This application is a §371 application from PCT/FR2009/052189 filed Nov. 16, 2009, which claims priority from French Patent Application No. 08 57792 filed Nov, 17, 2008, each of which is herein incorporated by reference in its entirety.
The invention relates to a method for evaluating the ageing condition, called vibration fatigue damage, in any electronic system. These may be individual electronic cards or an electronic card assembly. The evaluation is based on a device that measures and digitally processes physical dimensions relating to the stress that is causing the damage.
Similar devices currently exist for mechanical parts and structures, but they lack certain features that are needed in order to be applied to electronic cards. These features are the ability to perform real time processing autonomously with the full capacity of an incorporated calculation, the damage estimate having no recourse to telemetry or post-processing.
Telemetry and post-processing of data are currently used to monitor aerostructures and works of art, but the corresponding devices do not simultaneously respond to the criteria of incorporability and autonomy with regard to the calculation.
The invention is based on one or more kinematic vibration sensors positioned at specific points, a state observer to dynamically evaluate mechanical stresses at critical points, and a damage calculation at these critical points, with all three being integrated into a device that is embedded and autonomous in terms of function. The specific measurement points and critical damage calculation points are separate or combined, depending on the application.
The concept of a state observer is defined in the fields of automation and information theory. It applies to dynamic systems represented by size dimensions. When a system state is not accessible to measurement, a dynamic model is built to reconstruct the unmeasureable state from other accessible size measurements. This dynamic model is called a dimension state observer. However, constructing a state observer is not always possible, and the ability to construct one is called the observability condition of the dimension.
In this invention, kinematic dimensions (acceleration, velocity, position, or strain) of specific points on the electronic assembly to be monitored are accessible for measurement using sensors, such as accelerometers. In contrast, mechanical stress and even damage states at critical points of the electronic assembly are almost always inaccessible for measurements, except in a laboratory. A state observer for mechanical stress at critical points using measurements of one or more kinematic dimensions and specific points can be established, subject to observability. The observability of mechanical stress depends directly on the specific points where the kinematic sensors are placed. In general, it is sufficient to place the kinematic sensors away from vibration nodes or to place them, for example, on the electronic assembly attachment.
The need to know how to correctly evaluate vibration damage on embedded electronic cards is more and more pronounced. This need relates to a certain number of critical points on these electronic cards, to which submission to vibrations is likely to cause a failure in the electronic assembly. For example, critical points to monitor are solder joints for certain electronic components. In the case of such electronic cards, there are existing monitoring systems included. They can be equipped with accelerometers or strain gauges to measure accelerations or strains to which the card is submitted. However, these sensors can almost never be placed at critical points on the card due to the very small dimensions of the components and even the solder joints. Existing systems therefore cannot access data for the mechanical stress on these critical points. We can measure the card's general ageing condition, but we cannot measure the local fatigue condition of a component, without being able to use a sensor to provide information on the stress applied to the component.
Methods have been proposed by the CALCE (Center for Advanced Life Cycle Engineering) laboratory to make the connection between measurement and stress at critical points. But the major shortcoming of these methods is not taking into account the dynamic effects of vibrations. In fact, the method proposed by the CALCE ignores the majority of methods specific to vibration and relies only on static curvature calculations.
In contrast, this invention relies on state observations that reflect dynamic effects associated with forces of inertia and methods specific to vibration for the electronic assembly. The system proposed by the invention uses kinematic measurements much more broadly to evaluate mechanical stress at critical points as accurately as possible. The multi-axial nature of mechanical stress and the dynamic of the electronic assembly are respected. The advantage of accurately evaluating these mechanical stresses is to be able to much more accurately calculate the damage suffered by the electronic assembly where the critical components are located. Using such a device can improve maintenance forecasts because the indication of damage it provides is used to anticipate potential failures. The proposed approach can apply the principles of monitoring mechanical structures and the digital processing of measurements to know the damage condition at multiple locations, using an embedded device with one or more sensors.
