The invention relates to a method of fabricating fibres composed of silicon or a silicon-based material and their use the active anode material in rechargeable lithium battery cells.
It is well known that silicon can be used as the active anode material of a rechargeable lithium-ion electrochemical cell (see, for example, Insertion Electrode Materials for Rechargeable Lithium Batteries, M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak in Adv. Mater. 1998, 10, No. 10). The basic composition of a conventional lithium-ion rechargeable battery cell is shown in
The battery cell generally comprises a copper current collector for the anode 10 and an aluminium current collector for the cathode 12 which are externally connectable to a load or to a recharging source as appropriate. A graphite-based composite anode layer 14 overlays the current collector 10 and a lithium containing metal oxide-based composite cathode layer 16 overlays the current collector 12. A porous plastic spacer or separator 20 is provided between the graphite-based composite anode layer 14 and the lithium containing metal oxide-based composite cathode layer 16 and a liquid electrolyte material is dispersed within porous plastic spacer or separator 20, the composite anode layer 14 and the composite cathode layer 16. In some cases, the porous plastic spacer or separator 20 may be replaced by a polymer electrolyte material and in such cases the polymer electrolyte material is present within both the composite anode layer 14 and the composite cathode layer 16.
When the battery cell is fully charged, lithium has been transported from the lithium containing metal oxide via the electrolyte into the graphite-based layer where it reacts with the graphite to create the compound, LiC6. The graphite, being the electrochemically active material in the composite anode layer, has a maximum capacity of 372 mAh/g. It will be noted that the terms “anode” and “cathode” are used in the sense that the battery is placed across a load.
It is generally believed that silicon, when used as an active anode material in a lithium-ion rechargeable cell, provides a significantly higher capacity than the currently used graphite. Silicon when converted to the compound Li21 Si5 by reaction with lithium in an electrochemical cell, has a capacity of 4,200 mAh/g.
Existing approaches of using a silicon or silicon-based active anode material in a lithium-ion electrochemical cell have failed to show sustained capacity over the required number of charge/discharge cycles and are thus not commercially viable.
One approach uses silicon in the form of a powder, in some instances made into a composite with optionally an electronic additive and containing an appropriate binder such as polyvinylidene difluoride coated onto a copper current collector. However, this electrode fails to show sustained capacity when subjected to charge/discharge cycles. It is believed that this capacity loss is due to partial mechanical isolation of the silicon powder mass arising from the volumetric expansion/contraction associated with lithium insertion/extraction into and from the host silicon. In turn this gives rise to agglomeration of the powder mass in electrically isolated “islands”.
In another approach described by Ohara et al. in Journal of Power Sources 136 (2004) 303-306 silicon is evaporated onto a nickel foil current collector as a thin film and this structure is then used to form the anode of a lithium-ion cell. However, although this approach gives good capacity retention, this is only the case for very thin films and thus these structures do not give usable amounts of capacity per unit area and increasing the film thickness to give usable amounts of capacity per unit area causes the good capacity retention to be eliminated.
In another approach described in U.S. 2004/0126659 silicon is evaporated onto nickel fibres which are then used to form the anode of a lithium battery. However this is found to provide an uneven distribution of silicon on the nickel fibres hence significantly affecting operation.
In another approach described in U.S. Pat. No. 6,887,511, silicon is evaporated onto a roughened copper substrate to create medium-thickness films of up to 10 μm. During the initial lithium ion insertion process, the silicon film breaks up to form pillars of silicon. These pillars can then reversibly react with lithium ions and good capacity retention is achieved. However, the process does not function well with thicker film and the creation of the medium-thickness film is an expensive process. Furthermore the pillared structure caused by the break up of the film has no inherent porosity such that issues may arise with long term capacity retention.
The invention is set out in the claims. Because the anode electrode structure uses fibres of silicon or silicon-based material, the problems of reversibly reacting these silicon or silicon-based fibres with lithium are overcome. In particular by arranging the fibres in a composite structure, that is a mixture of fibres a polymer binder and an electronic additive, the charge/discharge process becomes reversible and repeatable and good capacity retention is achieved. In addition the manner in which the fibres are laid can provide advantages. By providing a dis-ordered non-woven mat of fibres, a fully reversible and repeatable charging capability is introduced without risk of significant mechanical isolation. For example the fibres may be deposited as a felt or felt-like structure. In the case of a composite structure this can be with the additional components, or the felt can be with a simple binder or, where structurally appropriate, loose.
Furthermore, a simplified method of fabricating fibres is provided comprising etching a substrate to produce pillars and detaching the pillars providing a robust and high-yield approach.
Embodiments of the invention will now be described, by way of example, with reference to the figures, of which:
In overview the invention allows creation of fibres or hairs of silicon or silicon-based material and the use of these fibres to create both a composite anode structure with a polymer binder, an electronic additive (if required) and a metal foil current collector and a felt-like electrode structure. In particular it is believed that the structure of the silicon elements that make up the composite overcomes the problem of charge/discharge capacity loss.
By laying down the fibres in a composite or felt or a felt-like structure, that is a plurality of elongate or long thin fibres which crossover to provide multiple intersections, for example by being laid down in a random or disordered or indeed ordered manner, the problem of charge/discharge capacity loss is reduced.
Typically the fibres will have a length to diameter ratio of approximately 100:1 and hence in an anode layer such as a composite anode layer, each fibre will contact other fibres many times along their length giving rise to a configuration where the chance of mechanical isolation arising from broken silicon contacts is negligible. Also, the insertion and removal of lithium into the fibres, although causing volume expansion and volume contraction, does not cause the fibres to be destroyed and hence the intra-fibre electronic conductivity is preserved.
