus 12 grams of frost being formed would suffice to warm that one kilogram of fresh water ice by about 14 degrees Centigrade.
In this connection the maximum amount of water vapour at various air temperatures may be relevant. The right hand column in Table 1 below provides an overview of the water mass per unit volume of vapour saturated air. The left hand side column indicates corresponding temperature and the middle column indicates the pressure of saturated vapour.
The storage facility 600 also comprises storage of bags 20 for the transport of chilled or frozen goods. The bags 20 may be bags 20 for the transport of chilled or frozen goods. The bags 20 may be provided in plural predetermined sizes, such as e.g. six different sizes. The interior storage space volume of the bags 20 sizes may comprise e.g. 4.5 litres, 10 litres, 20 litres, 30 litres, 40 litres and 50 litres.
With reference to
Some goods may be provided at a second, cold non-freezing, temperature range TII. The second cold non-freezing temperature range may be a range of about +6 to +8 degrees Centigrade. Alternatively, the cold non-freezing temperature range may be a range of about +1 to +4 degrees Centigrade.
Some goods may be provided at a third temperature range TIII. The third temperature range TIII may be a freezing temperature range of e.g. between −18 degrees to −22 Centigrade.
Moreover, some goods may be provided at a fourth freezing temperature range TIV which is colder than the third range. The fourth range may be e.g. of between −25 to −40 degrees Centigrade. Providing frozen goods within such a low temperature range advantageously extends the time required for the frozen goods to warm towards a minimum freezing temperature TfrMin. The minimum freezing temperature TfrMin may be e.g. −10 or −4 degrees Centigrade. The value of the minimum freezing temperature TfrMin depends on the type of goods.
According to an example, the fourth freezing temperature range TIV is a settable range, such that the fourth freezing temperature range TIV can be set to a value TIV=Tf4+/−Tra, wherein the value TIV is a temperature between −25 to −40 degrees Centigrade, and Tra=is inaccuracy range. The inaccuracy range Tra may be a narrow span of a few degrees. The inaccuracy range Tra may be a narrow span of e.g. less than two degrees.
When transporting chilled or frozen goods in an example of a chill conserving bag 20, the duration from the packing of the chilled or frozen product into the chill conserving bag 20 until the goods has reached a certain higher temperature Tch2 depends on the initial temperature Tch1 of the chilled or frozen goods. Thus, a lower initial goods temperature Tch2 will increase the duration TCOOL during which the goods is kept below a certain limit value Tchlimit. Thus a lower initial goods temperature Tch2 will enable a longer acceptable transport time of the chilled or frozen goods.
However, the inventors concluded that a lowering of the initial temperature Tch1 does not lead to a proportionally longer duration TCOOL during which the goods is kept below a certain limit value Tchlimit.
With reference to
The server computer 540 may thus be adapted to receive an order, as indicated by step S300 in the right hand side flow chart F20 in
When the order includes a request for goods that should be kept within mutually different temperature ranges, the server computer 540 may be adapted to sort the order information according to the goods temperature ranges (step S310). With reference to
In a step S330 the delivery instruction DI may be received by the storage computer 610 at the storage facility 600. In a step S340 the storage computer 610 may be adapted to create a packing instruction PI. The packing instruction may include information about the amount of each piece of goods ordered.
It is noted that the step S310 may be performed by the storage computer 610, as an alternative to being performed by the server computer.
When the order includes a request for goods that should be kept within mutually different temperature ranges, the storage computer 610 may be adapted include structured information in the packing instruction PI so that an approximate volume and/or an approximate mass of the goods within an individual temperature range TI, TII, TIII, or TIV is indicated by the packing instruction PI. In dependence on the information in the packing instruction PI the storage computer 610 may generate an indication of a suitable type and/or suitable size of transport container for the ordered goods. As mentioned above, the bags 20 may be provided in plural predetermined sizes, such as e.g. five different sizes. The interior storage space volume of the bags 20 sizes may include plural bag volume sizes VI, V2, V3, V4, V5. The bag volumes may include VI, V2, V3, V4, V5, V6 being mutually different sizes such as e.g. 4 litres, 10 litres, 20 litres, 30 litres, 40 litres and 50 litres.
With reference to
The filling degree is determined so as to balance between conflicting requirements. If the filling degree is too small, the bag has too little content of chilled or frozen goods, the amount of stored negative energy is small rendering an undesiredly fast warming of the goods due the small amount of “cold energy”. The terms “negative energy” or “cold energy” are used since a piece of chilled goods having a certain temperature absorbs energy, i.e. absorbs positive energy, in the process of increasing its temperature. The absorbed energy is the energy that may seep in via the walls of the closed and sealed container, by way of heat conduction through the walls. Advantageously, according to examples of the disclosure, heating by condensation and/or frosting within the container 20 or bag 20 is eliminated or reduced, since entry of air is prevented or reduced as described elsewhere in this document, thereby basically rendering heat conduction through the walls the only remaining manner by which energy can seep into the interior of the container 20 or bag 20.
On the other hand, if the filling degree is too large, the goods may fill the interior storage space to such an extent that the chilled or frozen goods may rest close to the side walls, or even touch the side walls, thereby reducing or eliminating an insulating effect gained by a gap between the side walls and the chilled or frozen goods placed at a centre position of the bottom panel of the bag.
As mentioned above, it was found that a good filling degree of a bag 20 is between 25% and 75%, according to an example of the disclosure, so as to gain an insulating effect by a gap between the side walls and the chilled or frozen goods placed in the interior storage space. It has been found that it is preferable to have at least 2 kg of chilled or frozen goods in order to provide an amount of stored cold energy within the bag 20, when the bag 20 has a volume between 10 litres and 50 litres. More preferably, a bag 20 having a volume between 10 litres and 50 litres, should be filled with at least 2.5 kg of chilled or frozen goods and the filling degree should preferably be less than 90%. It has been concluded that a bag 20 having a volume between four litres and 10 litres, should preferably be filled with at least 1.5 kg of chilled and/or frozen goods and the filling degree should preferably be less than 90%.
It has been found by experiments that a good filling degree appears to be between 30% and 70% of the bag volume.
An optimum filling degree appears to be between 40% and 60% of the bag volume. According to a preferred example the filling degree is between 45% and 55% of the bag volume.
With reference to
According to a preferred example, a bag 20, having a bottom panel and side panels, is packed in a manner that allows an air gap to be formed between the side panels of the bag 20 and chilled or frozen goods placed at a centre position of the bottom panel. According to a preferred example, a certain bag 20 is filled with goods having mutually uniform temperature. This advantageously contributes to a substantially uniform temperature throughout the goods in that bag 20, and it minimizes any temperature re-distribution between mutually different pieces of goods. Thus, in step S360 one or plural bags 20 may be packed such that a minimum number of uniform goods temperature containers are filled to the optimum filling degree. With reference to
When the bag(s) 20 have been filled, as described above, each bag 20 may be closed and sealed, as indicated in step S370 (
As described elsewhere in this document, there are many alternative manner by which closing and/or sealing of the bag 20 may be performed. This may include heat welding, gluing, sealing by use of a tape, or by clamping. Closing and/or sealing of the bag 20 may be also be performed by folding a rim portion of a bag 20. According to yet an example, with reference to
According to an example, the storage computer 610 may deliver the packing instruction PI to a packing robot 670 (See
When packing is performed by a robot the whole packing procedure may be performed within the respective storage room 650TI, 650TII, 650TIII, 650TIV having a controlled air temperature and a controlled air humidity. According to an example, the ambient air temperature in goods loading room 660 is kept lower than +25 degrees Centigrade, and the air humidity is advantageously kept lower than 70% in the environment where chilled or frozen goods is to be packed into bags 20 so as to eliminate or minimize the occurrence of condensation or frosting on chilled or frozen goods. According to an example the relative air humidity is kept lower than 40% RH. According to another example the relative air humidity is kept lower than 20% RH.
For optimum cold retention properties of the bag 20 during the-transport-to-come, the bag 20 should preferably be packed and sealed such that the air trapped within the bag 20 has a relative humidity of less than 70% at an air temperature equal to the surface temperature of the goods during packing. The purpose of this feature is to minimize or eliminate the risk of condensation occurring within the bag 20. Since the relative air humidity decreases in response to increased temperature, such relatively dry air being initially trapped in the bag may not only avoid causing condensation, but it may also advantageously be able to absorb and dilute some humidity that may originate from the chilled goods or from a minor entry of ambient air during transport.
