1. Field of Invention
The present invention relates to a method of fast image reconstruction, wherein an interpolation with variable interpolation intervals and an interpolation with variable interpolation intervals where windowing is carried out by means of any available window functions, which are novel and applicable to instruments which need interpolation such as Fourier domain Optical Coherent Tomography (OCT), are adopted, in order to achieve fast image reconstruction.
2. Description of Prior Art
In the field of fast image reconstruction, as a novel contactless optical detection system with high resolution, a Fourier domain Optical Coherent Tomography (OCT) system obtains structure information, Doppler information and polarization information of an object through scanning the object longitudinally by means of optical interference and then though 2-D or 3-D reconstruction. Therefore, such system can find its application in a variety of fields including medical imaging and industrial damage detection. According to the Fourier domain OCT technology, a reference light and a signal light interferes with each other in an optical splitter 3, and then the interference signal undergoes spectrum-division at a diffraction grating 9 and then is focused by a lens 10 onto a linear scanning CCD 11, which converts the analog signal into a digital signal, as shown in
1) carrying out discrete Fourier transform on the data to obtain a new set of data:
2) carrying out zero-padding interpolation on the new set of data to obtain a set of data padded with zeros at a factor of M:
3) carrying out inverse Fourier transform on the set of data padded with zeroes at the factor M to obtain a set of data which are expanded at a factor of (M+1); and
4) carrying out linear interpolation on the expanded data in accordance with a linear distribution in the K space to obtain interpolated data.
Though such method is simple and well-developed, it has disadvantages such as significant amount of computations, as a result of which requirements of real-time image reconstruction cannot be satisfied, and fixed interpolation intervals and interpolation precision determined by the factor M of zero-padding, as a result of which interpolation intervals cannot be varied as desired. Further, the interpolation precision is degraded due to discrete Fourier transform with zero-padding interpolation followed by linear interpolation. All those limitations strictly restrict the fast image reconstruction application of Fourier domain OCT systems.
As described above, the existing Fourier domain Optical Coherent Tomography (OCT) technology has disadvantages such as low interpolation precision, low computation speed, and fixed interpolation intervals which cannot be varied as desired. The present invention aims to solve those problems. The present invention provides a method of fast image reconstruction, wherein a novel interpolation is adopted, which has advantages such as high precision, high computation speed, and variable interpolation precision and interpolation intervals. As a result, the computation speed and interpolation precision of a Fourier domain OCT system can be improved efficiently.
According to the present invention, an interpolation with variable interpolation intervals and an interpolation with variable interpolation intervals where windowing is carried out by means of any available window functions are applied to the Fourier domain OCT technology. Specifically, the present invention may be implemented as follows.
(1) Wavelengths which, after being diffracted by the diffraction grating 9 and then passing through the lens 10, are incident on the linear scanning CCD 11 with N points of pixels, are accurately determined by a spectrometer, to obtain a vector {right arrow over (λ)}1={λ1, λ2, . . . , λN} of wavelengths which are in an uniform distribution and correspond to the respective pixels of the CCD 11, with a wavelength difference Δλ, an actual position coefficient of the wavelength vector at the CCD 11 being In{right arrow over (d)}ex1={n; n=1, 2, . . . , N}.
(2) From the first wavelength λ1 and the last wavelength λN, wave numbers corresponding to the first and last pixel points of the CCD 11 can be calculated, based on an equation k=2π/λ, as k′1=2π/λ1 and k′N=2π/λN respectively. By means of k′1 and k′N, a wave number vector which is in a linear distribution and has a length of N can be formed as
A corresponding wavelength vector can be calculated, based on an equation
as
Thus, by means of Δλ, a virtual position coefficient of λ′n corresponding to the respective wave number k′n at the CCD 11 can be calculated as
(or otherwise,
(3) Due to the fact that the data collected by the CCD 11 are in form of real numbers and that real signals are Hermitian symmetric during a discrete Fourier transform, some points of data may be added at high frequency points. That is,
Thus, an improved transfer function for the discrete Fourier transform with zero-padding interpolation can be obtained as
By substituting different positions n and sn in order from In{right arrow over (d)}ex1={n; n=1, 2, . . . , N} and
(or otherwise,
to
a weight matrix of N*N can be obtained as HN*N(n,sn). Then, the process on interpolation weights is completed.
(4) The CCD 11 of the Fourier domain OCT system collects a data vector x={x1, x2, . . . , xN} by longitudinally scanning. This data vector is subject to interpolation, to obtain interpolated data x′={xs1, xs2, . . . , xsN}, based on the following equation
The interpolation process may be truncated by means of any available window functions. An interpolation start position Min and an interpolation end position Max can be obtained from a window length and
(or otherwise,
Then, the original data is subject to interpolation based on the following equation
where W(*) is a window function for windowing, with a window length of L. As a result, the computation speed of this new interpolation method is improved.
In processing Fourier domain OCT data, any available window functions may be used to truncate the weights. The data of the weights HN*N (n,sn) are windowed to reduce the length of data to be processed and the amount of data to be processed. Specifically, the calculation is carried out based on the following equation
where W(*) is any one of available window functions. The interpolation start position Min and the interpolation end position Max are obtained from the window length L and the virtual position coefficient
(or otherwise,
As a result, the computation speed of interpolation with variable interpolation intervals is improved, and the weights can be stored in a computer and thus are easy to be called during operation so as to avoid repeated calculations.
Further, based on the law of conservation of energy during the Fourier transform, the Fourier transform with zero-padding interpolation may be modified as follows:
In this case, the transfer function becomes
And thus, the corresponding weight matrix HN*N(n,sn) may be obtained.
Furthermore, based on the equal sums during the Fourier transform, the Fourier transform with zero-padding interpolation may be modified as follows:
In this case, the transfer function becomes
And thus, the corresponding weight matrix HN*N(n,sn) may be obtained.