The fibres may be manufactured by detaching pillars from a substrate. In addition the manner of fabrication of the pillars may be provided by a simple repeatable chemical process.
One manner in which the pillars can be made is by dry etching, for example deep reactive ion etching of the type, for example, described in U.S. patent application Ser. No. 10/049,736 which is commonly assigned herewith and incorporated herein by reference. The skilled person will be familiar with the process such that detailed description is not required here. Briefly, however, a silicon substrate coated in native oxide is etched and washed so as to give a hydrophilic surface. Caesium chloride (CsCl) is evaporated on the surface and the coated substrate is transferred under dry conditions to a chamber of fixed water vapour pressure. A thin film of CsCl develops into an island array of hemispheres whose dimensional characteristics depend on initial thickness, water vapour pressure and time of development. The island array provides an effective mask after which etching is carried out for example by reactive ion etching leaving an array of pillars corresponding to the hemispherical islands. The CsCl resist layer is highly soluble in water and can be readily washed away.
Alternatively the pillars can be made by wet etching/using a chemical galvanic exchange method for example as described in our co-pending application GB 0601318.9 with common assignees and entitled “Method of etching a silicon-based material”, incorporated herewith by reference. A related method which may also be used has been disclosed in Peng K-Q, Yan, Y-J Gao, S-P, Zhu J., Adv. Materials, 14 (2004), 1164-1167 (“Peng”); K. Peng et al, Angew. Chem. Int. Ed., 44 2737-2742; and K. Peng et al., Adv. Funct. Mater., 16 (2006), 387-394.
In the preferred embodiment pillars of for example 100 microns in length and 0.2 microns in diameter are fabricated on and from a silicon substrate. More generally pillars of length in the range of 20 to 300 microns and diameter or largest transverse dimension in the range of 0.08 to 0.5 microns may be used to provide the fibres. According to the process the silicon substrate may be n- or p-type and, according to the chemical approach, and may be etched on any exposed (100) or (110) crystal face. Since the etching proceeds along crystal planes, the resulting fibres are single crystals. Because of this structural feature, the fibres will be substantially straight facilitating length to diameter ratio of approximately 100:1 (aspect ratio) and, when in a composite anode layer, allowing each fibre to contact other fibre many times along their length. The etching process can also be carried out either o very large scale integration (VLSI) electronic grade wafers or rejected samples of the same (single crystal wafers). As a cheaper alternative, photovoltaic grade polycrystalline material, as used for solar panels, may also be used.
In order to detach the pillars to obtain the fibres, the substrate, with pillars attached, is placed in a beaker or any appropriate container, covered in an inert liquid such as ethanol and subjected to ultra-sonic agitation. It is found that within several minutes the liquid is seen to be turbid and it can be seen by electron microscope examination that at this stage the pillars have been removed from their silicon base.
It will be appreciated that alternative methods for “harvesting” the pillars include scraping the substrate surface to detach them or detaching them chemically. One chemical approach appropriate to n-type silicon material comprises etching the substrate in an HF solution in the presence of backside illumination of the silicon wafer.
Once the silicon pillars have been detached they can be used as the active material in a composite anode for lithium-ion electrochemical cells. To fabricate a composite anode, the harvested silicon is filtered from solution and can be mixed with polyvinylidene difluoride and made into a slurry with a casting solvent such as n-methyl pyrrolidinone. This slurry can then be applied or coated onto a metal plate or metal foil or other conducting substrate for example physically with a blade or in any other appropriate manner to yield a coated film of the required thickness and the casting solvent is then evaporated from this film using an appropriate drying system which may employ elevated temperatures in the range of 50 degrees C. to 140 degrees C. to leave the composite film free or substantially from casting solvent. The resulting mat or composite film has a porous and/or felt-like structure in which the mass of silicon fibres is typically between 70 percent and 95 percent. The composite film will have a percentage pore volume of 10-30 percent, preferably about 20 percent.
An SEM of a composite electrode structure obtain d by the method set out above is shown in
Fabrication of the lithium-ion battery cell thereafter can be carried out in any appropriate manner for example following the general structure shown in
Please see the following examples:
0.0140 g of silicon fibres were weighed out into a 2 cm2 Eppendorf centrifuge tube, and 0.0167 g of Super P conductive carbon was added. N-methyl pyrrolidinone (NMP) was then pipetted into the tube, until all the materials were dispersed (0.92 g). Previously, PVDF had been dissolved in NMP, at 7.8 wt % PVDF. A quantity of this solution was added to the tube, containing 0.0074 g of PVDF. The mix composition was thus Si:PVDF:Super P=85.3:4.5:10.1 wt %.
The tube was placed in an ultrasonic bath for one hour, to homogenise the mixture, and then stirred for a further hour. The slurry was then coated onto 14 μm copper foil, using a doctor blade with a blade gap of 0.8 mm. The coating was then dried in an oven at 100° C. for one hour, to evaporate the NMP solvent. After drying, the thickness of the coated layer was 30-40 μm.
The coating was lightly rolled, and then electrode disks were cut out with a diameter of 12 mm. These were assembled into electrochemical cells in an argon filled glove box. The counter electrode and reference electrode were both lithium metal. The electrolyte was LiPF6 in a mixture of organic carbonates. The cell was tested on a VMP3 device. After a thirty minute soak, the cell was held at −0.1 mA for one hour, and then at −0.2 mA until the required lithiation capacity was achieved. The electrode was then delithiated at +0.2 mA, up to a voltage of 1.0 V vs. Li/Li+.