With reference to step 380 in
As illustrated by step S390 in
With reference to step S400 in
As mentioned above, an embodiment of the bag 20 comprises a wall adapted to enclose an interior storage space (100) for transporting chilled and/or frozen goods 40, 40A, the wall being shaped and adapted to form an interior storage space 100 to a volume of five metric litres; the chill bag having a collapsed state for enabling transportation of the paper chill bag in a substantially flat state, and an expanded state such that the paper chill bag, in its expanded state, provides an interior storage space (100) for transporting chilled and/or frozen goods, the wall being shaped and folded so as to form a front wall panel (110, S1A), a back wall panel (120, S1B), and a bottom panel (140); wherein the wall panels and the bottom panel cooperate to form said interior storage space (100) to a volume of five litres in the expanded state of the kraft paper chill bag (20); said wall comprising: an outer paper layer; and an inner paper layer; and a thermally insulating intermediate space between the outer paper layer and the inner paper layer; the intermediate space comprising an intermediate material; and a closable bag opening (160, 420) such that the chill bag (20) in its closed state seals, or substantially seals, the interior storage space (100) from the environment so as to minimize or prevent entry of air from the environment into the interior storage space (100); the bag opening being closed by folding a flap 26 be folded down and secured in position by the use of the adhesive layer 29, as illustrated in
A comparative test was done for the purpose of evaluating the relative ability to maintain a frozen state of goods. A bag 20 as described above (Here referred to as testbag TB), i.e. a bag as disclosed in
For the purpose of comparison, a kraft paper bag as disclosed in EP3140223B1 (here referred to as KPB), was packed with the same amount of frozen goods, at the same initial temperature, and the kraft paper bag KPB was also placed in the same environment. Thus, the measuring condition were the same. Whereas the frozen goods in the kraft paper bag KPB had increased its temperature by 4 degrees centigrade after 1 hour, the frozen goods in the inventive bag 20 had increased its temperature by 4 degrees centigrade after 2 hours.
Whereas the goods in the kraft paper bag KPB had increased its temperature by 8 degrees centigrade after two and a half hours, the goods in the inventive bag 20 had increased its temperature by 8 degrees centigrade after 5 hours.
Hence, the test indicated that the inventive bag 20 can maintain a frozen state of goods for approximately twice as long time as the kraft paper bag KPB.
Thus, the table in
In the table of
The 12:th row in the table in
As mentioned above,
With reference to
According to an example, the storage computer 610 may deliver the packing instruction PI to a packing robot 670 (See
When packing is performed by a robot the whole packing procedure may be performed within the respective storage room 650TI, 650TII, 650TIII, 650TIV having a controlled air temperature and a controlled air humidity.
The packing procedure may be performed in the goods loading room 660, and during the packing procedure the ambient air temperature in goods loading room 660 is preferably kept lower than +15 degrees Centigrade, and the air humidity is advantageously kept lower than 50% in the environment where chilled or frozen goods is to be packed into bags 20 so as to eliminate or minimize the occurrence of condensation or frosting on chilled or frozen goods. According to an example the relative air humidity is kept lower than 40% RH. According to another example the relative air humidity is kept lower than 20% RH.
For optimum cold retention properties, in the packed bag 20 during transport, the climate of the respective storage room 650TI, 650TII, 650TIII, 650TIV is controlled to a temperature approximately equal to the temperature of the chilled goods and/or frozen goods. For good cold retention properties of the bag 20 during the-transport-to-come, the bag 20 should preferably be packed and sealed in an air environment such that the air trapped within the bag 20 has a relative humidity of less than 70% at an air temperature equal to the surface temperature of the goods during packing. For optimum cold retention properties of the bag 20 during the-transport-to-come, the bag 20 should preferably be packed and sealed such that the air trapped within the bag 20 has a relative humidity of less than 50% at an air temperature equal to the surface temperature of the chilled or frozen goods 40, 40A, 40B during packing. The purpose of this feature is to minimize or eliminate the risk of condensation occurring within the bag 20. Since the relative air humidity decreases in response to increased temperature, such relatively dry air being initially trapped in the bag may not only avoid causing condensation, but it may also advantageously be able to absorb and dilute some humidity that may originate from the chilled goods or from a minor entry of ambient air during transport.
Likewise, for optimum cold retention properties of the rigid container 6420 during the-transport-to-come, the rigid container 6420 should be packed and sealed such that the air trapped within the rigid container 6420 has a relative humidity of less than 70% at an air temperature equal to the surface temperature of the chilled or frozen goods 40, 40A, 40B during packing.
The chilled or frozen goods 40, 40A, 40B may comprise grocery packages 40, as discussed elsewhere in this document.
Table 1 provides approximate information about the absolute water content for saturated air, i.e. at 100% relative humidity at various temperatures. Thus, when the air trapped within the bag 20 has a relative humidity of less than 70% at an air temperature equal to the temperature of the goods during packing, the absolute water content will be very low.
The purpose of this feature is to minimize or eliminate the risk of condensation occurring within the bag 20. Since the relative air humidity decreases in response to increased temperature, such relatively dry air being initially trapped in the bag may not only avoid causing condensation, but it may also advantageously be able to absorb and dilute some humidity that may originate from the chilled goods or from a minor entry of ambient air during transport.
With reference to
After the step (S370) of sealing the bag(s) 20, the bag(s) 20 may be placed (step S6380) in a rigid container 6420 (See
In one example, the bottom wall 6430, the plurality of side walls 6440 and the lid are adapted to be substantially water vapour impermeable. In one example, the bottom wall 6430, the plurality of side walls 6440 and the lid comprise an insulating layer and a layer of a material being adapted to be substantially water vapour impermeable. This is in one example achieved by layers according to what has been described before in this disclosure.
In one example, at least one of the walls of the rigid container, and/or the lid, includes a layer of an energy absorbent. In one example, all of the walls of the rigid container include a layer of an energy absorbent material.
The energy absorbent material is in one example a material having a specific heat capacity of more than 1000 J/(kg*K). The energy absorbent material can be chilled to a predetermined temperature before use of the rigid container.
The rigid container can comprise a water vapour impermeable layer so as prevent entry of air from the environment into the interior storage space 6465. The rigid container can comprise an insulating layer, which comprises a material having a thermal conductivity of less than 0.2 W/(K*m). The rigid container can comprise a layer of an energy absorbent material having a specific heat capacity of more than 1000 J/(kg*K). The energy absorbent material can be adapted to be chilled to a predetermined temperature before use of the rigid container.
The energy absorbent material is in one example a phase change material having a specific heat capacity and a latent heat value. The energy absorbent material can be arranged to be chilled to a predetermined temperature before use of the rigid container. The predetermined temperature can be selected such that said phase change material is in a solid state. According to an example the phase change material comprises water. Thus, when said phase change material is in a solid state the phase change material comprises frozen water, i.e. water ice. According to an example the phase change material comprises fresh water having a phase change temperature of approximately zero degrees Centigrade.
With reference to
In a subsequent step S6394, the rigid container may be marked with data indicative of a delivery destination DD for bags 20 packed inside that particular rigid container 6420. The marking of the rigid container 6420 is done based on the information in the delivery instruction DI (See above). Alternatively the rigid container 6420 is individually marked so as to indicate a queue position, indicating when that individual rigid container 6420 is to be unloaded in relation to other rigid containers 6420 to be delivered by the same transport vehicle 680. Thus, a rigid container 6420 may include a delivery destination tag DDT for holding the data indicative of a delivery destination DD for bags 20, and/or for holding data indicative of a queue position, indicating when that individual rigid container 6420 is to be unloaded in relation to other rigid containers. The data in/on the delivery destination tag DDT is based on the information in the delivery instruction DI. Moreover, the data in/on the delivery destination tag DDT may be based on information in the delivery instruction DI, such as address of the delivery destination DD in conjunction with map data and data of the route to be followed by the delivery vehicle during delivery of bags 20 to a large number of delivery destinations DD.