The device integrating the full method is a small embedded electronic monitoring system (PHM for Prognostics and Health Management) with one or more kinematic sensors (acceleration, velocity, position, or strain) and a calculation unit. The monitoring system is designed to estimate the damage caused by a potential failure of the electronic cards constituting the electronic assembly to be monitored. The sensor(s) measure a kinematic dimension at one or respectively more points on the electronic assembly to be monitored. One of the functions of the monitoring system is to evaluate the mechanical stress of vibration, which is the source of a potential failure, from the measurement(s) of the sensor(s). This function is performed by a state observer that can reconstruct the dynamic of the mechanical stress from a dynamic model and kinematic measurements. The function operates in real time. The point(s) of measurement and the point(s) of evaluation for the stress are not necessarily the same. Using a state observer requires only a rather limited unit computing power, and the full device can then be built around a simple microcontroller, for example. Therefore, the same method of evaluating fatigue ageing can be used for integration in a small embedded device with autonomous calculation capacity.
In practice, the state observer can be achieved, for example, by convoluting the acceleration measured with an impulse response in mechanical stress. This way, the entire requested frequency band is taken into account, thereby restoring all dynamic effects. Also, the multi-axial character of the mechanical stress is respected once we use an impulse response for each of the components of the stress tensor. The state observer may be achieved otherwise than by a convolution operation, such as with a differential equation resolution or even by using a non-integer derived model (Xavier Moreau doctoral thesis, No. 95BOR10512, 1995).
The damage estimate is based on the mechanical stress given by the state observer. For example, the damage estimate can be determined by a rainflow count (described in the NF-A03-406 standard “Fatigue sous sollicitations d′amplitude variable, méthode rainflow de comptage des cycles”, November 1993, ISSN 0035-3931) and by applying the Palmgren-Miner rule. The required computing power for these operations is very low, which also allows for integration into an embedded device with an autonomous calculation capacity.
The invention therefore relates to a method of evaluating the ageing of an electronic assembly, typically an electronic card, subject to vibratory movement, a method in which:
The invention will be better understood upon reading the following description and studying the figures that accompany it. They are presented for illustrative purposes only and are not limiting to the invention. The figures show:
For example,
To simplify the explanation, note that excitations e1 to e2 are oriented in the same direction, perpendicular to the card 7, but they are not necessarily synchronous. However, it would be possible to construct a state observer even if this obligation were not satisfied, but the vibrations according to the directions in the plane of the card 7 cause strains with much less magnitude, which cause less damage to the electronic components. In principle, it is the holder that vibrates and transmits its vibrations to the card by attachments 11 to 12. In one example, the vibration perpendicular to the card 7 predominantly leads to tensile/compression stress, or normal stress, on the solder joints 0 of a critical electronic component 8 (BGA, Bail Grid Array) which potentially leads to a tensile/compression rupture in this joint and a failure of the electronic card 7. In the invention, particularly if the accelerometer is a three-dimensional accelerometer, we can calculate the damage resulting from the three directions at all time.
To simplify the explanation, we will also note that the electronic assembly 7 responds linearly to the vibratory excitations. This means that any physical dimension relating to the vibration behaves additively when several applied vibration excitations are superimposed at different or combined locations. This restriction is not limiting because nearly all of the electronic assembles behave as such in practice.
A state observer for the tensile/compression stress σ at critical point 0 is achieved for example by a convolution operation between the acceleration measurements γ1 and γ2 from specific points, and impulse responses s1 et s2, whose determination is specified later. The convolution operation achieving the state observer is written as:
n being a number of necessary and sufficient points to represent impulse responses s1 and s2, k being an integer successively representing all of the values from 0 to n−1, τ being a sampling time interval of kinematic measurements, and noting {circumflex over (σ)}(t) the normal stress evaluated at critical point 0 at the present incident t, γ4(t-kτ) the k-th last measured value of γ1 following the sampling at time interval τ, γ2(t-kτ) the k-th last measured value of γ2 following the sampling at time interval τ, s1(kτ) the k-th tabulated value of the impulse response s1 according to the sampling at time interval τ, s2(kτ) the k-th tabulated value of the impulse response s2 according to the sampling at time interval τ, and using the well-known notation Σ designating a discrete summation according to a discrete variable whose endpoints are indicated in the subscript and superscript of the letter. The variable indicating the present time t is itself sampled at time interval τ and therefore takes the discrete multiple values of τ. The observer presented here therefore delivers at each instant t multiple of τ an estimate {circumflex over (τ)} of the true mechanical stress σ at critical point 0 whose direct measurement is almost always impossible.