A particular advantage of the approach described herein is that large sheets of silicon-based anode can be fabricated, rolled if necessary, and then slit or stamped out subsequently as is currently the case in graphite-based anodes for lithium-ion battery cells meaning that the approach described herein can be retrofitted with the existing manufacturing capability.
A further advantage of the arrangement described herein is that the structural strength in fact increases with each recharging operation. This is because the fibres are found to “weld” to one another as a result of the disrupted crystalline structure at the fibre junctions creating an amorphous structure. This in turn reduces the risk of capacity loss over multiple cycles as there is less risk of mechanical isolation of the fibres once the fibres become connected in the manner described above.
It will be appreciated, of course, that any appropriate approach can be adopted in order to arrive at the approaches and apparatus described above. For example the pillar detaching operation can comprise any of a shaking, scraping, chemical or other operation as long as pillars are removed from the substrate to create fibres. Reference to silicon-based material includes silicon where appropriate. The fibres can have any appropriate dimension and can for example be pure silicon or doped silicon or other silicon-based material such as a silicon-germanium mixture or any other appropriate mixture. The substrate from which pillars are created may be n- or p-type, ranging from 100 to 0.001 Ohm cm, or it may be a suitable alloy of silicon, for example SixGe1-x. The fibres can be used for any appropriate purpose such as fabrication of electrodes generally including cathodes. The cathode material can be of any appropriate material, typically a lithium-based metal oxide or phosphate material such as LiCoO2, LiMnxNixCo1-2xO2 or LiFePO4. The features of different embodiments can be interchanged or juxtaposed as appropriate and the method steps performed in any appropriate order.
Number | Date | Country | Kind |
---|---|---|---|
0601319.7 | Jan 2006 | GB | national |
This application is a continuation of U.S. Ser. No. 12/161,126 which was filed on Feb. 25, 2010 now U.S. Pat. No. 8,101,298. That application, in turn, was the entry into the national phase in the United States of International Application No. PCT/GB2007/000211 which was filed on Jan. 23, 2007. The International Application claims priority to British Application No. 0601319.7 which was filed on Jan. 23, 2006.
Number | Name | Date | Kind |
---|---|---|---|
3351445 | Fielder et al. | Nov 1967 | A |
4002541 | Streander | Jan 1977 | A |
4436796 | Huggins et al. | Mar 1984 | A |
4950566 | Huggins et al. | Aug 1990 | A |
5260148 | Idota | Nov 1993 | A |
5262021 | Lehmann et al. | Nov 1993 | A |
5660948 | Barker | Aug 1997 | A |
5907899 | Dahn et al. | Jun 1999 | A |
5980722 | Kuroda et al. | Nov 1999 | A |
6022640 | Takada et al. | Feb 2000 | A |
6042969 | Yamada et al. | Mar 2000 | A |
6063995 | Bohland et al. | May 2000 | A |
6235427 | Idota et al. | May 2001 | B1 |
6296969 | Yano et al. | Oct 2001 | B1 |
6334939 | Zhou et al. | Jan 2002 | B1 |
6337156 | Narang et al. | Jan 2002 | B1 |
6353317 | Green et al. | Mar 2002 | B1 |
6399177 | Fonash et al. | Jun 2002 | B1 |
6399246 | Vandayburg et al. | Jun 2002 | B1 |
6589696 | Matsubara et al. | Jul 2003 | B2 |
6605386 | Kasamatsu et al. | Aug 2003 | B1 |
6620547 | Sung et al. | Sep 2003 | B1 |
6887511 | Shima et al. | May 2005 | B1 |
6916679 | Snyder et al. | Jul 2005 | B2 |
7033936 | Green | Apr 2006 | B1 |
7051945 | Empedocles et al. | May 2006 | B2 |
7070632 | Visco et al. | Jul 2006 | B1 |
7094499 | Hung | Aug 2006 | B1 |
7147894 | Zhou et al. | Dec 2006 | B2 |
7192673 | Ikeda et al. | Mar 2007 | B1 |
7311999 | Kawase et al. | Dec 2007 | B2 |
7318982 | Gozdz et al. | Jan 2008 | B2 |
7348102 | Li et al. | Mar 2008 | B2 |
7358011 | Fukuoka et al. | Apr 2008 | B2 |
7378041 | Asao et al. | May 2008 | B2 |
7425285 | Asao et al. | Sep 2008 | B2 |
7476469 | Ota et al. | Jan 2009 | B2 |
7569202 | Farrell et al. | Aug 2009 | B2 |
7659034 | Minami et al. | Feb 2010 | B2 |
7674552 | Nakai et al. | Mar 2010 | B2 |
7767346 | Kim et al. | Aug 2010 | B2 |
7862933 | Okumura et al. | Jan 2011 | B2 |
8034485 | Dehn et al. | Oct 2011 | B2 |