The rigid containers 6420 are sorted in a step S6396, based on the information in the delivery instruction DI, such as address of the delivery destination DD in conjunction with map data and data of the route to be followed by the delivery vehicle during delivery of bags 20 to the various delivery destinations DD of the goods in the bags 20 which are inside the individual rigid containers 6420. Thus, the rigid containers 6420 are sorted so as to be loaded into the loading space of transport vehicle in a First-In-Last-Out order based on date indicative of delivery destinations and delivery route information. Thus, the rigid containers 6420 are sorted (step S6396) in a First-In-Last-Out order.
One or several rigid containers 6420 may thereafter be packed (step S6400) onto or into the transport vehicle 680. It is desirable to use the loading space of the transport vehicle 680 as efficiently as possible, and it is also desirable to enable the delivery personnel to work as efficiently as possible during delivery of the bags 20. Therefore, the rigid containers 6420 are preferably loaded (step S6400) onto or into the transport vehicle loading space in a First-In-Last-Out order.
The transport vehicle 680 may be a motorised vehicle 680. The shape, size and dimensions of the loading space of a transport vehicle 680 is preferably larger than 260 metric liters, such that at least four rigid containers 6420 can be placed inside of the transport vehicle loading space, when each rigid container 6420 occupies a volume of more than 60 metric liters. The loading space of the transport vehicle 680 may e.g. have a width in excess of 2 meters, a height in excess of 1.9 meters, and a depth in excess of 4 meters. An example transport vehicle loading space has a width of 2.09 meters, a height of 2.00 meters, and a depth of 4, 14 meters. Thus the volume of the transport vehicle loading space may be in excess of 17000 metric litres.
In this connection it is noted that, according to an example, the rigid container 6420 has an internal storage space volume in excess of 100 metric liters.
An example rigid container 6420 has the following outer dimensions: a width of 5.00 dm at the widest, a height of 6.10 dm including the lid (i.e. when the lid is placed over the rigid container opening), and a length of 7.80 dm. Thus, the loaded rigid containers, when placed next to each other and on top of each other, as they may be placed in the loading space of the transport vehicle 680, each occupy a space of about 237.9 metric liters (cubic decimeters).
As illustrated by step S6410 in
With reference to step S6420 in
Because of the efficient temperature conserving properties of examples of the goods transport system according to this disclosure, the duration of the transport may be allowed to be advantageously long while still retaining desired goods temperature. Thus, one or several sealed container(s) 20, or bag(s) 20, may be delivered and left at the delivery destination DD, where a recipient, such as e.g. a customer or a client may take the container(s) 20, or bag(s) 20 and carry it e.g. to a fridge or a freezer, where the chilled and/or frozen goods may be unloaded from the container(s) 20, or bag(s) 20 into the fridge and/or freezer, respectively.
Because of the efficient temperature retention properties of the goods transport system, the cost for delivery of chilled and/or frozen goods may be significantly decreased. This advantageous effect is attained since the efficient temperature retention properties of the goods transport system including the combination of sealed container(s) 20 or carrier bags 20 and the sealed rigid container 6420 enables the transport to be performed using a vehicle without any actively refrigerated storage enclosure for the transportation of the loaded container 6420. According to an example the transport vehicle 680 may be a motorised vehicle 680 having a vehicle storage area without any fridge or freezer. Thus, whereas conventional motorised transport vehicles for transporting chilled and/or frozen goods use energy in the form of electricity or gas or petrol etc., for maintaining a certain temperature in the air surrounding the goods during transport, the above described combination of sealed container(s) 20 or carrier bags 20 and the sealed rigid container 6420 may enable the transport to be performed using a vehicle without consuming energy in the form of electricity or gas or petrol to actively chill the vehicle storage area during transport. This advantageously enables use of less costly vehicles, while the combination of sealed container(s) 20 or carrier bags 20 and the sealed rigid container 6420 advantageously maintains a low temperature of the chilled and/or frozen goods for an extended amount of time.
According to a preferred example the container 20, or bag 20, comprises biodegradable materials, as disclosed above in this document, therefore allowing for it to be disposed of in an environmentally friendly manner. According to some examples every material in the container 20, or bag 20, is a biodegradable material.
As mentioned above, with reference to step S6420 in
According to an example, the rigid containers may be shaped and dimensioned so that they can be stacked and nested to save space when empty (Step S6424). Thus, when a rigid container 6420 has been emptied and the lid of the rigid container 6420 is not covering the rigid container opening, another rigid container 6420 can advantageously be sunk into the empty rigid container 6420. In this manner several rigid containers 6420 are stackable in a nested fashion so as to save space in the delivery vehicle. This feature of nesting the rigid containers 6420 is further discussed elsewhere in this document.
Thus, whereas the bags 20 are delivered at the delivery destinations, the rigid container 6420 may remain in the vehicle 680 so as to be returned to the storage facility 600 (Step S6430, see
According to an example, the returned rigid container 6420 passes an inspection step (S6432). The inspection step may comprise an evaluation of the status of the rigid container 6420, such as e.g. the physical condition, and/or the hygienic condition of the rigid container 6420. According to an example, the inspection step S6432 may include taking microbiological samples and performing a corresponding analysis.
A rigid container 6420 may optionally be passed to a washing and cleaning step (S6440). Thus, the rigid container 6420 may be cleaned so as to remove any dirt or foreign objects, dependent on the outcome of the inspection step (S6432).
Moreover, following the washing and cleaning step (S6440), the rigid container 6420 may optionally be passed to a disinfecting step and/or a sterilizing step (S6450). Thus, the rigid container 6420 may be disinfected/sterilized such that the rigid container 6420 fulfils established criteria, such as e.g. criteria for distribution of groceries. In this connection it is noted that in an example of the rigid container 6420, the rigid container 6420 walls and lid is comprises Expanded Polypropylene (EPP). According to an example, the disinfecting step and/or a sterilizing step (S6450) includes washing the rigid container 6420 in alcohol, at least when the rigid container 6420 is made of Expanded Polypropylene (EPP). In this connection, it is noted that Expanded Polypropylene (EPP) has an excellent chemical resistance to alcohol. Accordingly, cleaning and disinfection may be performed on the rigid container 6420 made of EPP by the use of alcohol. Moreover, the EPP rigid container 6420 advantageously can withstand a very high temperature of 110 degrees Centigrade, allowing it to be efficiently cleaned and disinfected by a hot liquid, even up to such a temperature as +110 degrees centigrades.
Thus hot water, e.g. at a high temperature of about 100 degrees Centigrade may be used. This is an environmentally friendly solution since water is, of course, non toxic.
According to an example, the cleaning (S6440) and the disinfecting (S6450) of the rigid container 6420 is performed so as to conform with regulation (EC) no 852/2004 of the European Parliament and of the Council of 29 Apr. 2004 on the hygiene of foodstuffs. Moreover, According to an example, the cleaning (S6440) and the disinfecting (S6450) of the rigid container 6420 is performed so as to conform with Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 Apr. 2004 laying down specific hygiene rules for on the hygiene of foodstuffs.
In this connection it is noted that in an example of the rigid container 6420, the rigid container 6420 walls and lid is comprises Expanded Polypropylene (EPP). The rigid container 6420 being made out of the EPP material provides a number of features which are very advantageous. Expanded Polypropylene (EPP) is a highly versatile closed-cell bead foam that provides a unique range of properties, including outstanding energy absorption, multiple impact resistance, thermal insulation, buoyancy, water and chemical resistance, exceptionally high strength to weight ratio and 100% recyclability. EPP in general can be made in a wide range of densities. The quality of the EPP selected for making the walls and the lid of the rigid container 6420 is preferably a moulded density of less than 60 kg/cubic metre, this quality of EPP advantageously having a thermal conductivity (at 10 degrees Centigrade) of 0.040 W/(m*K) or less than 0.040 W/(m*K). An example rigid container 6420 is made of Expanded Polypropylene (EPP) having a moulded density of 40 kg/cubic metre and a thermal conductivity (at 10 degrees Centigrade) of 0.038 W/(m*K). Other EPP qualities may be used for making the walls and the lid of the rigid container 6420 so that the moulded density is higher and the thermal conductivity (at 10 degrees Centigrade) is also higher. However, the EPP quality is selected so that the thermal conductivity (at 10 degrees Centigrade) is less than 0.15 W/(m*K). The EPP quality is preferably selected so that the thermal conductivity (at 10 degrees Centigrade) is less than 0.07 W/(m*K).
Before providing the rigid container 6420, it might be chilled (Step S6370). Said chilling can be performed to a predetermined temperature. Before providing the second rigid container 6420B, it might be chilled (Step S6370). Said chilling can be performed to a predetermined temperature.
