Method of fabricating a stent with features by blow molding

Abstract
The invention provides a method of manufacturing a stent, the method comprising: disposing a polymeric tube into a cylindrical mold, the cylindrical mold having a variable diameter along a portion of the inside surface of the mold; radially expanding the tube by blowing a gas or liquid into the cylindrical mold, the outside surface of the tube conforming to the variable diameter portion of the outside surface of the mold, causing the radially expanded tube to have a variable diameter along the conformed length of the tube; and fabricating a stent from the expanded tube.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to a method of fabricating a stent.


2. Description of the State of the Art


This invention relates to radially expandable endoprostheses which are adapted to be implanted in a body lumen. An “endoprosthesis” corresponds to an artificial implantable medical device that is placed inside the body. A “lumen” refers to a cavity of a tubular organ such as a blood vessel. These endoprostheses are commonly referred to as stents. Stents are generally cylindrically shaped devices which function to hold open and sometimes expand a segment of a blood vessel or other anatomical lumen such as urinary tracts and bile ducts. Stents are often used in the treatment of atherosclerotic stenosis in blood vessels. “Stenosis” refers to a narrowing or constriction of the diameter of a bodily passage or orifice. In such treatments, stents reinforce body vessels and prevent restenosis following angioplasty in the vascular system. “Restenosis” refers to the reoccurrence of stenosis in a blood vessel or heart valve after it has been treated (as by balloon angioplasty or valvuloplasty) with apparent success.


The cylindrical structure of stents is typically composed of a scaffolding that includes a pattern or network of interconnecting structural elements or struts. The scaffolding can be formed from wires, tubes, or planar films of material rolled into a cylindrical shape. In addition, a medicated stent may be fabricated by coating the surface of either a metallic or polymeric scaffolding with a polymeric carrier. The polymeric carrier can include an active agent or drug. Furthermore, the pattern that makes up the stent allows the stent to be radially expandable and longitudinally flexible. Longitudinal flexibility facilitates delivery of the stent and radial rigidity is needed to hold open a body lumen. The pattern should be designed to maintain the necessary longitudinal flexibility and radial rigidity of the stent.


A number of techniques have been suggested to fabricate stents from tubes and planar films or sheets. One such technique involves laser cutting or etching a pattern onto a material. Laser cutting may be performed on a planar film of a material which is then rolled into a tube. Alternatively, a desired pattern may be etched directly onto a tube. Fabricating a stent from a tube is preferable due to time and cost considerations. Other techniques involve cutting a desired pattern into a sheet or a tube via chemical etching or electrical discharge machining. Laser cutting of stents has been described in a number of publications including U.S. Pat. No. 5,780,807 to Saunders, U.S. Pat. No. 5,922,005 to Richter and U.S. Pat. No. 5,906,759 to Richter.


It is desirable for a stent to have certain mechanical properties to facilitate delivery and deployment of a stent, especially in the bending portions of the stent that are bent during crimping and expansion of the stent. For example, longitudinal flexibility is important for successful delivery of the stent. In addition, radial rigidity and strength are vital characteristics in deployment and for holding open a body lumen. The pattern that makes up the stent allows the stent to be radially expandable and longitudinally flexible. The pattern should be designed to maintain the necessary longitudinal flexibility and radial rigidity of the stent. One technique for strengthening the bending portions of a stent is to laser cut the stent such as to widen the bending portions of the stent. However, upon crimping a stent that includes wider bending portions, oftentimes the stent flips upwards or “chip” when the strut is bent during crimping and/or expansion.


What is needed in the art is a method of fabricating a stent to mechanically strengthen the stent in selected portions.


SUMMARY OF THE INVENTION

The invention provides a method of manufacturing a stent, the method comprising: disposing a polymeric tube into a cylindrical mold, the cylindrical mold having a variable diameter along a portion of the inside surface of the mold; radially expanding the tube by blowing a gas or liquid into the cylindrical mold, the outside surface of the tube conforming to the variable diameter portion of the inside surface of the mold, causing the radially expanded tube to have a variable diameter along the conformed length of the tube; and fabricating a stent from the expanded tube.


The invention also provides a method of manufacturing a stent, the method comprising: disposing a polymeric tube into a cylindrical mold, the cylindrical mold having a protrusion or indentation on the inside surface of the mold; radially expanding the tube by blowing a gas or liquid into the cylindrical mold, the outside surface of the tube conforming to the protrusion or indentation on the inside surface of the mold, the protrusion in the mold causing an indentation on the outside surface of the tube, or the indentation in the mold causing a protrusion on the outside surface of the tube; and fabricating a stent with the expanded tube.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a tube for use in forming a stent.



FIG. 2 depicts a three-dimensional stent with a pattern.



FIG. 3A depicts an axial cross-section of a polymeric tube inserted in a cylindrical mold having indentations.



FIG. 3B depicts an axial cross-section of a radially expanded tube after blow molding a gas or liquid into the mold.



FIG. 3C depicts an axial cross-section of a radially expanded tube having protrusions.



FIG. 3D depicts another embodiment of an axial cross-section of a radially expanded tube having protrusions.



FIG. 4A depicts an axial cross-section of a polymeric tube inserted in a cylindrical mold having protrusions.



FIG. 4B depicts an axial cross-section of a radially expanded tube after blow molding a gas into the mold.



FIG. 4C depicts an axial cross-section of a radially expanded tube having indentions.



FIG. 5A depicts an axial cross-section of a polymeric tube inserted in a tapered cylindrical mold.



FIG. 5B depicts an axial cross-section of a radially expanded tube after blowing a gas or liquid into the mold.



FIG. 5C depicts an axial cross-section of a tapered radially expanded tube.



FIG. 6A depicts a portion of a strut having a uniform thickness and a relatively wider bending portion.



FIG. 6B depicts a portion of a strut after crimping, where portion of strut has a uniform thickness and the wider bending portion that has flipped upward.