20010023986 | Mancevski | Sep 2001 | A1 |
20020121460 | Moy et al. | Sep 2002 | A1 |
20020148727 | Zhou et al. | Oct 2002 | A1 |
20030135989 | Huggins et al. | Jul 2003 | A1 |
20040072067 | Minami et al. | Apr 2004 | A1 |
20040126659 | Graetz et al. | Jul 2004 | A1 |
20040151987 | Kawase et al. | Aug 2004 | A1 |
20040185346 | Takeuchi et al. | Sep 2004 | A1 |
20040197660 | Sheem et al. | Oct 2004 | A1 |
20040214085 | Sheem et al. | Oct 2004 | A1 |
20040224231 | Fujimoto et al. | Nov 2004 | A1 |
20040241548 | Nakamoto et al. | Dec 2004 | A1 |
20050042515 | Hwang et al. | Feb 2005 | A1 |
20050079414 | Yamamoto et al. | Apr 2005 | A1 |
20050079420 | Cho et al. | Apr 2005 | A1 |
20050118503 | Honda et al. | Jun 2005 | A1 |
20050191550 | Satoh et al. | Sep 2005 | A1 |
20050193800 | DeBoer et al. | Sep 2005 | A1 |
20050214644 | Aramata et al. | Sep 2005 | A1 |
20060003226 | Sawa et al. | Jan 2006 | A1 |
20060019115 | Wang et al. | Jan 2006 | A1 |
20060019168 | Li et al. | Jan 2006 | A1 |
20060024582 | Li et al. | Feb 2006 | A1 |
20060051670 | Aramata et al. | Mar 2006 | A1 |
20060057463 | Gao et al. | Mar 2006 | A1 |
20060088767 | Li et al. | Apr 2006 | A1 |
20060097691 | Green | May 2006 | A1 |
20060134516 | Im et al. | Jun 2006 | A1 |
20060134518 | Kogetsu et al. | Jun 2006 | A1 |
20060147800 | Sato et al. | Jul 2006 | A1 |
20060154071 | Homma et al. | Jul 2006 | A1 |
20060166093 | Zaghib et al. | Jul 2006 | A1 |
20060175704 | Shimizu et al. | Aug 2006 | A1 |
20060257307 | Yang | Nov 2006 | A1 |
20060263687 | Leitner et al. | Nov 2006 | A1 |
20060275663 | Matsuno et al. | Dec 2006 | A1 |
20060275668 | Peres et al. | Dec 2006 | A1 |
20060286448 | Snyder et al. | Dec 2006 | A1 |
20070026313 | Sano | Feb 2007 | A1 |
20070031733 | Kogetsu et al. | Feb 2007 | A1 |
20070037063 | Choi et al. | Feb 2007 | A1 |
20070048609 | Yeda et al. | Mar 2007 | A1 |
20070059598 | Yang | Mar 2007 | A1 |
20070065720 | Hasegawa et al. | Mar 2007 | A1 |
20070072074 | Yamamoto et al. | Mar 2007 | A1 |
20070087268 | Kim et al. | Apr 2007 | A1 |
20070099084 | Huang et al. | May 2007 | A1 |
20070099085 | Choi et al. | May 2007 | A1 |
20070105017 | Kawase et al. | May 2007 | A1 |
20070117018 | Huggins | May 2007 | A1 |
20070122702 | Sung et al. | May 2007 | A1 |
20070148544 | Le | Jun 2007 | A1 |
20070172732 | Jung et al. | Jul 2007 | A1 |
20070184345 | Neudecker et al. | Aug 2007 | A1 |
20070190413 | Lee et al. | Aug 2007 | A1 |
20070202395 | Snyder et al. | Aug 2007 | A1 |
20070202402 | Asahina et al. | Aug 2007 | A1 |
20070207080 | Yang | Sep 2007 | A1 |
20070207385 | Liu et al. | Sep 2007 | A1 |
20070209584 | Kalynushkin et al. | Sep 2007 | A1 |
20070212538 | Niu | Sep 2007 | A1 |
20070218366 | Kalynushkin et al. | Sep 2007 | A1 |
20070224508 | Aramata et al. | Sep 2007 | A1 |
20070224513 | Kalynushkin et al. | Sep 2007 | A1 |
20070238021 | Liu et al. | Oct 2007 | A1 |
20070243469 | Kim et al. | Oct 2007 | A1 |
20070264564 | Johnson et al. | Nov 2007 | A1 |
20070264574 | Kim et al. | Nov 2007 | A1 |
20070269718 | Krause et al. | Nov 2007 | A1 |
20070277370 | Kalynushkin et al. | Dec 2007 | A1 |
20080003496 | Neudecker et al. | Jan 2008 | A1 |
20080003503 | Kawakami et al. | Jan 2008 | A1 |
20080020281 | Kogetsu et al. | Jan 2008 | A1 |
20080038638 | Zhang et al. | Feb 2008 | A1 |
20080090149 | Sano et al. | Apr 2008 | A1 |
20080096110 | Bito et al. | Apr 2008 | A1 |
20080107967 | Liu et al. | May 2008 | A1 |
20080113271 | Ueda et al. | May 2008 | A1 |
20080118834 | Yew et al. | May 2008 | A1 |
20080124631 | Fukui et al. | May 2008 | A1 |
20080131782 | Hagiwara et al. | Jun 2008 | A1 |
20080138710 | Liaw et al. | Jun 2008 | A1 |
20080138716 | Iwama et al. | Jun 2008 | A1 |
20080145752 | Hirose et al. | Jun 2008 | A1 |
20080145759 | Sung et al. | Jun 2008 | A1 |
20080160415 | Wakita et al. | Jul 2008 | A1 |
20080176139 | White et al. | Jul 2008 | A1 |
20080206631 | Christensen et al. | Aug 2008 | A1 |
20080206641 | Christensen et al. | Aug 2008 | A1 |
20080233479 | Sung et al. | Sep 2008 | A1 |
20080233480 | Sung et al. | Sep 2008 | A1 |
20080241647 | Fukui et al. | Oct 2008 | A1 |
20080241703 | Yamamoto et al. | Oct 2008 | A1 |
20080248250 | Flemming et al. | Oct 2008 | A1 |
20080261112 | Nagata et al. | Oct 2008 | A1 |
20080305391 | Hirose et al. | Dec 2008 | A1 |
20090053589 | Obrovac et al. | Feb 2009 | A1 |