What has been described in relation to
Said method of delivering chilled goods in a first sealable bag 20 comprises the step of receiving an order for an amount of chilled goods. This is in one example performed according to what has been stated in relation to step s300. The first sealable container can be the kraft paper chill bag according to the present disclosure. The first sealable container can be a bag 20 or a container according to any of the examples according to the present disclosure.
The method further comprises packing said amount of chilled goods in said first sealable bag 20 adapted to be used in an air atmosphere environment. This is in one example performed according to what is described in relation to step s360. The first sealable bag 20 has a wall adapted to enclose an interior storage space for transporting chilled and/or frozen goods. The wall is shaped and adapted to form said interior storage space to a volume of at least four metric litres. The wall may comprise an outer material layer; and an inner material layer; and a thermally insulating intermediate space between the outer material layer and the inner material layer, the intermediate space comprising an intermediate material. Moreover, one or several of the outer material layer; the inner material layer; and the intermediate material layer mat be a material having a thermal conductivity of less than 0.15 W/(K*m). The first sealable bag 20 has a closable opening such that the bag 20 in its closed state seals, or substantially seals, the interior storage space from the environment so as to minimize or prevent entry of air from the environment into the interior storage space.
The method further comprises the step of closing said closable opening of the bag 20 so as to seal said amount of chilled or frozen goods from said air atmosphere environment. This is in one example performed as described in relation to step s370. The method even further comprises the step of providing a rigid container 6420, or providing a goods transport system. Said rigid container or said goods transport system can be formed according to any of the examples of the present disclosure. The method comprises the step of placing the closed first sealable bag 20 inside the rigid container 6420, or inside the second rigid container of the goods transport system. This can be according to what has been described in relation to step s6380. The method further comprises the step of transporting the closed first sealable bag 20 to a delivery destination DD while keeping the closed first sealable bag 20 inside of the rigid container 6420, or inside the second rigid container 6420B of the goods transport system. This is in one example performed according to what is described in relation to step s6410.
The step of transporting the closed first sealable bag 20 comprises in one example maintaining a closed state of the closed first sealable bag 20 during the complete transport from a goods loading room 660, where said first sealable bag 20 was loaded and closed, to the delivery destination DD. This advantageously prevents warming by condensation heat or frosting. When the closed first sealable bag 20 is placed inside of the insulated rigid container 6420, having a wall thickness of at least 15 mm and a thermal conductivity of less than 0.15 W/(K*m) the initially chilled and/or frozen goods retains its chilled and/or frozen status for an advantageously extended period of time.
In this context it is noted that if a bag 20 has been loaded so that some chilled or frozen goods touches a wall panel of bag 20, there may be formed a locally cold spot, and if the bag 20 were placed in an environment having a relative air humidity, the dew point may be reached. If the dew point were reached so that liquid water or frost is formed there would also be a large amount of heat produced at that cold spot. As discussed above in this document, the energy released by 1 gram of water vapour being turned into ice would actually be sufficient to warm one whole kilogram of frozen water by more than one degree Kelvin. Most of that energy is produced by the vapour changing phase to the liquid state. Thus, the provision of a air sealing container 6420 may advantageously prevent energy transport into the bag 20 by the provision of an interior storage space 6465 having a low air humidity. Moreover, the provision of an interior storage space 6465 having a low air humidity also provides insulation since air has a low thermal conductivity of about 0.024 W/(m*K).
Table 6, below, indicates approximate thermal conductivity values for some materials.
The goods transport system also comprises a second rigid container 6420B wherein said rim 6445 provides said opening 6450 opposite said bottom wall. The plurality of side walls 6440 are arranged in a tapered manner so that the rigid container is wider at said rim than at said bottom wall.
The second rigid container 6420B is of a second size smaller than the first size so that the second rigid container 6420B, in its closed state, fits inside the first rigid container 6420A in its closed state. Moreover, at least one of the walls of the second rigid container 6420B, and/or the lid of the second rigid container 6420B, may include a layer of an energy absorbent.
As mentioned above, the rigid container walls and/or the lid of a rigid container 64206420 A, 6420B may comprise a plastic material. According to an example, one or several of the walls and/or the lid of a rigid container 64206420A, 6420B may be hollow. According to an example, the hollow walls and/or the lid of a rigid container 64206420A, 6420B may be filled with air so as to provide thermal insulation.
According to another example, the hollow walls and/or the lid of a rigid container 64206420A, 6420B may be filled with an energy absorbent material. According to an example the energy absorbent material comprises water.
Referring to
According to an example the phase change material comprises water. Thus, when said phase change material is in a solid state the phase change material comprises frozen water, i.e. water ice. According to an example the phase change material comprises fresh water having a phase change temperature of approximately zero degrees Centigrade.
As illustrated in
The provision of a container assembly 6920 comprising one or several closed and sealed bags 20 which may be packed with chilled and/or frozen goods, the closed and sealed bag 20 being placed inside a closed and sealed second rigid container 6420B wherein the second rigid container has walls 6430B, 6440B and/or a lid 6460B filled with an energy absorbent material, stabilizes temperature inside the second rigid container when the second rigid container is closed. When the second rigid container 6420B is placed inside of a first rigid container 6420A having insulating walls 6430 A, 6440 A and an insulating lid 6460 A, the temperature inside the second rigid container is even further stabilized.
Here, and in the whole of this document, when referring to an energy absorbent, this refers in one example to a heat energy absorbent.
This disclosure presents a number of solutions advantageously enabling the transport of frozen or chilled goods while maintaining the frozen or chilled state of the goods for a dramatically extended duration of time, while preserving the integrity of the carrier bag during transport, even when the bag is transported in tropical environments, e.g. at temperatures of 25 degrees Centigrade or more. In this context it is to be noted that the air in the atmosphere of the earth inherently has a certain humidity. In other words, the air contains a certain amount of water in vapour form. In this context, it deserves mentioning that the absolute humidity is the mass of water vapour per unit volume of total air and water vapour mixture.
Absolute humidity in the atmosphere reaches roughly 30 grams per cubic meter when the air is saturated at 30° C. The absolute humidity in southern Sweden in the month of July (average value for the years 1996 to 2012) ranged from 9 grams/cubic metre to 12 grams/cubic metre, according to the Swedish Meteorological and Hydrological Institute (SMHI).
A relative air humidity of around 50% is common, and during summertime or in subtropical or tropical climate zones the outdoor air humidity may be higher than that. Thus a relative air humidity of around 80% is not unusual. The relative humidity of an air-water mixture is defined as the ratio of the partial pressure of water vapour (H20) in the mixture to the saturated vapour pressure of water at a given temperature. Thus the relative humidity of air is a function of both water content and temperature. As a rule of thumb, the relative air humidity may be estimated to increase by about 5% when the temperature drops by 1 degree.
Accordingly, when the air of the environment has a temperature of +18 degrees C. and a relative air humidity of e.g. 60% and that air meets a cold surface, vapour may condense into liquid water on the surface when the air temperature reaches the dew point, i.e. a relative air humidity of about 100%.
In this context, it also to be noted that heat is released when vapour condenses into liquid water. In fact, one (1) gram of liquid water being formed from vapour releases 2260 J (joule) of energy. When that one gram of liquid water freezes to ice form it releases another 334 J. Thus, the energy released by 1 gram of water vapour being turned into a layer of ice is 2594 J. By comparison, it is to be noted that only 2.2 J is required in order to increase the temperature of 1 gram of ice (frozen water) by one degree. In other words, the energy released by 1 gram of water vapour being turned into a layer of ice on a package containing one kilogram of frozen water is actually sufficient to warm that whole kilogram of frozen water by 1.18 degrees. Thus, if 12 grams of water vapour is allowed to turn into a frost layer of ice on a package of frozen grocery, that energy (just over 31 kJ) suffices to warm that grocery by several degrees. The exact temperature change depends on the specific heat capacity of that particular piece of grocery. Ice has a specific heat capacity of 2200 J/(kg*K), and thus 12 grams of frost being formed would suffices to warm that one kilogram of fresh water ice by about 14 degrees Centigrade.