We can note that the number of sensors required must generally be greater than or equal to the number of degrees of freedom of excitation. If the sensor number is less, the observability condition is generally not verified. This highlights the example given in
As previously stated, an example of determining the impulse responses s1 and s2 is given below for the example in
Thus, the function {tilde over (γ)}1(ω) results from the Fourier transformation of the function γ1(t), acceleration delivered by the sensor 1. Function {tilde over (γ)}2(ω)results from the Fourier transformation of the function γ2(t), acceleration delivered by the sensor 2. The function {tilde over (e)}1(ω) results from the Fourier transformation of the function e1(t), excitation applying to the attachment 11. The function {tilde over (e)}2(ω) results from the Fourier transformation of the function e2(t), excitation applying to the attachment 12. The function {tilde over (σ)}0(ω) results from the Fourier transformation of the function σ0(t) mechanical stress at the critical point 0. Note that the Fourier transforms are complex scalar dimensions.
Four functions H11(ω), H12(ω), H21(ω), H22(ω), of the pulsation ω are each defined as the response of one of the measurement points in terms of acceleration, at a pulsation unit excitation ω at one of the excitation points, all other excitations being maintained identically as null. By the linearity specified above, these functions are generally written as the ratio of an acceleration on a non-null excitation which is the cause, the other excitations being maintained identically as null. This ratio is independently the excitation applied due to the linearity specified above. Explicitly:
The subscript notation e2=0 means that the ratio is calculated for the excitation e1 applied alone.
The subscript notation e1=0 means that the ratio is calculated for the excitation e2 applied alone.
These four functions are independent of the excitations applied. They can be determined experimentally, for example by proceeding successively through the unit excitations indicated above, by successively scanning the pulsation values ω. The finite elements method, a very common and recognized calculation technique in the industry, civil engineering, and science, also offers multiple means for determining these four functions, such as by numerically calculating the experimental procedure that can determine these four functions.
Similarly, two functions G1(ω) and G2(ω) for pulsation ω are each defined as the response for critical point 0 in terms of mechanical stress, at a unit pulsation excitation ω at one of the excitation points, all other excitations being maintained identically null. By linearity, like before:
The subscript notation e1=0 or e2=0 means that the ratio is calculated for an excitation applied alone. The two functions G1 and G2 can be determined experimentally or by the finite element method, as for the four previous functions.
The Fourier transforms {tilde over (γ)}1(ω) and {tilde over (γ)}2(ω) of the two accelerations γ1(t) and γ2(t) measured by the sensors 1 and 2 are written by linearly superposing the responses to the two excitations e1 and e2:
This scalar system is written in matrix form:
The reverse matrix system is written:
where the superscript −1 indicates the reverse of the matrix. Or, in scalar system form:
The Fourier transform {tilde over (σ)}0(ω) of the mechanical stress σ0 at the critical point 0 is written by linearly superposing the responses to the two excitations e1 and e2:
{tilde over (σ)}0(ω)=G1(ω){tilde over (e)}1(ω)+G2(ω){tilde over (e)}2(ω)
This expression is then written according to the Fourier transforms of the accelerations:
We then define the two factors {tilde over (γ)}1(ω), respectively {tilde over (γ)}2(ω) in the expression above as two functions {tilde over (s)}1(ω) and respectively {tilde over (γ)}2(ω):
The impulse responses s1(t) and s2(t) are simply the reverse Fourier transforms of {tilde over (s)}1(ω) of {tilde over (s)}2(ω) respectively. Note that s1(t) and s2(t) are actual scalar dimensions, by their physical nature. There is an algebraic reason for the properties of the Fourier transformation. s1(t) and s2(t) are the two functions that, convoluted respectively with the measurements γ1(t) and γ2(t), return the mechanical stress σ0(t) at the critical point 0 for the electronic assembly 7:
σ0(t)=∫0ts1(u)γ1(t−u)du+∫0ts2(u)γ2(t−u)du
The variable u below the integral sign is the dummy integration variable.
A discretized version of this integral equation is the expression given above the state observer {circumflex over (σ)}(t). To obtain such a discretized version, the integrals are replaced by discrete summations and only the values s1 et s2, are used, taken at multiple points of the time interval τ:
Discretization is valid only with a small enough time interval to properly represent the integrals and responses s1 and s2, as
Of course, in everything above, the denominator H11(ω)H22(ω)−H12(ω)H21(ω) must not be cancelled for any pulsation values ω in the vibration frequency range. If that were the case, the observability condition would not be verified. It would not be possible to deduce the excitations from the kinematic measurements, and it would be necessary to position the kinematic sensors differently.