20090078982 | Rachmady et al. | Mar 2009 | A1 |
20090087731 | Fukui et al. | Apr 2009 | A1 |
20090101865 | Matsubara et al. | Apr 2009 | A1 |
20090117466 | Zhamu et al. | May 2009 | A1 |
20090166319 | Courboin et al. | Jul 2009 | A1 |
20090186267 | Tiegs | Jul 2009 | A1 |
20090239151 | Nakanishi et al. | Sep 2009 | A1 |
20090253033 | Hirose et al. | Oct 2009 | A1 |
20090269677 | Hirose et al. | Oct 2009 | A1 |
20090305129 | Fukui et al. | Dec 2009 | A1 |
20100085685 | Pinwill | Apr 2010 | A1 |
20100092868 | Kim et al. | Apr 2010 | A1 |
20100124707 | Hirose et al. | May 2010 | A1 |
20100136437 | Nishida et al. | Jun 2010 | A1 |
20100285358 | Cui et al. | Nov 2010 | A1 |
20100297502 | Zhu et al. | Nov 2010 | A1 |
20100330419 | Cui et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
101442124 | May 2009 | CN |
199 22 257 | Nov 2000 | DE |
103 47 570 | May 2005 | DE |
0 281 115 | Sep 1988 | EP |
0 553 465 | Aug 1993 | EP |
0 820 110 | Jan 1998 | EP |
1 011 160 | Jun 2000 | EP |
1011160 | Jun 2000 | EP |
0 936 687 | Dec 2001 | EP |
1 231 653 | Aug 2002 | EP |
1 231 654 | Aug 2002 | EP |
1 258 937 | Nov 2002 | EP |
1 083 614 | May 2003 | EP |
1 313 158 | May 2003 | EP |
1 335 438 | Aug 2003 | EP |
1 289 045 | Mar 2006 | EP |
1 657 769 | May 2006 | EP |
1 850 409 | Oct 2007 | EP |
1 771 899 | Feb 2008 | EP |
1 657 768 | May 2008 | EP |
2 058 882 | May 2009 | EP |
2 204 868 | Jul 2010 | EP |
2 885 913 | Aug 2007 | FR |
0 980 513 | Jan 1965 | GB |
1 014 706 | Dec 1965 | GB |
2 395 059 | May 2004 | GB |
2 464 157 | Jan 2010 | GB |
2 464 158 | Apr 2010 | GB |
02-209492 | Aug 1990 | JP |
06-283156 | Oct 1994 | JP |
10-046366 | Feb 1998 | JP |
10-083817 | Mar 1998 | JP |
10-199524 | Jul 1998 | JP |
2000-003727 | Jan 2000 | JP |
2000-173594 | Jun 2000 | JP |
2000-348730 | Dec 2000 | JP |
2001-291514 | Oct 2001 | JP |
2002-279974 | Sep 2002 | JP |
2002-313319 | Oct 2002 | JP |
2003-017040 | Jan 2003 | JP |
2003-168426 | Jun 2003 | JP |
04-607488 | Feb 2004 | JP |
2004-071305 | Mar 2004 | JP |
2004-095264 | Mar 2004 | JP |
2004-214054 | Jul 2004 | JP |
2004-281317 | Oct 2004 | JP |
2004-296386 | Oct 2004 | JP |
2004-533699 | Nov 2004 | JP |
2005-310759 | Nov 2005 | JP |
2006-505901 | Feb 2006 | JP |
2006-276214 | Oct 2006 | JP |
2006-290938 | Oct 2006 | JP |
2006-335410 | Dec 2006 | JP |
2007-165079 | Jun 2007 | JP |
2008-034266 | Feb 2008 | JP |
2008-186732 | Aug 2008 | JP |
2008-234988 | Oct 2008 | JP |
2009-252348 | Oct 2009 | JP |
2007-023141 | Feb 2007 | KR |
2007-0110569 | Nov 2007 | KR |
2008-038806 | May 2008 | KR |
1015956 | Aug 2000 | NL |
471402 | May 1975 | SU |
544019 | Jan 1977 | SU |
WO 9933129 | Jul 1999 | WO |
WO 0113414 | Feb 2001 | WO |
WO 0135473 | May 2001 | WO |
WO 0196847 | Dec 2001 | WO |
WO 0225356 | Mar 2002 | WO |
WO 0247185 | Jun 2002 | WO |
WO 03063271 | Jul 2003 | WO |
WO 03075372 | Sep 2003 | WO |
WO 2004042851 | May 2004 | WO |
WO 2004052489 | Jun 2004 | WO |
WO 2004083490 | Sep 2004 | WO |
WO 2005011030 | Feb 2005 | WO |
WO 2005113467 | Dec 2005 | WO |
WO 2005119753 | Dec 2005 | WO |
WO 2006067891 | Jun 2006 | WO |
WO 2006073427 | Jul 2006 | WO |
WO 2006120332 | Nov 2006 | WO |
WO 2007044315 | Apr 2007 | WO |
WO 2007083152 | Jul 2007 | WO |
WO 2007083155 | Jul 2007 | WO |
WO 2007114168 | Oct 2007 | WO |
WO 2007136164 | Nov 2007 | WO |
WO 2008029888 | Mar 2008 | WO |
WO 2008044683 | Apr 2008 | WO |
WO 2008072460 | Jun 2008 | WO |
WO 2008097723 | Aug 2008 | WO |
WO 2008139157 | Nov 2008 | WO |
WO 2009010757 | Jan 2009 | WO |
WO 2009010758 | Jan 2009 | WO |
WO 2009010759 | Jan 2009 | WO |
WO 2009026466 | Feb 2009 | WO |
WO 2009120404 | Oct 2009 | WO |
WO 2009128800 | Oct 2009 | WO |
WO 2010040985 | Apr 2010 | WO |
WO 2010040986 | Apr 2010 | WO |
WO 2010060348 | Jun 2010 | WO |
WO 2010130975 | Nov 2010 | WO |
WO 2010130976 | Nov 2010 | WO |
Entry |
---|
Qiu, From Si nanotubes to nanowires: Synthesis, characterization, and self-assembly, Mar. 7, 2005, Journal of Crystal Growth, 277, 143-148. |
Peng, Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles, 2006, Advanced Functional Materials, 16, 387-394. |
Badel et al., “Formation of Ordered Pore Arrays at the Nanoscale by Electrochemical Etching of N-Type Silicon”, Superlattices and Microstructures, 36 (2004) 245-253. |
Barraclough et al., “Cold Compaction of Silicon Powders Without a Binding Agent”, Materials Letters 61 (2007) 485-487. |