Thus, whereas a collapsible handle-carryable goods carrier bag according the state of the art, as disclosed by the German Utility Model Application DE 89 04 678 provides handles for conveniently carrying the groceries, any frozen grocery packages would appear to inherently cause vapour to condense into liquid water when the open carrier bag is transported in a warm air atmosphere environment having air humidity allowing such air to reach the dew point on a frozen grocery package surface. Such a condensation process may actually cause a rapid warming of the frozen grocery. Moreover, if the state of the art carrier bag according to DE 89 04 678 is carried by a walking person in a warm air environment, the movement would appear to inherently cause an exchange of air between the bag interior, which is chilled by the frozen groceries, and the warmer air surrounding the carrier bag, and this air exchange process will further drive the process of condensing vapour into liquid water by supplying new warm air to surfaces of the frozen groceries. Not only does this process cause thawing of initially frozen groceries and warming of initially chilled groceries, but it may also produce liquid water by condensation inside the carrier bag, which may jeopardize the integrity of the bag bottom or side wall, since it is made solely of paper, according to DE 89 04 678. Thus, the strength of carrier bag made solely of paper may decrease, and the risk of breaking increases when the paper-only-carrier bag becomes wet.
By contrast, the collapsible handle-carryable goods carrier chill bag according to the above defined solution comprises a mechanical interlock which is closable such that, in the closed expanded state of the carrier bag, the mechanical interlock cooperates with said wall panels and said bottom panel so as to close and substantially seal the interior storage space from the environment so as to minimize or prevent entry of air from the environment into the interior storage space such that when a piece of goods comprising a frozen item is transported in said interior storage space the collapsible bag is adapted to minimize or prevent the occurrence of condensation within the interior storage space.
Thus, for example, if a carrier bag, having a volume of 50 litres in the expanded state of the carrier bag, is filled by 75% with frozen groceries, there will remain about 25% of the total volume which can be filled by air in connection with the loading of the bag. Thus, as an example, about 12.5 liters of air having an initial temperature of about 18 degrees Centigrade and, about 10 grams of water per cubic metre (example relating to approximate average absolute outdoor humidity in southern Sweden in the month of July) may be enclosed in the bag when it is sealed after packing. In this connection it is noted that the term “litre” means “metric litre” i.e. one litre equals one cubic decimetre. Accordingly, the 12.5 liters of contained air may include about 0.125 grams of water in vapour form. Air contained within the bag together with frozen groceries may be caused to cool, and during this decreasing of the air temperature the water vapour in that air may first condense into water, releasing 0.2825 kJ of energy, and then it may freeze releasing 0.04175 kJ of energy. Thus, the two phase changes during the transformation of 0.125 grams of water from vapour form into ice may deliver 0.324 kJ. The energy released may suffice to increase the temperature of 10 kg of frozen water by less than half a degree Centigrade. According to an estimate it would be about 0.008 degrees Centigrade. The energy released by cooling the 0.125 grams of water by 19 degrees Centigrade is comparatively small and may actually be regarded as negligible is comparison. In effect, the collapsible bag being adapted to minimize or prevent entry of air from the environment into the interior storage space advantageously contributes to maintaining the frozen or chilled state of the groceries for a significantly extended duration of time, while also preserving the integrity of the carrier bag by minimizing or preventing the formation of liquid water within the interior storage space, and by the kraft paper layer having a substantially water vapour impermeable membrane bonded to at least one side of the kraft paper layer, thereby reducing or preventing paper disintegration due to paper wetness.
The insulated rigid container box 6425 comprises an insulated rigid container 6420C having an insulated lid 6460C that may be used to cover an opening 6450 of the insulated rigid container 6420C so as to provide a closed state of the insulated rigid container 6420C. The insulated lid 6460C co-operates with the opening such that the insulated rigid container in its closed state seals, or substantially seals, an interior storage space 6465 from the environment so as to minimize or prevent entry of air from the environment into the interior storage space. Said insulated rigid container 6420C further comprises an insulated bottom wall 6430C and a plurality of insulated side walls 6440C. The opening 6450 can be provided by a rim 6445C of the insulated rigid container 6420C. The bottom wall 6430C, the plurality of side walls 6440C and the lid are adapted to be substantially water vapour impermeable, and/or substantially water impermeable.
According to an example the rigid container walls comprise Expanded polypropylene (EPP). In one example, the bottom wall 6430, the plurality of side walls 6440 and the lid comprise Expanded polypropylene (EPP) having a density in the range from 40 kg/cubic metre to 90 kg/cubic metre, and a thermal conductivity in the range from 0.035 W/(m*K) to 0.045 W/(m*K).
According to a preferred version of the insulated rigid container box 6425, the insulated rigid container 6420C and the insulated lid 6460C comprises a carefully selected type of Expanded polypropylene (EPP) having a density in the range from 40 kg/cubic metre to 50 kg/cubic metre, and a thermal conductivity in the range from 0.035 W/(m*K) to 0.040 W/(m*K).
The carefully selected type of EPP has a water absorption at saturation of less than 1 (less than one) volume percent (Vol. %) after one day, in accordance with test method DIN 53428. The carefully selected type of EPP has a water absorption at saturation in the range from 1 (one) to 2.5 volume percent (Vol. %) after 7 (seven) days, in accordance with test method DIN 53428. Hence, the carefully selected type of EPP is substantially water vapour impermeable, and/or substantially water impermeable. Thus, it does not readily absorb water.
Moreover, the carefully selected type of EPP is very temperature resistant and heat resistant, in that it withstands a very wide range of temperatures, from −40 degrees Centigrade to +110 degrees Centigrade. This advantageous heat resistance of the carefully selected type of EPP enables efficient cleaning of the preferred version of the insulated rigid container box 6425. Moreover, this advantageous heat resistance of the carefully selected type of EPP enables efficient disinfection and sterilization of the preferred version of the insulated rigid container box 6425. In this connection it is noted that water at a boiling temperature can be used as a method of killing microbes that may be present. The sensitivity of different micro-organisms to heat varies, but if water is held at 70° C. (158° F.) for ten minutes, many organisms are killed. However, some micro-organisms are more resistant to heat and thus, it may be necessary to expose some micro-organisms to one minute at the boiling point of water, i.e. at 100 degrees Centigrade or more at the atmospheric pressure at sea level. Hence, the carefully selected type of EPP enables efficient disinfection and sterilization of the preferred version of the insulated rigid container box 6425 using hot water, e.g. at 100 degrees Centigrade, since the selected type of EPP withstands up to +110 degrees Centigrade.
With reference to steps S6440 and/or S6450 in
Moreover, the carefully selected type of EPP has an excellent chemical resistance to alcohol, such as ethanol, denatured ethanol, 1-propanol, and isopropyl alcohol. The chemical resistance of the carefully selected type of EPP was tested for EPP having a density of 50 kg/cubic metre at 22 degrees Centigrade for 14 days.
In this connection, it is noted that alcohols, in various forms, may be used as a disinfectant. Types of alcohol that may be used include ethanol, denatured ethanol, 1-propanol, and isopropyl alcohol, preferably at Concentrations of 60 to 90%, being the concentrations that work best for purposes of being disinfectant. Alcohol is effective against a range of microorganisms. Hence, the steps S6440 and/or S6450 may be performed in an environmentally friendly manner using alcohol, such as ethanol, denatured ethanol, 1-propanol, and isopropyl alcohol. In this connection it is noted that alcohols may be used to disinfect devices and tools, as well as to disinfect the skin of a patient before a needle stick and before surgery.
Moreover, the carefully selected type of EPP also has an excellent chemical resistance to ketone as well as to sodium hydroxide solution (10%), ammonium, chloride (5%), nitric acid (10%), and hydrochloric acid (10%). Again, the chemical resistance of the carefully selected type of EPP was tested for EPP having a density of 50 kg/cubic metre at 22 degrees Centigrade for 14 days.
Moreover, the carefully selected type of EPP is very durable, thereby enabling the loading of heavy articles in the preferred version of the insulated rigid container box 6425, 6420C, 6460C comprising the carefully selected type of Expanded polypropylene (EPP) having a density in the range from 40 kg/cubic metre to 50 kg/cubic metre. In fact, the insulated rigid container box 6425, 6420C, 6460C comprising the carefully selected type of Expanded polypropylene has the advantageous properties of high energy absorption on low weight, a very good resilience after static and dynamic stress, and it has an almost unaffected energy absorption after multiple-impacts. This is, at least in part, due to the advantageous mechanicals properties of the carefully selected type of EPP, such as:
Additionally, the EPP material is recyclable, in that it can be reconverted into its source material polypropylene through a melting process. Thus, when an insulated rigid container box 6425, 6420C, 6460C comprising Expanded polypropylene (EPP) has been worn or mechanically damaged, it can be recycled into a new insulated rigid container box 6425, 6420C, 6460C. Else a worn or mechanically damaged insulated rigid container box 6425, 6420C, 6460C, may be recycled into other products including polypropylene or Expanded polypropylene (EPP).