FIG. 7A depicts a portion of a strut before crimping having a relatively thicker bending portion.



FIG. 7B depicts a portion of a strut after crimping having a relatively thicker bending portion.



FIG. 7C depicts a portion of a strut having a relatively thicker bending portion, and, in addition, features on the abluminal or luminal side.



FIG. 8 depicts one embodiment of a machine-controlled system for laser machining a tube, circumventing any features that have been formed on the stent.



FIG. 9(
a) depicts a close-up axial view of a region where a laser beam interacts with a tube having features.



FIG. 9(
b) depicts a close-up end view of a region where a laser beam interacts with a tube having features.





DETAILED DESCRIPTION OF THE INVENTION

For the purposes of the present invention, the following terms and definitions apply:


“Stress” refers to force per unit area, as in the force acting through a small area within a plane. Stress can be divided into components, normal and parallel to the plane, called normal stress and shear stress, respectively. True stress denotes the stress where force and area are measured at the same time. Conventional stress, as applied to tension and compression tests, is force divided by the original gauge length.


“Elastic limit” refers to the maximum stress that a material will withstand without permanent deformation.


“Strength” refers to the maximum stress in a direction in testing which a material will withstand prior to fracture. The ultimate strength is calculated from the maximum load applied during the test divided by the original cross-sectional area.


“Strain” refers to the amount of elongation or compression that occurs in a material at a given stress or load. Elongation may be defined as the increase in length which occurs when subjected to stress. It is typically expressed as a percentage of the original length.


The “glass transition temperature,” Tg, is the temperature at which the amorphous domains of a polymer change from a brittle vitreous state to a plastic state at atmospheric pressure. In other words, the Tg corresponds to the temperature where the onset of segmental motion in the chains of the polymer occurs. Tg of a given polymer can be dependent on the heating rate and can be influenced by the thermal history of the polymer. Above Tg, molecular orientation may be induced with applied stress since rotation of polymer chains, and hence segmental mobility is possible. Between Tg and the melting temperature of the polymer, Tm, rotational barriers exist, however, the barriers are not great enough to substantially prevent segmental mobility. As the temperature of a polymer is increased above Tg, the energy barriers to rotation decrease and segmental mobility of polymer chains tend to increase. As a result, as the temperature increases, molecular orientation is more easily induced with applied stress.


Embodiments of the method can be used to fabricate devices including, but not limited to, stents, balloon-expandable stents, stent-grafts, and grafts. Various embodiments to manufacture a stent with desirable features are described herein. Some embodiments to manufacture the device include fabricating the stent from a polymer conduit or tube. The tube may be cylindrical or substantially cylindrical in shape. For example, FIG. 1 depicts a tube 100. Tube 100 is a cylinder with an outside diameter 110 and an inside diameter 120. FIG. 1 also depicts an outside surface 130 and a cylindrical axis 140 of tube 100. When referred to below, unless otherwise specified, the “diameter” of the tube refers to the outside diameter of tube.


The polymeric tube may be used to fabricate a stent. Fabrication may include forming a pattern that includes at least one interconnecting element or strut on the elongated tube. The stent may be formed by laser cutting a pattern on the elongated tube. Representative examples of lasers that may be used include an ultra fast laser, excimer, carbon dioxide, and YAG. Chemical etching may also be used to form a pattern on the elongated tube. FIG. 2 depicts a three-dimensional view of a stent 150 which may be formed from tube 100 in FIG. 1. FIG. 2 depicts a pattern or network of struts 160. The pattern is not limited to the depicted stent pattern.


The polymeric tube for use in manufacturing a stent has a desired strength and flexibility in the longitudinal direction, as shown by an arrow 135 in FIG. 1, and in the transverse or radial direction, as shown by an arrow 145 in FIG. 1. The desired strength and flexibility can be induced by radial expansion and/or axial deformation. A tube can be radially deformed by blow molding. The invention provides blow molding a tube to form a tube having a variable diameter and/or features such as indentations. There are many advantages to fabricating tubes with a variable diameter and/or features such as indentions, such as increased stent retention and features such as pockets filled with drugs or radio-opaque substances.


Several embodiments disclosed herein provide applying radial pressure to a polymeric tube by positioning the polymeric tube within a cylindrical mold. The cylindrical mold may include features where, upon conveying a gas or liquid at a selected pressure into a proximal end of the polymeric tube, the cylindrical mold acts to control the diameter of the expanded polymeric tube by limiting the expansion to the inside diameter of the cylindrical mold. The pressure of the conveyed gas may be used to control the expansion of the polymeric tube to a desired diameter, while a distal end of the polymeric tube may be closed. The inside diameter of the cylindrical mold with features corresponds to the desired shape and diameter of the formed polymeric tube. The inside surface of the mold may include features such as protrusions, projections, grooves, indentations, flanges, overhangs, and extensions. Other features are also possible. The embodiments disclosed herein allow formation of a tube with a variable diameter and/or features on the outside surface of the tube. The invention also provides fabricating a stent having portions that are thicker than other portions of the stent.



FIG. 3A depicts an axial cross-section of a polymeric tube 300 with an outside diameter 310 positioned within a cylindrical mold 320 having indentations 330 on the inside surface of the mold 320. Cylindrical mold 320 with indentations 330 acts to limit the expansion of polymeric tube 300 to the inside surface of mold 320. The indentations form a tube 300 with a variable diameter. When the polymeric tube 300 expands from diameter 310 to diameter 340, protrusions 390 are formed on the outside surface of the polymeric tube 300.