Beaulieu et al., “Colossal Reversible Volume Changes in Lithium Alloys”, Electrochemical and Solid-State Letters, 4 (9) (2001) A137-A140. |
Beaulieu et al., “Reaction of Li with Grain-Boundary Atoms in Nanostructured Compounds”, Journal of The Electrochemical Society, 147 (9) (2000) 3206-3212. |
Besenhard et al., “Will Advanced Lithium-Alloy Anodes Have a Chance in Lithium-Ion Batteries?”, Journal of Power Sources, 68 (1997) 87-90. |
Boukamp et al., “All-Solid Lithium Electrodes with Mixed-Conductor Matrix”, J. Electrochem. Soc.: Electrochemical Science and Technology, vol. 128, No. 4, (1981) 725-729. |
Bourderau, et al., “Amorphous Silicon as a Possible Anode Material for Li-Ion Batteries”, Journal of Power Sources, 81-82 (1999) 233-236. |
Canham, L. T., “Diffusion of Li IN Si”, Properties of Silicon, EMIS Datareviews Series No. 4 (1987) 454-462. |
Chan et al., “Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-Ion Battery Anodes”, Journal of Power Sources, 189(2), 1132-1140, (2009). |
Chang et al., “Ultrafast Growth of Single-Crystalline Si Nanowires”, Materials Letters, 60 (2006) 2125-2128. |
Chen et al., Binder Effect on Cycling Performance of Silicon/Carbon Composite Anodes for Lithium Ion Batteries, 36 (2006) 1099-1104. |
Chen et al., “Effect of Vinylene Carbonate (VC) as Electrolyte Additive on Electrochemical Performance of Si Film Anode for Lithium Ion Batteries”, Journal of Power Sources, 174(2), 538-543, (2007). |
Chen et al., “Selective Etching of Silicon in Aqueous Ammonia Solution”, Sensors and Actuators, A 49 (1995) 115-121. |
Chevrier et al., “Methods for Successful Cycling of Alloy Negative Electrodes in Li-Ion Cells”, 220th ECS Meeting, Abstract #1237 (2011). |
Choi et al., “Effect of Fluoroethylene Carbonate Additive on Interfacial Properties of Silicon Thin-Film Electrode”, Journal of Power Sources, 161(2), 1254-1259 (2006). |
Colinge, Jean-Pierre, “Silicon-on-Insulator Technology: Materials to VLSI”, Chapter 2, SOI Materials, (1991), Cover page and p. 38. |
Deal et al., “General Relationship for the Thermal Oxidation of Silicon”, Journal of Applied Physics, vol. 36, No. 12, (Dec. 1965) 3770-3778. |
El Ouatani et al., “The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries”, J. Electrochem. Soc., 156(2), A103-A113 (2009). |
Feng et al., “Lithography-Free Silicon Micro-Pillars as Catalyst Supports for Microfabricated Fuel Cell Applications”, Electrochemistry Communications, 8 (2006) 1235-1238. |
Green et al., “Mesoscopic Hemisphere Arrays for use as Resist in Solid State Structure Fabrication”, J. Vac. Sci. Technol. B 17(5) (1999) 2074-2083. |
Green et al., “Quantum Pillar Structures on n+ Gallium Arsenide Fabricated Using “Natural” Lithography”, Appl. Phys. Lett., 62 (3) (1993) 264-266. |
Green et al., “Structured Silicon Anodes for Lithium Battery Applications”, Electrochemical and Solid-State Letters, 6 (5) (2003) A75-A79. |
Han et al., “Neutralized Poly (Acrylic Acid) as Polymer Binder for High Capacity Silicon Negative Electrodes”, 220th ECS Meeting, Abstract #1250 (2011). |
Heinze et al., “Viscosity Behaviour of Multivalent Metal Ion-Containing Carboxymethyl Cellulose Solutions”, Die Angewandte Makromolekulare Chamie 220, 123-132, (Nr. 3848), (1994). |
Hochgatterer et al., “Silicon/Graphite Composite Electrodes for High Capacity Anodes: Influence of Binder Chemistry on Cycling Stability”, Electrochemical and Solid-State Letters, 11 (5) (2008) A76-A80. |
Huggins, Robert A., “Lithium Alloy Anodes” in Handbook of Battery Materials, J.O. Besenhard Ed., Wiley-VCH, Weinheim, 361-381 (1999). |
Ivanovskaya et al., “The Effect of Treatment of Cation-Selective Glass Electrodes With AgNO3 Solution on Electrode Properties”, Sensors and Actuators B 24-25 (1995) 304-308. |
Jianfeng et al., “Large-Scale Array of Highly Oriented Silicon-Rich Micro/Nanowires Induced by Gas Flow Steering”, Solid State Communications, 133 (2005) 271-275. |
Kasavajjula et al., “Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells”, Journal of Power Sources, 163 (2007) 1003-1039. |
Key to Metal Aluminum-Silicon Alloys, www.keytometals.com/Article80. |
Kim et al., “(110) Silicon Etching for High Aspect Ratio Comb Structures”, 1997 6th International Conference on Emerging Technologies and Factory Automation Proceedings, (1997) 248-252. |