Moreover, the EPP material is advantageously non-toxic, which makes it very suitable for transporting food products.
Thus, in summary, expanded polypropylene (EPP) has a low density and it has a high elasticity; it has low compressibility and a high deformation recovery rate; EPP is resistant to alcohol, oils, acid and alkali chemicals, and solvents, it has a low thermal conductivity and it does not readily absorb water. In addition to being nontoxic and tasteless, it can be recycled with very high efficiency with minimal performance degradation. These properties make the box 6425 comprising EPP very suitable for packaging of products sensitive to shock during handling, such as electronics and medical devices, and these properties also make the box 6425 comprising EPP very suitable for transporting food products.
As mentioned above, the bottom wall 6430, the plurality of side walls 6440 and the lid may be made to comprise Expanded polypropylene (EPP) having a density in the range from 40 kg/cubic metre to 90 kg/cubic metre, and a thermal conductivity in the range from 0.035 W/(m*K) to 0.045 W/(m*K).
In this connection it is noted that, when designing the shape of the rigid container box 6425, 6420C, 6460C, the inventors needed to balance conflicting requirements regarding the thickness of walls of the rigid container box 6425, 6420C, 6460C and the thickness of the lid. More specifically
According to the preferred example, referring to
Accordingly, the insulated rigid container box 6425, 6420C, 6460C, according to the preferred example weighs about 3 kg, and it provides an internal volume of about 130 metric litres (i.e. about 130 cubic decimeters).
Moreover, the insulated rigid container 6420C has an inner upper height HIU and an outer lower height HOL so as to allow the lower part of the insulated rigid container 6420C to be lowered into the upper part of an identical insulated rigid container 6420C.
According to a preferred embodiment, the two long side surfaces 6550, or at least one of the long side surfaces 6550, is at a sharp angle with the first elongated surface 6530. In other words, the angle at the edge where a long side surface 6550 meets the first elongated surface 6530 is 90 degrees or sharper. This feature increases friction for movements perpendicular to the direction of elongation of the elongated protrusion 6510E when the elongated protrusion 6510E has been received in a corresponding elongated recess 6520E.
According to a preferred embodiment the end surfaces 6560, or at least one of the end surfaces 6560, is sloped (See
The fastener device may comprise a hard plastic material, or alternatively a metal material. The size of the fastener device 6580 is very small in relation to the bottom surface of the box, and thus its effect on thermal conduction is very small, or even negligible.
As discussed in connection with
The protruding portion 6500 of
Alternatively, an operator may use a hook or a bent stick 6600 (See
According to a preferred embodiment, the direction of elongation of elongated protrusion 6510E is parallel, or substantially parallel to the direction of arrow B. Thus, the plane of the surface 6595 may be orthogonal to, or substantially orthogonal to, the direction of elongation of elongated protrusion 6510E (See
As an alternative to EPP as the main material comprised in the box 6425, the insulated rigid container box 6425 may comprise wood, such as e.g. plywood. The insulated rigid container box 6425 comprising wood as a wall material may be made in the shapes described and discussed in connection with any of the
According to yet another example, the insulated rigid container box 6425 may comprise corrugated fiberboard. Corrugated fiberboard is a material consisting of a fluted corrugated sheet and one or two flat linerboards. The corrugated medium sheet and the linerboard(s) are made of kraft containerboard, a paperboard material usually over 0.01 inches (0.25 mm) thick. Corrugated fiberboard may also be referred to as corrugated cardboard. Thus, the insulated rigid container box 6425 may comprise paper-pulp based material. The insulated rigid container box 6425 comprising paper-pulp based material, such as e.g. corrugated fiberboard, as a wall material may be made in the shapes described and discussed in connection with any of the
Further examples are described below:
Example 1. A bag for transporting goods comprising
2. The protective bag according to example 1, wherein
3. The protective bag according to example 1 or 2, wherein
4. The protective bag according to any preceding example, wherein
5. The protective bag according to any preceding example, wherein
6. The protective bag according to any preceding example, wherein
7. The protective bag according to any preceding example, wherein
8. The protective bag according to any preceding example, wherein
9. The protective bag according to any preceding example, wherein
10. The protective bag according to any preceding example, wherein
11. The protective bag according to any preceding example, wherein
12. The protective bag according to any preceding example, wherein
13. The protective bag according to any preceding example, wherein
14. The protective bag according to any preceding example, wherein
15. The protective bag according to any preceding example, wherein
16. The protective bag according to any preceding example, wherein
17. The protective bag according to any preceding example, wherein
18. The protective bag according to any preceding example, wherein
19. The protective bag according to any preceding example, wherein
20. The protective bag according to any preceding example, wherein
21. The protective bag according to any preceding example, wherein
22. The protective bag according to any preceding example, wherein
23. The protective bag according to any preceding example, wherein
24. The protective bag according to any preceding example, wherein
25. The protective bag according to any preceding example, wherein
26. The protective bag according to any preceding example, wherein
27. The protective bag according to any preceding example, wherein
28. The protective bag according to any preceding example, wherein
29. The protective bag according to any preceding example, wherein
30. A bag (20) for transporting goods in an air environment having an air humidity; the bag being a collapsible bag having
31. A collapsible bag (20) for transporting goods in an air environment having an air humidity; the bag being a collapsible bag having
32. The bag (20) according to any preceding example, wherein
33. The collapsible bag (20) according to any preceding example, in particular example 31, wherein
34. The collapsible bag (20) according to any preceding example, in particular example 31, wherein
35. The collapsible bag (20) according to any preceding example, in particular example 34, wherein
36. The collapsible bag (20) according to any preceding example, wherein
37. The collapsible bag (20) according to any preceding example, wherein
38. The collapsible bag (20) according to any preceding example, wherein
39. The collapsible bag (20) according to any preceding example, wherein
40. The collapsible bag (20) according to any preceding example, wherein
41. The collapsible bag (20) according to any preceding example, in particular example 36, wherein
42. The collapsible bag (20) according to any preceding example, wherein
43. The collapsible bag (20) according to any preceding example, in particular when dependent on example 35, wherein
44. The collapsible bag (20) according to any preceding example, in particular when dependent on example 40 and/or 41, wherein
45. The collapsible bag (20) according to any preceding example, in particular when dependent on example 40 and/or 41, wherein
46. The collapsible bag (20) according to any preceding example, wherein
47. The collapsible bag (20) according to any preceding example, wherein
48. The collapsible bag (20) according to any preceding example, wherein
49. The collapsible bag (20) according to any preceding example, wherein
50. The collapsible bag (20) according to any preceding example, wherein
51. The collapsible bag (20) according to any preceding example, wherein
52. The collapsible bag (20) according to any preceding example, wherein
53. The collapsible bag (20) according to any preceding example, wherein
54. The collapsible bag (20) according to any preceding example, wherein
55. The collapsible bag (20) according to any preceding example, wherein
This solution advantageously prevents any water that, if air in the environment is humid, may be generated by condensation on the outside surface of the bag, from seeping into the wall. Thereby, this solution reduces or eliminates an increased thermal conduction in the wall which may otherwise occur due to water having a high thermal conductivity of about 0.6 W/(m*K).
56. The collapsible bag (20) according to any preceding example, wherein
57. A bag (20) for transporting goods in an air environment having an air humidity; the bag being a collapsible bag having
58. The bag (20) according to any preceding example, wherein
59. The bag (20) according to any preceding example, wherein
60. The bag (20) according to any preceding example, wherein
Firstly, the thermally insulating intermediate space provides for a minimized thermal conductance between the air of the bag environment and the goods placed in the interior storage space of the bag.
Secondly, the outer material layer and the inner material layer, each having a low air permeability, cooperate with the closable opening, in the closed expanded state (20D) of the collapsible bag, to minimize or prevent exchange of air between the environment and the interior storage space.