Polymeric tube 300 may be closed at a distal end 350 to conform to the outside surface of mold 320. Any gas, such as air, may be conveyed, as indicated by an arrow 360, into an open proximal end 370 of polymeric tube 300. A liquid may also be conveyed into the open proximal end 370 to provide pressure on the inside of the tube. The gas or liquid can be heated to a temperature sufficient to deform the polymeric tube. This temperature can be above the glass transition temperature of the polymer. The pressure of the gas is selected to sufficiently expand the polymeric tube to conform to the inside surface of cylindrical mold 320. Polymeric tube 300 may be heated by the gas or liquid to a temperature above ambient temperature, for example above Tg of the polymer. Alternatively, heat may be applied to the exterior of cylindrical mold 320. The conveyed gas combined with the applied heat may act to radially expand polymeric tube 300, as indicated by an arrow 380.



FIG. 3B depicts an axial cross-section of a polymeric tube 300 having protrusions 390 that are formed after blowing a gas at a selected temperature and pressure into the cylindrical mold 320. As depicted in FIG. 3C, tube 300 includes protrusions 390 that are formed during the blow molding process.



FIG. 4A depicts an axial cross-section of a polymeric tube 400 having an outside diameter 310 positioned within a cylindrical mold 410 having protrusions 420. Cylindrical mold 410 with protrusions 420 acts to limit the expansion of polymeric tube 400 to an expanded diameter 340, which conforms to the surface of the mold. When a polymeric tube 400 expands from diameter 310, indentations 430 are formed in polymeric tube 400. Cylindrical mold 410 includes protrusions 420. FIG. 4B depicts an axial cross-section of a radially expanded tube 400 after blowing a gas or liquid at a selected temperature and pressure into the cylindrical mold 410. As depicted in FIG. 4B, indentations 430 are formed in polymeric tube 400 by blow molding polymeric tube 400 against cylindrical mold 410 having protrusions 420. As depicted in FIG. 4C, tube 400 includes grooves 430 formed during the blow molding process. The indentations in the tube are arranged in the tube as desired. For example, if the indentations are to be used as depots to hold drugs, the indentations may be arranged linearly along the entire length of the tube. Also, the indentations may be arranged such that when the pattern is cut into the tube, the indentations encompass portions of the stent requiring flexibility. The indentations can be of any shape, not just circular. The indentations of the tube are formed to coincide with the specific parts of the stent pattern. For example, FIG. 4D depicts stent strut 440 having indentations 450 and a protrusion 460 on the bending portion 465 of the stent portion. One advantage to forming features on a stent by blow molding rather than by laser cutting is that blow molding avoids deleterious effects on the mechanical portions of the stent caused by heat from lasers that create a heat affected zone.



FIG. 5A depicts an axial cross-section of a polymeric tube 500 with an outside diameter 520 positioned within a cylindrical mold 510, where cylindrical mold 510 is tapered along its length. Cylindrical mold 510 acts to limit the expansion of polymeric tube 500 to an expanded diameter 530 on one end of the polymeric tube 500 and diameter 540 on the other end of the polymeric tube 500. Cylindrical mold 510 has a tapered diameter, such that the diameter 540 on the end of formed tube 500 is expanded more than the other end 530 of tube upon blow molding. FIG. 5B depicts an axial cross-section of a radially expanded tube 500 after blowing a gas at a selected temperature and pressure into the cylindrical mold 510. A tapered polymeric tube 500 is formed by expanding polymeric tube 500 to conform to the inner surface of cylindrical mold 510. As depicted in FIG. 5C, formed tube 500 includes a tapered diameter from diameter 540 to diameter 530. There are many advantages to using a tapered stent. For example, the tapered stent may be adapted to improve the attachment of the stent to the delivery system and facilitate the delivery of the mounted stent into and through a bodily lumen. Although FIG. 5 depict a uniform tapering shape, the invention includes arbitrary axial cross-sections which can be formed by blow molding.


As mentioned previously, selected portions of the stent using blow molding may be formed to have greater or lesser mass relative to other portions of the stent. For example, high strain regions may be made up of more polymeric mass relative to other portions of the stent. Similarly, lower strain regions that require flexibility may be of a lesser mass.



FIG. 6A depicts a portion of a strut 600 having a uniform thickness on the sidewall 635 and a relatively wider bending portion 620, where width is indicated by “W”. That is, thickness 610 of bending portion 620 is substantially the same as the thickness of ends 615 of strut 600. Strut 600 includes a luminal or abluminal side and a side wall 625. The bending portion 620 of strut 600 is bent during crimping the stent onto a balloon-catheter assembly and during expansion of the stent when the stent is deployed. If the abluminal or luminal surface 625 of bending portion 620 is made wider, bending portion 620 of strut 600 is caused to flip upwards or “chip” when the strut is bent 600 during crimping and/or expansion as depicted by arrows 630. Chipping can become problematic because stent protrusion and non-uniform apposition on the vessel wall is unwanted in a vessel wall.



FIGS. 7A and 7B depicts a portion of a strut 700 having a variable thickness. That is, thickness 710 of the bending portion 720 is greater than the thickness of the ends 715 of strut 700. Strut 700 includes a bending portion 720 that is bent during crimping the stent onto a balloon-catheter assembly and/or during expanding the stent when the stent is deployed. As depicted in FIG. 7B, the bending portion 720 of strut 700 may have a low or no tendency to flip outward when the strut is bent during crimping, for example. The greater thickness of the sidewall 735 in bending portion 720 of the stent strut 700 provides a greater strength with little or no out of plane bending as shown in FIG. 6B. In addition, strut portions requiring greater flexibility, such as linking struts, may be formed to be thinner than other strut portions. Therefore, with blow molding, parts having various thicknesses can be designed to be at selected portions of a stent.


In one embodiment, as depicted in FIG. 7C, a portion of a strut 700 has a thicker bending portion 720 as well as protrusions 730 located at selected portions of abluminal or luminal surface 725. In one embodiment, a portion of strut is made to be thicker as well as wider relative to other portions of the stent.


In one embodiment, the polymeric tube may be heated such that the temperature of the polymeric tube is greater than or equal to Tg and less than Tm of the polymer. Heating above Tg facilitates expansion, since a polymer becomes more flexible above Tg.