Kim et al., “Improvement of Silicon Powder Negative Electrodes by Copper Electroless Deposition for Lithium Secondary Batteries”, Journal of Power Sources, 147 (2005) 227-233. |
Kleimann et al., “Formation of Wide and Deep Pores in Silicon by Electrochemical Etching”, Materials Science and Engineering, B69-70 (2000) 29-33. |
Kolasinski, Kurt W., “Silicon Nanostructures from Electroless Electrochemical Etching”, Current Opinion in Solid State and Materials Science, 9 (2005) 73-83. |
Komba et al., “Functional Interface of Polymer Modified Graphite Anode”, Journal of Power Sources, 189, (2009), 197-203. |
Komba et al., “Polyacrylate as Functional Binder for Silicon and Grapite Composite Electrode in Lithium-Ion Batteries”, Electrochemistry, 79(1), (2010), 6-9. |
Komba et al., “Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries”, Electrochemical and Solid-State Letters, 12(5), (2009), A107-A110. |
Komba et al., “Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries”, Journal of Physical Chemistry, 115, (2011), 13487-13495. |
Lang, Walter, “Silicon Microstructuring Technology”, Materials Science and Engineering, R17 (1996) 1-55. |
Lee et al., “Effect of Poly (Acrylic Acid) on Adhesion Strength and Electrochemical Performance of Natural Graphite Negative Electrode for Lithium-Ion Batteries”, Journal of Power Sources, 161(1), (2006), 612-616. |
Li et al., “A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries”, Electrochemical and Solid-State Letters, 2 (11) (1999) 547-549. |
Li et al., “Sodium Carboxymethyl Cellulose: A Potential Binder for Si Negative Electrodes for Li-Ion Batteries”, Electrochemical and Solid-State Letters, 10(2) (2007), A17-A20. |
Li et al., “The Crystal Structural Evolution of Nano-Si Anode Caused by Lithium Insertion and Extraction at Room Temperature”, Solid State Ionics, 135 (2000) 181-191. |
Liu et al., “A Novel Method of Fabricating Porous Silicon Material: Ultrasonically Enhanced Anodic Electrochemical Etching”, Solid State Communications, 127 (2003) 583-588. |
Liu et al., “Effect of Electrode Structure on Performance of Si Anode in Li-Ion Batteries: Si Particle Size and Conductive Additive”, Journal of Power Source, 140 (2005) 139-144. |
Liu et al., “Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder”, Electrochemical and Solid-State Letters, 8(2) (2005), A100-A103. |
Lu et al., “A Study of the Mechanisms of Erosion in Silicon Single Crystals Using Hertzian Fracture Tests”, Wear, 186-187 (1995) 105-116. |
Maranchi et al., “Interfacial Properties of the a-Si/Cu: Active-Inactive Thin-Film Anode Systems for Lithium-Ion Batteries”, Journal of the Electrochemical Society: 153 (6) (2006) A1246-A1253. |
Nakahata et al., “Fabrication of Lotus-Type Porous Silicon by Unidirectional Solidification in Hyrdogen”, Materials Science and Engineering A 384 (2004) 373-376. |
Niparko, J.K. (Editor), “Cochlear Implant Technology”, Pub., Lippincott Williams and Wilkins, Philadelphia, (2000) 108-121. |
Obrovac et al., “Structural Changes in Silicon Anodes During Lithium Insertion/Extraction”, Electrochemical and Solid-State Letters, 7(5), (2004), A96-A96. |
Ohara et al., “A Thin Film Silicon Anode for Li-Ion Batteries Having a Very Large Specific Capacity and Long Cycle Life”, Journal of Power Sources, 136 (2004) 303-306. |
Pei et al., “Silicon Nanowires Grown from Silicon Monoxide Under Hydrothermal Conditions”, Journal of Crystal Growth, 289 (2006) 423-427. |
Peng et al., “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition”, Adv. Funct. Mater., 13, No. 2 (2003) 127-132. |
Peng et al., “Fabrication of Large-Area Silicon Nanowire p-n Junction Diode Arrays”, Adv. Mater. (2004), vol. 16, No. 1, 73-76. |
Peng et al., “Silicon Nanowires for Rechargeable Lithium-ion Battery Anodes”, Applied Physics Letters (2008) vol. 93, No. 3, pp. 33105-1 to 33105-3. |
Peng et al., “Simultaneous Gold Deposition and Formation of Silicon Nanowire Arrays”, Journal of Electroanalytical Chemistry, 558 (2003) 35-39. |
Peng et al., “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry”, Adv. Mater., 14, No. 16 (2002) 1164-1167. |
Peng et al., “Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays”, Angew. Chem. Ind. Ed., 44 (2005) 2737-2742. |
Peng, et al., “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles”, Adv. Funct. Mater., 16 (2006), 387-394. |
Qiu et al., “From Si Nanotubes to Nanowires: Synthesis, Characterization, and Self-Assembly”, Journal of Crystal Growth, 277 (2005) 143-148. |