Hence, for example, the formation of condensation is minimized or prevented on chilled and/or frozen goods placed in the interior storage space of the bag, since the entry of any humid air from the environment is minimized or prevented by the outer material layer and the inner material layer in cooperation with the closed opening. Thus, condensation heating of chilled and/or frozen goods is minimized or prevented by the outer material layer and the inner material layer in cooperation with the closed opening.
Similarly, when the goods placed in the interior storage space of the bag has a temperature higher than the temperature of the air environment, then the inner material layer acts as an air barrier to minimize or prevent any steam that may arise from hot goods, such as hot food items, from entering into the intermediate space. Since steam holds water, and water has a relatively high thermal conductivity, the inner material layer acting as a air barrier thereby minimizes or eliminates the detrimental effect that such steam and/or water would otherwise have on the thermally insulating function of the intermediate space.
Thus, the outer material layer and the inner material layer provide a two step air exchange barrier.
Additionally, the intermediate space provided between the outer material layer and the inner material layer will protect said goods, when placed in the interior storage space, against impact damage, which could otherwise occur if the bag, when filled with goods, e.g. falls or is hit by another object.
61. The bag (20) according to any preceding example, wherein
62. The bag (20) according to any preceding example, wherein
63. The bag (20) according to any preceding example, wherein
64. The bag (20) according to any preceding example, wherein
65. The bag according to any preceding example, wherein
66. The bag according to any preceding example, wherein
67. The bag according to any preceding example, wherein
68. The bag according to any preceding example, wherein
69. The bag according to any preceding example, wherein
70. The bag according to any preceding example, wherein
71. The bag according to any preceding example, wherein
72. The bag according to any preceding example, wherein
73. The bag according to any preceding example, wherein
74. The bag according to any preceding example, wherein
75. The bag according to any preceding example, wherein
76. The bag according to any preceding example, wherein
77. The bag according to any preceding example, wherein
78. The bag according to any preceding example, wherein
79. The bag according to any preceding example, wherein
80. The bag according to any preceding example, wherein
This solution, i.e. providing a water resistant paper quality for forming an outer material layer of a bag, advantageously prevents any water that, if air in the environment is humid, may be generated by condensation on the outside surface of the bag, from seeping into the wall. Thereby, this solution reduces or eliminates an increased thermal conduction in the wall which may otherwise occur due to water having a high thermal conductivity of about 0.6 W/(m*K). In this connection it is noted that paper typically has a thermal conductivity of less than 0.15 W/(m*K) when established at 23° C. and 50% RH (Relative Humidity).
81. The bag according to any preceding example, wherein
82. The bag according to any preceding example, wherein
83. The bag according to any preceding example, wherein
84. The bag according to any preceding example, wherein
85. The bag according to any preceding example, wherein
86. The bag according to any preceding example, wherein
87. The bag according to any preceding example, wherein
88. The bag according to any preceding example, wherein
89. The bag according to any preceding example, wherein
90. The bag according to any preceding example, wherein
91. The bag according to any preceding example, wherein
92. The bag according to any preceding example, wherein
This bag may be a paper bag as disclosed in WO2015171036 (ifoodbag).
93. The bag according to any of examples 71 or 72 or 80 or 81, wherein
This biodegradable polymer coating advantageously provides a very good barrier having a low air permeability while also being biodegradable.
94. The bag according to example 92 or 93, wherein
95. The bag according to example 93, wherein
96. The bag according to any of examples 94 or 95, wherein
97. The bag according to any of examples 94 to 97, wherein
98. The bag according to any of examples 94 to 97, wherein
99. The bag according to any of examples 94 to 98, wherein
100. The bag according to any of examples 94 to 99, wherein
101. The bag according to any of examples 71 or 72 or 80 or 81, wherein
102. The bag according to any of examples 71 or 72 or 80 or 81, wherein
103. The bag according to any of examples 100 or 101, wherein
104. The bag according to any preceding example, wherein
105. The bag according to any preceding example, wherein
106. The bag according to any preceding example, wherein
107. The bag according to any preceding example, wherein
Fluff pulp, which may also be referred to as comminution pulp or fluffy pulp, is a type of pulp, which may be made from long fibre softwoods.
This solution advantageously provides a biodegradable intermediate material.
108. The bag according to any preceding example, wherein
Flax fiber can be extracted from the bast beneath the surface of the stem of the flax plant. The flax fibres form soft, lustrous, and flexible bundles of fiber, and hence this solution advantageously provides a good biodegradable intermediate material.
109. The bag according to any preceding example, wherein
It is noted in this connection, that hemp, or industrial hemp, is a strain of the Cannabis sativa plant species that is grown specifically for industrial uses of its derived products. The plant is spun into usable fibres, and the fibres are then refined into a thermally insulating material. Hence, this solution advantageously provides a biodegradable thermally insulating material.
110. The bag according to any preceding example, wherein
111. The bag according to example 1 10, wherein
This solution advantageously adds to the environmental friendliness of the bag in that the carbon dioxide print of the bag production is reduced by using a recycled paper as source material instead of making the intermediate material from a freshly produced source material.
112. The bag according to any preceding example, wherein
This solution advantageously provides a biodegradable intermediate material.
113. The bag according to any preceding example, wherein
This solution advantageously provides a biodegradable intermediate material.
114. The bag according to any preceding example, wherein
This solution advantageously provides a biodegradable intermediate material.
115. The bag according to any preceding example, wherein
This solution advantageously provides a large number of three-dimensional spaces that are filled with air and separated by the interconnected superposed sheets of a yieldable material. The large number of air filled spaces, formed by the interconnected superposed sheets, in combination with the fact that air has a very low thermal conductivity, as mentioned elsewhere in this document, advantageously renders an intermediate material that has excellent thermally insulating properties. Thus, the bag, provided with this type of intermediate material has excellent thermally insulating properties. Additionally, this type of intermediate material enables the bag to provide excellent protection for fragile objects in the goods placed in the interior storage space of the bag.
The intermediate material H has a series of embossed offset sheets SY. The embossed offset sheets SY are enclosed in between the outer material layer, F,G and the inner material layer, G, F.
The sheets SY from one side may each have a series of mounds MU and recesses RV which are next to each other and arranged in rows extending longitudinally or diagonally. Instead of diagonally, they may also extend at varying angles of 30 to 60° or even other intermediate angular displacements. The intermediate material comprising a plurality of interconnected superposed sheets of a yieldable material may be as described in GB 1373428, the content of which is hereby incorporated by reference.
116. The bag according to example 115, wherein
117. The bag according to example 115 or 116, wherein
118. The bag according to any of examples 115, 116 and 117, wherein the mounds and recesses of adjacent sheets are in partially nested interengagement.
119. The bag according to any of examples 115 to 118, wherein
120. The bag according to any of examples 115 to 119, wherein
This solution advantageously provides a biodegradable intermediate material.
121. The bag according to any preceding example, wherein
122. The bag according to example 121, wherein
This solution advantageously provides a renewable and biodegradable intermediate material. In this connection it is noted that mosses are small flowerless plants that typically form dense green clumps or mats, often in damp or shady locations. The individual plants are usually composed of simple leaves that are generally only one cell thick, attached to a stem that may be branched or unbranched. The irregular shape of mosses renders, also in a dried stat of the mosses, to the formation of multiple air pockets.