After the polymeric tube is radially expanded by blow molding the tube, it may be desirable to cool the radially expanded tube below the Tg of the polymer to retain induced molecular orientation. Some embodiments may include cooling the deformed tube prior to fabrication of the medical device. The deformed tube may be cooled at a temperature below an ambient temperature to below the Tg of the polymer. Alternatively, cooling the deformed polymer tube may include cooling the deformed polymer tube at a temperature at or near an ambient temperature to below the Tg of the polymer.


After the polymeric tube is radially expanded by blow molding the tube, the tube may be laser cut to form a stent. A stent may be fabricated by use of a laser beam collimated to a 1 to 10 mm beam diameter. The tube is then cut by focusing a beam, such as a 0.5 to 2 mm wide beam, on the polymeric tube. A stent pattern may then be cut into the tube by moving the tube in an axial and rotary direction with respect to the cutting beam or by moving the beam.



FIG. 8 depicts an embodiment of a portion of a machine-controlled system for laser machining a tube. In FIG. 8, a polymeric tube 800 is disposed in a rotatable collet fixture 810 of a machine-controlled apparatus 820 for positioning tube 800 relative to a laser 830. According to machine-encoded instructions, tube 800 is rotated and moved axially relative to laser 830 which may also be machine-controlled. The laser selectively removes the material from the tube resulting in a pattern cut into the tube 800. The tube 800 is therefore cut into the discrete pattern of a finished stent.


The process of cutting a pattern for the stent into the tube is automated except for loading and unloading the length of tube 800. Referring again to FIG. 8, the process may be done, for example, using a CNC-opposing collet fixture 840 for axial rotation of the length of tubing. Collet fixture 840 may act in conjunction with a CNC X/Y table 850 to move the length of tube axially relative to a machine-controlled laser 830 as described. The entire space between collets can be patterned using a laser set-up of the foregoing example. The program for control of the apparatus is dependent on the particular configuration used and the pattern formed. Therefore, a pattern that circumvents any features formed on the tube can be accomplished using the program for control of the apparatus.


Machining a fine structure also requires the ability to manipulate the tube with precision. CNC equipment manufactured and sold by Anorad Corporation in Hauppauge, N.Y. may be used for positioning the tube. In addition, a unique rotary mechanism may be used that allows the computer program to be written as if the pattern were being machined from a flat sheet, allowing utilization of both circular and linear interpolation in programming. Thus, the axial and rotary motion may be controlled by a CNC system. A CNC controlled axis may also control the focus position on the polymeric tube. After indexing the CNC system to a specific position on tube, the system traces the pattern in the x, y, z coordinate system. Since the finished structure of the stent is very small, a precision drive mechanism is required that supports and drives both ends of the tubular structure as it is cut. Since both ends are driven, they are preferably aligned and precisely synchronized. Otherwise, as the stent is being cut, the stent may twist and distort.


The stent produces stents with a fine precision structure cut from a small diameter thin-walled cylindrical tube. Cutting a fine structure around features on a stent surface created by the present invention (e.g., a 0.0035 inch strut width (0.889 mm)) requires precise laser focusing and minimal heat input. To satisfy these requirements, a laser technology adapted to micro-machine the tube may be implemented according to the present embodiments.


Additionally, FIGS. 9(a) and 9(b) show that apparatus 900 incorporates a monocular viewing, focusing, and cutting head 930. A rotary axis 940 and X-Y stages 950 for rotating and translating the work piece are also shown. A CNC controller 960 is also incorporated into apparatus 300.



FIG. 9(
a) depicts a close-up axial view of the region where the laser beam interacts with the substrate target material. A laser beam 900 is focused by a focusing lens 910 on a tube 920 is supported by a CNC controlled rotary collet 930 at one end and a tube support pin 940 at another end.


As shown by FIG. 9(a), the laser can incorporate a coaxial gas jet assembly 950 having a coaxial gas jet 960 and a nozzle 970 that helps to remove debris from the kerf and cools the region where the beam interacts with the material as the beam cuts and vaporizes a substrate. Coaxial gas jet nozzle 970 (e.g., 0.018 inch diameter (0.457 mm)) is centered around a focused beam 980 with approximately 0.010 inch (2.54 mm) between a tip 990 of nozzle 970 and a tube 920. In certain embodiments, an optical system for modifying a laser beam according to the embodiments described herein may be positioned between cutting head 930 (depicted in FIGS. 9(a) and 9(b)) and the substrate target material.


It may also be necessary to block laser beam 980 as it cuts through the top surface of the tube to prevent the beam, along with the molten material and debris from the cut, from impinging on the inside opposite surface of tube 990. To this end, a mandrel 992 (e.g., approx. 0.034 inch diameter (0.864 mm)) supported by a mandrel beam block 995 is placed inside the tube and is allowed to roll on the bottom of the tube 985 as the pattern is cut, which acts as a beam/debris block protecting the far wall inner diameter. A close-up end view along mandrel beam block 995 shows laser beam 980 impinging on tube 985 in FIG. 9(b).


Hence, the laser enables the machining of narrow kerf widths to circumvent the features formed on the stent surface, while minimizing the heat input into the material. In this way, smooth, narrow cuts in a tube with very fine geometries are made without damaging the narrow struts that define the stent structure.


The stent can be made partially or completely from a biodegradable, bioabsorbable, or biostable polymer. Biostable refers to polymers that are not biodegradable. The terms biodegradable, bioabsorbable, and bioerodable are used interchangeably and refer to polymers that are capable of being completely degraded and/or eroded when exposed to bodily fluids such as blood and can be gradually resorbed, absorbed and/or eliminated by the body. The processes of breaking down and eventual absorption and elimination of the polymer can be caused by, for example, hydrolysis, metabolic processes, bulk or surface erosion, and the like. For stents made from a biodegradable polymer, the stent is intended to remain in the body for a duration of time until its intended function is accomplished.