The present invention has the following advantages as compared with the prior art.
1. The information on the wavelengths and wave numbers may be extracted in advance to construct the wavelength vector in nonlinear distribution in the K space and the virtual position coefficient vector corresponding to the pixel points of this wavelength vector at the CCD 11, from which the weight matrix HN*N(n,sn) is calculated based on the transfer function. For the conventional discrete Fourier transform with zero-padding interpolation, the precision is fixed by the zero-padding factor M, and thus can only reach a position precision of 1/(M+1). However, according to the present invention, since the position of the virtual position coefficient sn is not fixed by the zero-padding factor M for the conventional Fourier transform with zero-padding interpolation and thus may be any real number within the data precision of the computer, it is possible to achieve variable interpolation precision and interpolation intervals.
2. The weight matrix may be truncated by being subject to windowing by means of any available window functions, and may be stored in the computer for convenience of being called during operation so as to avoid repeated calculations. For the conventional discrete Fourier transform with zero-padding interpolation, there are one fast Fourier transform for N points and one fast Fourier transform for M*N+N points, and thus it needs
numbers of complex multiplications. However, according to the present invention, it only needs N*L numbers of real multiplications, wherein N indicates the pixel points of the CCD 11, and L indicates the window length of the window function. As a result, it is possible to improve the computation speed of the interpolation and to improve the real-time process capacity of the discrete Fourier domain OCT system, and thus it is possible to achieve fast image reconstruction.
The present invention is described in detail hereinafter in conjunction with embodiments thereof and the drawings. According to an embodiment, a Fourier domain Optical Coherent Tomography (OCT) system collects data, which then is subject to interpolation. An operation flow of this system is shown in
(1) Wavelengths incident on the CCD 11 are accurately determined by the spectrometer shown in
(2) Two wave numbers corresponding to the first and last pixel points of the CCD 11 can be calculated, based on
respectively. Let a wave number vector which is in a linear distribution in the K space be
From this wave number vector which is in a linear distribution in the K space, a set of wavelengths λ′={λ′1, λ′2, . . . , λ′N} which are not evenly distributed, can be obtained, based on the equation
Obviously, λ1=λ′1 and λN=λ′N. Then, a virtual position coefficient of the wavelengths λ′={λ′1, λ′2, . . . , λ′N} at the CCD 11 can be calculated, based on the equation
as
Alternatively, the above equation of sn may be
which has no effect on the final result. In this case, the virtual position coefficients of the wavelengths λ′={λ′1, λ′2, . . . , λ′N} at the CCD 11 can be calculated as
Hereinafter, in order to explain the invention in a simple and clear manner, the description is made with respect to the case where the first calculation equation of sn is adopted. However, this does not exclude the use of the second calculation equation of sn. In fact, the present invention may also be implemented through use of various other calculation equations.
(3) By extracting respective n and sn in order, from the position coefficient vector of the actual wavelengths at the CCD 11
In{right arrow over (d)}ex1={n; n=1, 2, . . . , N} and
the virtual position coefficient vector at the CCD 11
a weight matrix HN*N(n,sn) can be obtained based on a transfer function
(4) Suppose a set of interference signal data collected by the CCD 11 of the Fourier OCT system shown in
wherein lε[0, L−1]) with a window length L=11. And then interpolated data is obtained by means of interpolation equation. Specifically, the calculation is carried out as follows:
where sn is given by
(5) The data collected by the CCD 11 of the Fourier domain OCT system is subject to interpolation by repeating step (3), and the respective interpolated data x′(s) is subject to discrete Fourier transform to obtain X′(s). Let a contrast be Contrast=6 and a brightness bias be Brightness_Bias=−82. The respective points of X′(s) are subject to a logarithmic operation to obtain a gradation value Intensity of the image. Specifically, the operation is carried out as follows:
Intensity=Contrast*(10*log 10(X′(s)+Brightness_Bias))+255.
The calculated gradation value needs to be truncated, wherein a value smaller than 0 should be assigned 0 and a value greater than 255 should be assigned 255. As a result, the gradation value falls into a range of [0, 255], which conforms to a gradation output range of a computer image. A scan controller 6 controls repeated linear scan on a sample object 7, and carries out interpolation and mapping on the interference signal data collected by the CCD 11 to reconstruct a 2-D or 3-D image.
The conventional discrete Fourier transform with zero-padding interpolation is carried out as a comparative example to the present invention. In the experiment, a set of data collected by linear scanning is extracted by a factor of 4, and then is subject to interpolation. The interpolated data is shown in
Based on the law of conservation of energy during the Fourier transform, the Fourier transform with zero-padding interpolation may be modified as follows:
In this case, the transfer function becomes
And thus, the corresponding weight matrix HN*N(n,sn) may be obtained.
Alternatively, based on the equal sums during the Fourier transform, the Fourier transform with zero-padding interpolation may be modified as follows:
In this case, the transfer function becomes
And thus, the corresponding weight matrix HN*N(n,sn) may be obtained.
Though the present invention has already been shown and described with reference to the embodiments thereof, it is to be understood that various changes may be made in forms and specifics without departing from the scope and the spirit of the present invention which is defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2008 1 0119131 | Aug 2008 | CN | national |
2009 1 0147925 | Jun 2009 | CN | national |
Number | Date | Country |
---|---|---|
62217730 | Sep 1987 | JP |
2001320409 | Nov 2001 | JP |
2003076385 | Mar 2003 | JP |
2004252924 | Sep 2004 | JP |
2006211127 | Aug 2006 | JP |
2007510143 | Apr 2007 | JP |
2008082973 | Jul 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100054626 A1 | Mar 2010 | US |