123. The bag according to any preceding example, wherein
124. A bag (20) for use in an air atmosphere environment, said air atmosphere having a humidity, the bag (20) having
125. The bag according to any preceding example, wherein
126. The bag according to any preceding example, wherein
127. The bag according to any preceding example, wherein
128. The bag according to any preceding example, wherein
129. The bag according to any preceding example, wherein
130. The bag according to any preceding example, wherein
131. The bag according to any of examples 124 to 130, wherein
132. The bag according to example 131, wherein
133. A bag (20) for use in an air atmosphere environment, the bag having
134. The bag according to any preceding example, wherein
135. The bag according to any preceding example, in particular example 133, wherein
136. The bag according to any preceding example, wherein
137. The bag according to example 135 or 136, wherein
138. The bag according to any preceding example, wherein
139. The bag according to example 138, wherein
140. The bag according to example 138, wherein
141. The bag according to any preceding example, wherein
142. The bag according to any preceding example, wherein
143. The bag according to any preceding example, wherein
144. The bag according to any preceding example, wherein
145. The bag according to any preceding example, wherein
146. The bag according to any preceding example, wherein
147. The bag according to any preceding example, wherein
148. The bag according to any preceding example, wherein
149. The bag according to any preceding example, wherein
150. The bag according to example 149, wherein
151. The bag according to example 149 or 150, wherein
152. The bag according to any of examples 1148-151, wherein
153. The bag according to any preceding example, wherein
154. The bag according to example 153, wherein
155. The bag according to any preceding example, wherein
156. The bag according to example 155, wherein
157. The bag according to example 156, wherein
158. The bag according to example 156, wherein
159. The bag according to any preceding example, wherein the bag has a rim portion by the bag opening, the bag comprising:
160. The bag according to any preceding example, wherein the bag comprises:
161. The bag according to example 160, wherein
162. The bag according to example 161, wherein
163. The bag according to any preceding example, wherein the bag comprises: at least two wall panels, and
164. The bag according to example 163, wherein
165. The bag according to any preceding example, wherein
166. The bag according to any preceding example, wherein the bag further comprises at least one cord configured to form a cord handle attached to a rim portion of the bag for carrying the bag in the expanded state.
167. The bag according to example 166, wherein
168. The bag according to example 166 or 167, wherein
169. The bag according to any of examples 166-168, wherein the cord handle is slidably attached to the rim portion of a wall panel, e.g. by extending through an opening in the rim portion; said opening being positioned above a closure means (39; 39HS).
170. The bag according to any preceding example, wherein
171. The bag according to example 170, wherein said bottom panel (140) has a width of at least 8 cm.
172. The bag according to example 170 when dependent on example 59, wherein said front wall panel (S1A), is joined to said back wall panel (S1B) along a first fold line (FL1) that runs from said bag opening to said bottom panel (140); and wherein
173. The bag according to example 172, wherein
174. The bag according to any of examples 170 to 173 when dependent on example 59, wherein
175. The bag according to example 174 when dependent on example 172 and 60, wherein
176. The bag according to example 174 when dependent on example 172 and 60, wherein
177. The bag according to example 175 or 176, wherein
178. The bag according to example 177, wherein
179. The bag according to any preceding example, wherein said bottom panel (140) comprises a laminated rectangular protector strip (5); the laminated rectangular protector strip (5) being attached to at least a part of an edge portion (25c) of the bag.
180. A rigid container (6420) to be used in an air environment, the rigid container comprising
181. The rigid container according to example 180, wherein
182. The rigid container according to example 180 or 181, wherein
183. The rigid container according to any of examples 180-182, wherein
184. The rigid container according to any of examples 180-183, wherein All of the walls of the rigid container includes a layer of an energy absorbent material.
185. The rigid container according to any of examples 180-184, wherein
186. The rigid container according to any of examples 180-185, comprising:
187. The rigid container according to any of examples 180-186, wherein
188. The rigid container according to any of examples 180-187, wherein
189. A rigid container (6420) for use in an air environment, the rigid container comprising
190. The rigid container according to any preceding example, wherein
191. The rigid container according to any preceding example, wherein
192. The rigid container according to any preceding example, wherein
This solution advantageously allows for one rigid container to be placed partially inside of another rigid container e.g. when the another rigid container is empty or less than fully packed with articles. In this connection it noted that when goods is delivered by a transport vehicle 680 it is important to be able to use the packing area of the transport vehicle 680 as efficiently as possible. Thus, for example, the packing area of the vehicle may be full when the vehicle leaves the storage facility 600 for deliveries to plural delivery destinations DD, and thus there is a shortage of space in the packing area of the transport vehicle 680, and there is a desire to gain more space in the packing area of the transport vehicle 680. This is because it will be necessary to reach rigid containers placed far into the packing area of the transport vehicle 680, i.e. rigid containers that are initially hidden behind rigid containers that are closer to the packing area door of the transport vehicle 680.
Using the above defined rigid container advantageously enables a gradual gaining of empty space when rigid containers are emptied during a delivery tour since the rigid container is stackable.
193. The rigid container according to any preceding example, wherein
194. The rigid container according to any preceding example, wherein
195. The rigid container according to any preceding example, wherein
This solution advantageously allows for one rigid container to be placed partially inside of another rigid container e.g. when the another rigid container is empty or less than fully packed with articles. In this connection it noted that when goods is delivered by a transport vehicle 680 it is important to be able to use the packing area of the transport vehicle 680 as efficiently as possible. Thus, for example, the packing area of the vehicle may be full when the vehicle leaves the storage facility 600 for deliveries to plural delivery destinations DD, and thus there is a shortage of space in the packing area of the transport vehicle 680, and there is a desire to gain more space in the packing area of the transport vehicle 680. This is because it will be necessary to reach rigid containers placed far into the packing area of the transport vehicle 680, i.e. rigid containers that are initially hidden behind rigid containers that are closer to the packing area door of the transport vehicle 680.
Using the above defined rigid container enables a gradual gaining of empty space when rigid containers are emptied during a delivery tour since the one rigid container fits so as to be placed inside of the second wall portion of another rigid container, when the another rigid container is sufficiently emptied to receive the first wall portion of the one rigid container. In this manner, the rigid container are advantageously adapted to be capable of being stacked.
196. The rigid container according to any preceding example, wherein
197. The rigid container according to any preceding example, wherein
198. The rigid container according to example 197, wherein
199. The rigid container according to any preceding example, wherein
200. The rigid container according to any preceding example, wherein
201. The rigid container according to example 200, wherein
202. The rigid container according to any preceding example, wherein
203. The rigid container according to any preceding example, wherein said rigid container side wall includes an insulation layer having a thermal conductivity of less than 0.08 W/(m*K); said insulation layer comprising Expanded PolyPropylene.
204. The rigid container according to any preceding example, wherein
205. The rigid container according to any preceding example, wherein
206. The rigid container according to any preceding example, wherein
207. The rigid container according to any preceding example, wherein
208. The rigid container according to any preceding example, wherein
This solution advantageously enables cleaning and disinfection and/or sterilizing of the rigid container by use of alcohol.
209. The rigid container according to any preceding example, wherein
210. The rigid container according to example 209, wherein
211. The rigid container according to any preceding example, wherein
212. The rigid container according to example 211, wherein
213. The rigid container according to example 212, wherein
This solution advantageously allows for mechanically stable storing, and/or transport, of a large number of insulated rigid containers 6425 when placed one above the other, since the outer surface of the bottom wall 6430C includes a stabilizing protrusion 6510 that fits in a corresponding recess 6520 on the top surface of the lid 6460C.
214. The rigid container according to any of examples 211 to 213, wherein
This solution advantageously simplifies sliding the insulated rigid container box 6425 over a floor surface.
215. The rigid container according to any preceding example, wherein
216. The rigid container according to example 215, wherein
217. The rigid container according to example 215, wherein
218. A method of delivering chilled goods in a sealable container, comprising the steps of
219. The method according to example 218 wherein said transporting step includes using a vehicle without any actively refrigerated storage enclosure for the transportation of the loaded container.
220. A goods transport system comprising:
221. A method of delivering chilled goods in a first sealable container (20), comprising the steps of:
222. The method according to example 221; wherein
223. The method according to example 221 or 222, comprising the step of
224. The method according to any of examples 221-223, wherein said first sealable container is a bag according to any of examples 1-179.
225. A goods transport system comprising
226. The goods transport system according to example 225 comprising:
227. The goods transport system according to any of examples 225-226, further comprising the rigid container according to any of examples 180-217.
228. The goods transport system according to any of the preceding examples, wherein the goods comprises grocery.
229. The goods transport system according to any of any of the preceding examples, wherein the goods transport system is a grocery transport system.
230. A kit of parts, comprising:
231. The kit of parts according to example 230, further comprising:
232. The kit of parts according to example 231, further comprising:
233. A method of delivering chilled and/or frozen goods, comprising the steps of receiving (S300) an order for chilled and/or frozen goods (40, 40A); and packing (S360) an amount of chilled and/or frozen goods (40, 40 A) in a chill bag (20) adapted to be used in an air atmosphere environment having an air humidity,
Number | Date | Country | Kind |
---|---|---|---|
1900114-8 | Jun 2019 | SE | national |
1900171-8 | Oct 2019 | SE | national |
1900184-1 | Nov 2019 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2020/000017 | 6/24/2020 | WO |