Representative examples of polymers that may be used to fabricate a stent using the methods disclosed herein include poly(N-acetylglucosamine) (Chitin), Chitoson, poly(hydroxyvalerate), poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polyorthoester, polyanhydride, poly(glycolic acid), poly(D,L-lactic acid), poly(glycolic acid-co-trimethylene carbonate), poly(trimethylene carbonate), co-poly(ether-esters) (e.g. PEO/PLA), polyphosphazenes, biomolecules (such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers other than polyacrylates, vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene halides (such as polyvinylidene chloride), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), acrylonitrile-styrene copolymers, ABS resins, polyamides (such as Nylon 66 and polycaprolactam), polycarbonates, polyoxymethylenes, polyimides, polyethers, polyurethanes, rayon, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose. Additional representative examples of polymers that may be especially well suited for use in fabricating a stent according to the methods disclosed herein include ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), poly(butyl methacrylate), poly(vinylidene fluoride-co-hexafluororpropene) (e.g., SOLEF 21508, available from Solvay Solexis PVDF, Thorofare, N.J.), polyvinylidene fluoride (otherwise known as KYNAR, available from ATOFINA Chemicals, Philadelphia, Pa.), poly(L-lactic acid), poly(caprolactone), ethylene-vinyl acetate copolymers, and polyethylene glycol.