Qiu et al., “Self-Assembled Growth and Optical Emission of Silver-Capped Silicon Nanowires”, Applied Physics Letters, vol. 84, No. 19, (2004) 3867-3869. |
Sharma et al., “Thermodynamic Properties of the Lithium-Silicon System”, J. Electrochem. Soc.: Electrochemical Science and Technology, vol. 123 (1976) 1763-1768. |
Shin et al., “Porous Silicon Negative Electrodes for Rechargeable Lithium Batteries”, Journal of Power Sources, 139 (2005) 314-320. |
Sugama, et al., “Nature of Interfacial Interaction Mechanisms Between Polyacrylic Acid Macromolecules and Oxide Metal Surfaces”, Journal of Materials Science, 19 (1984) 4045-4056. |
Tokoro et al., “Anisotropic Etching Properties of Silicon in KOH and TMAH Solutions”, Proceedings of the 1998 International Symposium on Micromechatronics and Human Science (1998) 65-70. |
Tsuchiya et al., “Structural Fabrication Using Cesium Chloride Island Arrays as a Resist in a Fluorocarbon Reactive Ion Etching Plasma”, Electrochemical and Solid-State Letters, 3 (1) (2000) 44-46. |
Ui et al., “Improvement of Electrochemical Characteristics of Natural Graphite Negative Electrode Coated With Polyacrylic Acid in Pure Propylene Carbonate Electrolyte”, Journal of Power Sources, 173(1), (2007), 518-521. |
Wagner et al., “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Applied Physics Letters, vol. 4, No. 5 (1964) 89-90. |
Wen et al., “Chemical Diffusion in Intermediate Phases in the Lithium-Silicon System”, Journal of Solid State Chemistry, 37 (1981) 271-278. |
Weydanz et al., “A Room Temperature Study of the Binary Lithium-Silicon and the Ternary Lithium-Chromium-Silicon System for use in Rechargeable Lithium Batteries”, Journal of Power Sources, 81-82 (1999) 237-242. |
Winter, et al., “Insertion Electrode Materials for Rechargeable Lithium Batteries”, Advanced Materials, 1998, 10, No. 10. |
Wong et al., “Controlled Growth of Silicon Nanowires Synthesized Via Solid-Liquid-Solid Mechanism”, Science and Technology of Advanced Materials, 6 (2005) 330-334. |
Yabuuchi et al., “Graphite-Silicon-Polyacrylate Negative Electrodes in Ionic Liquid Electrolyte for Safer Rechargeable Li-Ion Batteries”, Advanced Energy Materials, 1, (2011), 759-765. |
Yan et al., “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism”, Chemical Physics Letters, 323 (2000) 224-228. |
Yan et al., “H2-Assisted Control Growth of Si Nanowires”, Journal of Crystal Growth, 257 (2003) 69-74. |
Yoshio et al., “Electrochemical Behaviors of Silicon Based Anode Material”, Journal of Power Sources, 153 (2006) 375-379. |
Zhang et al., “A Review on Electrolyte Additives for Lithium-Ion Batteries”, Journal of Power Sources, 162(2), 1379-1394, (2006). |
Zhang et al., “Bulk-Quantity Si Nanowires Synthesized by SiO Sublimation”, Journal of Crystal Growth, 212 (2000) 115-118. |
Zhang et al., “Catalytic Growth of x-FiSi2 and Silicon Nanowires”, Journal of Crystal Growth, 280 (2005) 286-291. |
Zhang et al., “Synthesis of Thin Si Whiskers (Nanowires) Using SiCl4”, Journal of Crystal Growth, 2006 (2001) 185-191. |
International Search Report of PCT/GB2007/000211 dated Apr. 24, 2007. |
Written opinion of PCT/GB2007/000211 dated Apr. 24, 2007. |
De Angelis et al., “Water Soluble Nanoporous Nanoparticles for In Vivo Targeted Drug Deliver and Controlled Release in B Cells Tumor Context”, Nanoscale, 2010, vol. 2, p. 2230-2236. |
Garrido, et al., The Role of Chemical Species in the Passivation of <100> Silicon Surfaces by HF in Water-Ethanol Solutions, J. Electrochem Soc., vol. 143, No. 12, 1996, p. 4059-4066. |
Russo, et al., “A Mechanical Approach to Porous Silicon Nanoparticles Fabrication”, Materials 2011, vol. 4, p. 1023-1033. |
Takami et al., “Silicon Fiber Formed on Silicon Without Using a Gas Process”, Journal of Applied Physics, vol. 91, No. 12, 2-5 (2002). |
Ye et al., Controllable Growth of Silver Nanostructures by a Simple Replacement Reaction and Their SERS Studies, Solid State Sciences 11 (2009), p. 1088-1093. |
Hong et al., “The Crystal Structural Evolution of Nano-Si Anode Caused by Lithium Insertion and Extraction at Room Temperature”, Solid State Ionics, 135 (2000), pp. 181-191. |
Number | Date | Country | |
---|---|---|---|
20120100427 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12161126 | US | |
Child | 13286740 | US |