This invention relates to photovoltaic devices on a nano-structured substrate.
Photovoltaic devices are of considerable interest for various applications (solar cells, detectors, etc.). Numerous methods have been considered to provide improved performance and reduced cost, especially for solar cell applications. One approach that has been considered in the art (e.g., in US 2010/0240167) is conformal deposition of solar cell layers on nano-structured substrates. In this work, atomic layer deposition (ALD) is used to provide the conformal deposition, and the advantages as described for this approach include increased efficiency of charge extraction, and increased optical absorption for thin solar cell layers because of the 3-D architecture provided by the nano-structured substrate. However, it can be difficult in practice to actually fabricate working devices according to these principles, and it would be an advance in the art to provide improved device structures and/or growth methods.
When device layers are conformally grown on a substrate having nano-scale hills and valleys, the result is corresponding hills and valleys in the device layers. We have found that planar crystal defects (e.g., grain boundaries, anti-phase domains, etc.) tend to form in the valley parts of the device layers. One way this can occur is when device layer growth proceeds mainly from the sides of the substrate hills. In this case, planar defects can form where device layer material grows from adjacent hill sides and merges. Such merging occurs in the valleys, but not on the hills.
The most significant adverse effect of such defects is that they can provide a direct electrical short to the device. For example, a solar cell having a metallic top electrode disposed on the device layers can effectively be shorted between the top electrode and the substrate by such planar defects, which would completely ruin device performance.
We have found, surprisingly, that this problem of electrical shorting can be effectively solved by disposing an electrical insulator in the valleys formed by the device layers after device layer deposition is complete (i.e., just before depositing the top electrode). This prevents a direct electrical short between the metallic top electrode and the substrate because the defects are in the valleys, where the insulator separates the top electrode from the defects. Although the planar defects will still lead to some excess loss (e.g., locally enhanced recombination, parasitic current conduction etc.), these effects have a much less severe impact on device performance than the kind of direct electrical short that is prevented by the present approach. Accordingly, device performance can be significantly improved by insulating the valleys in a hill and valley nano-structured device. Surprisingly, this improvement can be obtained without removing the underlying planar defects.
This approach provides numerous advantages. These advantages include: 1) reduced reflectance; 2) increased optical angle of acceptance; 3) compatibility with growth on various substrates, such as flexible and/or inexpensive substrates; and 4) capability of providing high-efficiency multi-junction solar cells with reduced manufacturing and/or installation cost.
The present approach has numerous applications. Any and all photovoltaic device applications can benefit from this approach. Specific applications and/or locations include solar utilities and solar farms; building roofs; window glass; curtains; wearable devices such as helmets, back packs, etc.; automobiles; emergency chargers; power supplies for field applications; satellites; space stations; remote controlled robotic rollover (e.g., as in a planetary exploration mission); solar cars; etc.
a-h show an exemplary fabrication sequence for embodiments of the invention.
a shows an experimental device structure according to an embodiment of the invention.
b shows a corresponding planar control structure.
a-b show results for the structures of
a-b show an alternate embodiment of the invention.
a-b show some examples of suitable nano-scale substrate protrusions for use with embodiments of the invention.
As indicated above, the purpose of insulator 108 is to prevent planar defects in the valleys of the device layers from shorting the device out. Such defects are schematically shown on
Practice of the invention does not critically depend on the composition of substrate 102. Semiconductor substrates such as Si, GaAs, etc. can be employed. Low cost and/or flexible substrates can also be employed. This provides the ability to bond low-cost, high-performance solar cells to wearable materials (e.g., clothing). The flexible substrate can be metal (Al, Cu) foil, polymer, plastic or any wearable material. Preferably, substrate 102 is lattice matched to the semiconductor multi-layer structure.
Practice of the invention also does not critically depend on the composition of the semiconductor multi-layer structure. The active materials in the semiconductor multi-layer structure can be any suitable semiconductors such as GaAs, AlGaAs, InGaP, InGaAs, GaInAsNSb, Ge, Si, etc. Several exemplary multi-layer structures are included in the following description. The composition of insulator 108 is not critical for practicing the invention. Any insulator that is compatible with processing the other parts of the device structure can be employed. The composition of electrode 110 is also not critical for practicing the invention. Often, it is preferred for electrode 110 to be configured as a metallic finger electrode that covers a small faction of the device area while providing high current collection efficiency. Transparent materials can also be employed in electrode 110. These principles are applicable to any kind of photovoltaic device, such as solar cells, photodetectors, etc.
a-h show an exemplary fabrication sequence for embodiments of the invention. In this example, we start with silica nanospheres 203 disposed on a n-type GaAs substrate 202, as shown on
e shows the result of conformal deposition of layers 204 (n-type GaAs) and 206 (p-type GaAs) on substrate 202. Any conformal deposition technique can be employed, such as atomic layer deposition (ALD), molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). For MOCVD growth, we have found that growth at low temperature is conformal, but tends to have poor crystal quality. MOCVD growth at high temperature has good crystal quality, but tends not to be conformal. To overcome this problem, we have developed a two step MOCVD process that provides both conformal deposition and good crystal quality. More specifically, the first step is to grow a thin seed layer with thickness between 20 to 50 nm at low temperature (e.g. 500-550 C) to provide uniform nucleation on 3-D surfaces. All the other layers are then deposited at higher temperature (e.g. 650-700 C) to enable atomic surface migration to form high quality single-crystal material. Using this two-step method, single crystal III-V p-n junctions can be grown conformally forming core-shell single crystal nanostructures. The shape of the nanostructures tends to automatically evolve into nanopyramid-like structures after growth. Thus, this two step growth method is an important difference from conventional approaches for nanostructured solar cells, because it enables high quality single-crystal growth of active absorbing layers of the 3D nanostructured solar cell.
f shows the results of depositing insulator 208 on the structure. In this example, PMMA (poly(methyl methacrylate)) is employed as the insulator.
One of the main advantages of using a nano-structured substrate for solar cell applications is reduced reflectance. Conventionally, solar cell reflectance can be reduced using an anti-reflection coating, but such a coating increases cost and may only reduce reflectance over a limited range of incidence angles.
Devices according to the above-described principles have been fabricated and tested.
a-b show results for the structures of
These results demonstrate a working nano-structured device. If the top electrode of a nano-structured device is shorted to the substrate by defects, the efficiency would be much lower. Note that the short circuit current (Jsc) is increased by 80% in the nano-structured device as compared to the planar control sample, although the nano-structured device also has somewhat lower fill factor, Voc and efficiency.
Practice of the invention does not depend critically on the number or nature of the layers included in the semiconductor multi-layer structure. Any semiconductor multi-layer structure can be included in devices according to the present principles.
Practice of the invention also does not depend critically on the shape of the substrate protrusions. These principles are applicable in any situation where conformal growth over features having hills and valleys is performed.
This application claims the benefit of U.S. provisional patent application 61/518,830, filed on May 12, 2011, entitled “Method of design and growth of single-crystal 3D nanostructured solar cell or detector”, and hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61518830 | May 2011 | US |