The calculation above is only one illustration of how to develop a state observer for a mechanical stress at a critical point. It can immediately be applied to a single sensor or to a number of sensors greater than two, always subject to observability, therefore subject to the number of measurement possibilities being at least equal to the number of degrees of freedom of the excitations.
The finite element calculation is based on networking the geometrical structure for the electronic assembly in polyhedral elements and on writing mechanical vibration equations based on the Galerkin method, also called weak formulation. The finite element method is abundantly documented in applied mathematics and mechanics journals. The calculation can be performed with one of the many software packages on the market. An overview of this technique is available in an article titled, “Durability Modelling of a BGA Component under Random Vibration”, presented at the EuroSimE Conference in Freiburg-im-Breisgau on Apr. 21-23, 2008, and available on the website http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4525047&isnumber=4525005.
The damage calculation 5 can be performed for example according to the well-known (NF-A03-406) rainflow method when the mechanical stress evaluated by the state observer is scalar. In this method, all of the local extrema for the mechanical stress are identified, and an algorithm can identify the mechanical stress cycles, each cycle being defined by one of the local minima and by one of the local maxima for the mechanical stress. Each cycle contributes to the damage at critical point 0. An example of a cumulative damage calculation consists of using the Palmgren-Miner hypothesis, according to which the cumulative damage is a scalar dimension incrementing by a value at each cycle that depends only on characteristics of the considered cycle, independently of the preceding cycles. When the damage expects a threshold value, we can consider that a failure at critical point 0 has a significant likelihood of occurrence, and the monitoring device is then capable of generating an alarm. Then, preventative measures can be taken before the considered failure occurs.
When the mechanical stress is more generally tensorial, there are several methods. One is presented in the “Durability Modelling of a BGA Component under Random Vibration” article mentioned above. Otherwise, there are also general rainflow methods using tensorial dimensions. Finally, we can cite the multi-axial criteria of Dang Van and de Sines. See “Mécanique des matériaux solides”, J. Lemaître, J.-L Chaboche, ISBN 2-10-001397-1.
Number | Date | Country | Kind |
---|---|---|---|
08 57792 | Nov 2008 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2009/052189 | 11/16/2009 | WO | 00 | 6/7/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/055272 | 5/20/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5958556 | McCutcheon | Sep 1999 | A |
6704664 | Su et al. | Mar 2004 | B2 |
7260509 | Brand et al. | Aug 2007 | B1 |
7904202 | Hoppe | Mar 2011 | B2 |
7974791 | Broddegaard et al. | Jul 2011 | B2 |
20080275672 | Varon-Weinryb | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
1738378 | Jul 1992 | SU |
WO 2007102155 | Sep 2007 | WO |
Entry |
---|
Lall et al., “Failure-Envelope Approach to Modeling Shock and Vibration Survivability of Electronic and MEMS packaging,” 2005 Electronic Components and Technology Conference, May 31, 2005, pp. 480-490, IEEE, Piscataway, NJ,USA. |
Wang et al, “Modified highly accelerated life test for aerospace electronics,” ITHERM 2002 Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, May 30, 2002, pp. 940-945, vol. conf. 8, New York, NY, USA. |
Przemyslaw et al., “Application of FPGA units in combined temperature cycle and vibration reliability tests of lead-free interconnections,” Electronics System Integration Technology Conference, Sep. 1, 2008, pp. 1375-1380, IEEE, Piscataway, NJ, USA. |
X. Moreau, “La dérivation non entière en isolation vibratoire et son application dans le doamine de l'automobile. La suspension CRONE du concept à la réalisation”, PhD thesis, Bordeaux 1 University, 1995. |
Grieu et al., “Durability Modelling of a BGA Component under Random Vibration,” 9th Int. Conf. on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, Apr. 20-23, 2008, pp. 1-8. |
Lemaître et al, “Mécanique des matériaux solides”, Dunod, 2nd Edition, Jun. 1, 2004. |
Fatigue sous sollicitations d'amplitude variable. Méthode Rainflow de comptage des cycles, Norme AFNOR A 03-406, Nov. 1993. |
Number | Date | Country | |
---|---|---|---|
20110271761 A1 | Nov 2011 | US |