While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims
  • 1. A method of manufacturing a stent, the method comprising: disposing a polymeric tube into a cylindrical mold, the cylindrical mold having a protrusion or indentation on the inside surface of the mold;radially expanding the tube by blowing a gas or liquid into the cylindrical mold, the outside surface of the tube conforming to protrusion or indentation on the inside surface of the mold, the protrusion in the mold causing an indentation on the outside surface of the tube, or the indentation in the mold causing a protrusion on the outside surface of the tube; andfabricating a stent with the expanded tube, wherein the fabricating comprises laser cutting a pattern having the indentation or protrusion on the surface of a strut.
  • 2. The method according to claim 1, wherein the thickness at the protrusion on the expanded tube is greater than other portions of the expanded tube.
  • 3. The method according to claim 1, wherein the thickness at the indentation on the expanded tube is less than other portions of the expanded tube.
  • 4. A method of manufacturing a stent, the method comprising: disposing a polymeric tube into a cylindrical mold, the cylindrical mold having a protrusion or indentation on the inside surface of the mold;radially expanding the tube by blowing a gas or liquid into the cylindrical mold, the outside surface of the tube conforming to protrusion or indentation on the inside surface of the mold, the protrusion in the mold causing an indentation on the outside surface of the tube, or the indentation in the mold causing a protrusion on the outside surface of the tube; andfabricating a stent with the expanded tube, wherein the stent is fabricated so that bending portions are located in thicker portions of the stent.
  • 5. The method according to claim 1, wherein the indentation comprises a groove.
  • 6. The method according to claim 1, wherein the tube comprises a biodegradable and/or biostable polymer.
  • 7. The method according to claim 1, further comprising heating the tube with the liquid or gas to a temperature above Tg of the polymer before and/or during expansion.
  • 8. A method of manufacturing a stent, the method comprising: disposing a polymeric tube into a cylindrical mold, the cylindrical mold having an indentation or a protrusion on the inside surface of the mold;radially expanding the tube by blowing a gas or liquid into the cylindrical mold, the outside surface of the tube conforming to the indentation or protrusion of the inside surface of the mold, the indentation or protrusion on the mold causing a feature on the outside surface of the tube; andfabricating a stent with the expanded tube, wherein the fabricating comprises cutting a pattern having the indentation or protrusion on the surface of a strut.
  • 9. The method according to claim 8, wherein the feature formed on the outside surface of the tube is an indentation, and the method further comprises filling the indentation with a radio-opaque material.
  • 10. The method according to claim 8, wherein the feature formed on the outside surface of the tube is an indentation, and the method further comprises filling the indentation with a drug.
  • 11. The method according to claim 8, wherein the cylindrical mold has both an indentation and a protrusion on the inside surface, thereby forming both a protrusion and an indentation on the outside surface of the tube.
  • 12. The method according to claim 1, wherein the stent is fabricated so that bending portions are located in thicker portions of the stent.
  • 13. The method according to claim 4, wherein the fabricating comprises cutting a pattern having the indentation or protrusion on the surface of a strut.
  • 14. The method according to claim 8, wherein the stent is fabricated so that bending portions are located in thicker portions of the stent.
US Referenced Citations (371)
Number Name Date Kind
2922255 Broderick et al. Jan 1960 A
3636956 Schneider Jan 1972 A
3687135 Stroganov et al. Aug 1972 A
3839743 Schwarcz Oct 1974 A
3900632 Robinson Aug 1975 A
4104410 Malecki Aug 1978 A
4110497 Hoel Aug 1978 A
4321711 Mano Mar 1982 A
4346028 Griffith Aug 1982 A
4547416 Reed et al. Oct 1985 A
4596574 Urist Jun 1986 A
4599085 Riess et al. Jul 1986 A
4612009 Drobnik et al. Sep 1986 A
4633873 Dumican et al. Jan 1987 A
4656083 Hoffman et al. Apr 1987 A
4698196 Fabian et al. Oct 1987 A
4702884 Goldstein Oct 1987 A
4718907 Karwoski et al. Jan 1988 A
4722335 Vilasi Feb 1988 A
4723549 Wholey et al. Feb 1988 A
4732152 Wallstén et al. Mar 1988 A
4733665 Palmaz Mar 1988 A
4739762 Palmaz Apr 1988 A
4740207 Kreamer Apr 1988 A
4743252 Martin, Jr. et al. May 1988 A
4768507 Fischell et al. Sep 1988 A
4776337 Palmaz Oct 1988 A
4800882 Gianturco Jan 1989 A
4816339 Tu et al. Mar 1989 A
4818559 Hama et al. Apr 1989 A
4850999 Planck Jul 1989 A
4877030 Beck et al. Oct 1989 A
4878906 Lindemann et al. Nov 1989 A
4879135 Greco et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4902289 Yannas Feb 1990 A
4957687 Akman et al. Sep 1990 A
4977901 Ofstead Dec 1990 A
4987025 Shiraki et al. Jan 1991 A
4994298 Yasuda Feb 1991 A
5019090 Pinchuk May 1991 A
5028597 Kodama et al. Jul 1991 A
5059211 Stack et al. Oct 1991 A
5062829 Pryor et al. Nov 1991 A
5084065 Weldon et al. Jan 1992 A
5085629 Goldberg et al. Feb 1992 A
5087394 Keith Feb 1992 A
5100429 Sinofsky et al. Mar 1992 A
5104410 Chowdhary Apr 1992 A
5108416 Ryan et al. Apr 1992 A
5108417 Sawyer Apr 1992 A
5108755 Daniels et al. Apr 1992 A
5112457 Marchant May 1992 A
5116365 Hillstead May 1992 A
5123917 Lee Jun 1992 A
5147302 Euteneuer et al. Sep 1992 A
5156623 Hakamatsuka et al. Oct 1992 A
5163951 Pinchuk et al. Nov 1992 A
5163952 Froix Nov 1992 A
5163958 Pinchuk Nov 1992 A
5167614 Tessmann et al. Dec 1992 A
5192311 King et al. Mar 1993 A
5197977 Hoffman, Jr. et al. Mar 1993 A
5234456 Silvestrini Aug 1993 A
5234457 Andersen Aug 1993 A
5236447 Kubo et al. Aug 1993 A
5279594 Jackson Jan 1994 A
5282860 Matsuno et al. Feb 1994 A
5289831 Bosley Mar 1994 A
5290271 Jernberg Mar 1994 A
5306286 Stack et al. Apr 1994 A
5306294 Winston et al. Apr 1994 A
5328471 Slepian Jul 1994 A
5330500 Song Jul 1994 A
5342348 Kaplan Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342621 Eury Aug 1994 A
5356433 Rowland et al. Oct 1994 A
5383925 Schmitt Jan 1995 A
5385580 Schmitt Jan 1995 A
5389106 Tower Feb 1995 A
5399666 Ford Mar 1995 A
5423885 Williams Jun 1995 A
5441515 Khosravi et al. Aug 1995 A
5443458 Eury et al. Aug 1995 A
5443500 Sigwart Aug 1995 A
5455040 Marchant Oct 1995 A
5464650 Berg et al. Nov 1995 A
5500013 Buscemi et al. Mar 1996 A
5502158 Sinclair et al. Mar 1996 A
5514379 Weissleder et al. May 1996 A
5527337 Stack et al. Jun 1996 A
5545408 Trigg et al. Aug 1996 A
5554120 Chen et al. Sep 1996 A
5556413 Lam Sep 1996 A
5578046 Liu et al. Nov 1996 A
5578073 Haimovich et al. Nov 1996 A
5591199 Porter et al. Jan 1997 A
5591230 Horn et al. Jan 1997 A
5591607 Gryaznov et al. Jan 1997 A
5593403 Buscemi Jan 1997 A
5593434 Williams Jan 1997 A
5599301 Jacobs et al. Feb 1997 A
5599922 Gryaznov et al. Feb 1997 A
5605696 Eury et al. Feb 1997 A
5607442 Fischell et al. Mar 1997 A
5607467 Froix Mar 1997 A
5618299 Khosravi et al. Apr 1997 A
5628786 Banas et al. May 1997 A
5629077 Turnlund et al. May 1997 A
5631135 Gryaznov et al. May 1997 A
5632771 Boatman et al. May 1997 A
5632840 Campbell May 1997 A
5637113 Tartaglia et al. Jun 1997 A
5649977 Campbell Jul 1997 A
5667767 Greff et al. Sep 1997 A
5667796 Otten Sep 1997 A
5670161 Healy et al. Sep 1997 A
5670558 Onishi et al. Sep 1997 A
5693085 Buirge et al. Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5707385 Williams Jan 1998 A
5711763 Nonami et al. Jan 1998 A
5716981 Hunter et al. Feb 1998 A
5725549 Lam Mar 1998 A
5726297 Gryaznov et al. Mar 1998 A
5728751 Patnaik Mar 1998 A
5733326 Tomonto et al. Mar 1998 A
5733330 Cox Mar 1998 A
5733564 Lehtinen Mar 1998 A
5733925 Kunz et al. Mar 1998 A
5741881 Patnaik Apr 1998 A
5756457 Wang et al. May 1998 A
5756476 Epstein et al. May 1998 A
5765682 Bley et al. Jun 1998 A
5766204 Porter et al. Jun 1998 A
5766239 Cox Jun 1998 A
5766710 Turnlund et al. Jun 1998 A
5769883 Buscemi et al. Jun 1998 A
5780807 Saunders Jul 1998 A
5800516 Fine et al. Sep 1998 A
5811447 Kunz et al. Sep 1998 A
5824049 Ragheb et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5830461 Billiar Nov 1998 A
5830879 Isner Nov 1998 A
5833651 Donovan et al. Nov 1998 A
5834582 Sinclair et al. Nov 1998 A
5836962 Gianotti Nov 1998 A
5837313 Ding et al. Nov 1998 A
5837835 Gryaznov et al. Nov 1998 A
5840083 Braach-Maksvytis Nov 1998 A
5851508 Greff et al. Dec 1998 A
5853408 Muni Dec 1998 A
5854207 Lee et al. Dec 1998 A
5855612 Ohthuki et al. Jan 1999 A
5855618 Patnaik et al. Jan 1999 A
5858746 Hubbell et al. Jan 1999 A
5865814 Tuch Feb 1999 A
5868781 Killion Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5874101 Zhong et al. Feb 1999 A
5874109 Ducheyne et al. Feb 1999 A
5874165 Drumheller Feb 1999 A
5876743 Ibsen et al. Mar 1999 A
5877263 Patnaik et al. Mar 1999 A
5879713 Roth et al. Mar 1999 A
5888533 Dunn Mar 1999 A
5891192 Murayama et al. Apr 1999 A
5891386 Deitermann et al. Apr 1999 A
5897955 Drumheller Apr 1999 A
5906759 Richter May 1999 A
5914182 Drumheller Jun 1999 A
5916870 Lee et al. Jun 1999 A
5922005 Richter et al. Jul 1999 A
5942209 Leavitt et al. Aug 1999 A
5948428 Lee et al. Sep 1999 A
5954744 Phan et al. Sep 1999 A
5957975 Lafont et al. Sep 1999 A
5965720 Gryaznov et al. Oct 1999 A
5971954 Conway et al. Oct 1999 A
5976182 Cox Nov 1999 A
5980564 Stinson Nov 1999 A
5980928 Terry Nov 1999 A
5980972 Ding Nov 1999 A
5981568 Kunz et al. Nov 1999 A
5986169 Gjunter Nov 1999 A
5997468 Wolff et al. Dec 1999 A
6010445 Armini et al. Jan 2000 A
6015541 Greff et al. Jan 2000 A
6042875 Ding et al. Mar 2000 A
6048964 Lee et al. Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6056993 Leidner et al. May 2000 A
6060451 DiMaio et al. May 2000 A
6066156 Yan May 2000 A
6071266 Kelley Jun 2000 A
6074659 Kunz et al. Jun 2000 A
6080177 Igaki et al. Jun 2000 A
6080488 Hostettler et al. Jun 2000 A
6083258 Yadav Jul 2000 A
6093463 Thakrar Jul 2000 A
6096070 Ragheb et al. Aug 2000 A
6096525 Patnaik Aug 2000 A
6099562 Ding et al. Aug 2000 A
6103230 Billiar et al. Aug 2000 A
6107416 Patnaik et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6113629 Ken Sep 2000 A
6117979 Hendriks et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6120904 Hostettler et al. Sep 2000 A
6121027 Clapper et al. Sep 2000 A
6125523 Brown et al. Oct 2000 A
6127173 Eckstein et al. Oct 2000 A
6129761 Hubbell Oct 2000 A
6129928 Sarangapani et al. Oct 2000 A
6150630 Perry et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
4776337 Palmaz Dec 2000 A
6159951 Karpeisky et al. Dec 2000 A
6160084 Langer et al. Dec 2000 A
6165212 Dereume et al. Dec 2000 A
6166130 Rhee et al. Dec 2000 A
6169170 Gryaznov et al. Jan 2001 B1
6171609 Kunz Jan 2001 B1
6174330 Stinson Jan 2001 B1
6177523 Reich et al. Jan 2001 B1
6183505 Mohn, Jr. et al. Feb 2001 B1
6187045 Fehring et al. Feb 2001 B1
6210715 Starling et al. Apr 2001 B1
6224626 Steinke May 2001 B1
6228845 Donovan et al. May 2001 B1
6240616 Yan Jun 2001 B1
6245076 Yan Jun 2001 B1
6245103 Stinson Jun 2001 B1
6248344 Ylanen et al. Jun 2001 B1
6251135 Stinson et al. Jun 2001 B1
6251142 Bernacca et al. Jun 2001 B1
6273913 Wright et al. Aug 2001 B1
6281262 Shikinami Aug 2001 B1
6284333 Wang et al. Sep 2001 B1
6287332 Bolz et al. Sep 2001 B1
6290721 Heath Sep 2001 B1
6293966 Frantzen Sep 2001 B1
6303901 Perry et al. Oct 2001 B1
6312459 Huang et al. Nov 2001 B1
6327772 Zadno-Azizi et al. Dec 2001 B1
4733665 Palmaz Jan 2002 C2
6375826 Wang et al. Apr 2002 B1
6379381 Hossainy et al. Apr 2002 B1
6387121 Alt May 2002 B1
6388043 Langer et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6409761 Jang Jun 2002 B1
6423092 Datta et al. Jul 2002 B2
6461632 Gogolewski Oct 2002 B1
6464720 Boatman et al. Oct 2002 B2
6479565 Stanley Nov 2002 B1
6485512 Cheng Nov 2002 B1
6492615 Flanagan Dec 2002 B1
6494908 Huxel et al. Dec 2002 B1
6495156 Wenz et al. Dec 2002 B2
6511748 Barrows Jan 2003 B1
6517888 Weber Feb 2003 B1
6521865 Jones et al. Feb 2003 B1
6527801 Dutta Mar 2003 B1
6537589 Chae et al. Mar 2003 B1
6539607 Fehring et al. Apr 2003 B1
6540777 Stenzel Apr 2003 B2
6554854 Flanagan Apr 2003 B1
6565599 Hong et al. May 2003 B1
6569191 Hogan May 2003 B1
6569193 Cox et al. May 2003 B1
6572672 Yadav et al. Jun 2003 B2
6572813 Zhang et al. Jun 2003 B1
6574851 Mirizzi Jun 2003 B1
6585755 Jackson et al. Jul 2003 B2
6592614 Lenker et al. Jul 2003 B2
6592617 Thompson Jul 2003 B2
6613072 Lau et al. Sep 2003 B2
6626939 Burnside et al. Sep 2003 B1
6635269 Jennissen Oct 2003 B1
6645243 Vallana et al. Nov 2003 B2
6645422 Jung et al. Nov 2003 B2
6656162 Santini, Jr. et al. Dec 2003 B2
6664335 Krishnan Dec 2003 B2
6666214 Canham Dec 2003 B2
6667049 Janas et al. Dec 2003 B2
6669723 Killion et al. Dec 2003 B2
6676697 Richter Jan 2004 B1
6679980 Andreacchi Jan 2004 B1
6689375 Wahlig et al. Feb 2004 B1
6695920 Pacetti et al. Feb 2004 B1
6706273 Roessler Mar 2004 B1
6709379 Brandau et al. Mar 2004 B1
6719934 Stinson Apr 2004 B2
6719989 Matsushima et al. Apr 2004 B1
6720402 Langer et al. Apr 2004 B2
6746773 Llanos et al. Jun 2004 B2
6752826 Holloway et al. Jun 2004 B2
6753007 Haggard et al. Jun 2004 B2
6764505 Hossainy et al. Jul 2004 B1
6818063 Kerrigan Nov 2004 B1
6846323 Yip et al. Jan 2005 B2
7066952 Igaki Jun 2006 B2
7070615 Igaki Jul 2006 B1
7083639 Guinan et al. Aug 2006 B2
7128868 Eidenschink Oct 2006 B2
7306585 Ross Dec 2007 B2
7381048 Brown et al. Jun 2008 B2
7476245 Abbate Jan 2009 B2
20010014821 Juman et al. Aug 2001 A1
20010044652 Moore Nov 2001 A1
20020002399 Huxel et al. Jan 2002 A1
20020004060 Heublein et al. Jan 2002 A1
20020004101 Ding et al. Jan 2002 A1
20020062148 Hart May 2002 A1
20020065553 Weber May 2002 A1
20020077592 Barry Jun 2002 A1
20020111590 Davila et al. Aug 2002 A1
20020116050 Kocur Aug 2002 A1
20020138133 Lenz et al. Sep 2002 A1
20020151965 Roth Oct 2002 A1
20020161114 Gunatillake et al. Oct 2002 A1
20030028241 Stinson Feb 2003 A1
20030028246 Palmaz et al. Feb 2003 A1
20030033001 Igaki Feb 2003 A1
20030055488 Igaki Mar 2003 A1
20030083732 Stinson May 2003 A1
20030093107 Parsonage et al. May 2003 A1
20030100865 Santini, Jr. et al. May 2003 A1
20030105518 Dutta Jun 2003 A1
20030105530 Pirhonen Jun 2003 A1
20030171053 Sanders Sep 2003 A1
20030187158 Preuschen et al. Oct 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030208254 Shortt Nov 2003 A1
20030208259 Penhasi Nov 2003 A1
20030209835 Chun et al. Nov 2003 A1
20030226833 Shapovalov et al. Dec 2003 A1
20030236563 Fifer Dec 2003 A1
20040000361 Trozera Jan 2004 A1
20040093077 White et al. May 2004 A1
20040098090 Williams et al. May 2004 A1
20040098095 Burnside et al. May 2004 A1
20040111149 Stinson Jun 2004 A1
20040127970 Saunders et al. Jul 2004 A1
20040143317 Stinson et al. Jul 2004 A1
20040167610 Fleming, III Aug 2004 A1
20040191404 Hossainy et al. Sep 2004 A1
20040199242 Hong et al. Oct 2004 A1
20050004663 Llanos et al. Jan 2005 A1
20050033412 Wu et al. Feb 2005 A1
20050137678 Varma Jun 2005 A1
20050177130 Konstantino et al. Aug 2005 A1
20050187615 Williams et al. Aug 2005 A1
20050196485 Cass et al. Sep 2005 A1
20060020330 Huang et al. Jan 2006 A1
20060076708 Huang et al. Apr 2006 A1
20060211952 Kennedy, II Sep 2006 A1
20060224226 Huang et al. Oct 2006 A1
20070253996 Bin et al. Nov 2007 A1
20070253999 Huang et al. Nov 2007 A1
20070282433 Limon et al. Dec 2007 A1
20070290412 Capek et al. Dec 2007 A1
20070293938 Gale et al. Dec 2007 A1
20090001633 Limon et al. Jan 2009 A1
20090005860 Huang et al. Jan 2009 A1
20090012598 Abbate et al. Jan 2009 A1
20090146348 Huang et al. Jun 2009 A1
Foreign Referenced Citations (45)
Number Date Country
44 07 079 Sep 1994 DE
197 31 021 Jan 1999 DE
198 56 983 Dec 1999 DE
0 108 171 May 1984 EP
0 144 534 Jun 1985 EP
0 364 787 Apr 1990 EP
0 397 500 Nov 1990 EP
0 464 755 Jan 1992 EP
0 493 788 Jul 1992 EP
0 554 082 Aug 1993 EP
0 578 998 Jan 1994 EP
0 583 170 Feb 1994 EP
0 604 022 Jun 1994 EP
0 621 017 Oct 1994 EP
0 623 354 Nov 1994 EP
0 665 023 Aug 1995 EP
0 709 068 May 1996 EP
0 970 711 Jan 2000 EP
1 800 628 Jun 2007 EP
2 102 827 Feb 1983 GB
2 247 696 Mar 1992 GB
WO 8903232 Apr 1989 WO
WO 9001969 Mar 1990 WO
WO 9004982 May 1990 WO
WO 9006094 Jun 1990 WO
WO 9117744 Nov 1991 WO
WO 9117789 Nov 1991 WO
WO 9210218 Jun 1992 WO
WO 9306792 Apr 1993 WO
WO 9421196 Sep 1994 WO
WO 9529647 Nov 1995 WO
WO 9732546 Sep 1997 WO
WO 9804415 Feb 1998 WO
WO 9903515 Jan 1999 WO
WO 9916386 Apr 1999 WO
WO 9942147 Aug 1999 WO
WO 0012147 Mar 2000 WO
WO 0012147 Mar 2000 WO
WO 0064506 Nov 2000 WO
WO 0101890 Jan 2001 WO
WO 0115633 Mar 2001 WO
WO 03034940 May 2003 WO
WO 2004023985 Mar 2004 WO
WO 2004067262 Aug 2004 WO
WO 2006014747 Feb 2006 WO
Related Publications (1)
Number Date Country
20080001333 A1 Jan 2008 US