Embodiments of this invention relate to the field of electrochemical fabrication and the associated formation of multi-layer three-dimensional structures and more specifically to processes for forming structures that include dielectric coatings that are thin compared to the layer thickness (e.g. less than about ½ the layer thickness, more preferably less than about ¼ the layer thickness, and most preferably less than about 1/10 the layer thickness) that defines the general features of the structures that are being formed (e.g. that are set by the thickness between successive planarization operations that are used in forming the structures) and that provide desired electrical isolation of conductive elements of the structures.
A technique for forming three-dimensional structures (e.g. parts, components, devices, and the like) from a plurality of adhered layers was invented by Adam L. Cohen and is known as Electrochemical Fabrication. Variations of this process are being commercially pursued by Microfabrica Inc. of Van Nuys, Calif. under the name MICA FREEFORM® (formerly EFAB®). This technique was described in U.S. Pat. No. 6,027,630, issued on Feb. 22, 2000. This electrochemical deposition technique allows the selective deposition of a material using a unique masking technique that involves the use of a mask that includes patterned conformable material on a support structure that is independent of the substrate onto which plating will occur. When desiring to perform an electrodeposition using the mask, the conformable portion of the mask is brought into contact with a substrate while in the presence of a plating solution such that the contact of the conformable portion of the mask to the substrate inhibits deposition at selected locations. For convenience, these masks might be generically called conformable contact masks; the masking technique may be generically called a conformable contact mask plating process. More specifically, in the terminology of Microfabrica Inc. of Van Nuys, Calif. such masks have come to be known as INSTANT MASKS™ and the process known as INSTANT MASKING™ or INSTANT MASK™ plating. Selective depositions using conformable contact mask plating may be used to form single layers of material or may be used to form multi-layer structures. The teachings of the '630 patent are hereby incorporated herein by reference as if set forth in full herein. Since the filing of the patent application that led to the above noted patent, various papers about conformable contact mask plating (i.e. INSTANT MASKING™) and electrochemical fabrication have been published:
The disclosures of these nine publications are hereby incorporated herein by reference as if set forth in full herein.
The electrochemical deposition process may be carried out in a number of different ways as set forth in the above patent and publications. In one form, this process involves the execution of three separate operations during the formation of each layer of the structure that is to be formed:
After formation of the first layer, one or more additional layers may be formed adjacent to the immediately preceding layer and adhered to the smoothed surface of that preceding layer. These additional layers are formed by repeating the first through third operations one or more times wherein the formation of each subsequent layer treats the previously formed layers and the initial substrate as a new and thickening substrate.
Once the formation of all layers has been completed, at least a portion of at least one of the materials deposited is generally removed by an etching process to expose or release the three-dimensional structure that was intended to be formed.
The preferred method of performing the selective electrodeposition involved in the first operation is by conformable contact mask plating. In this type of plating, one or more conformable contact (CC) masks are first formed. The CC masks include a support structure onto which a patterned conformable dielectric material is adhered or formed. The conformable material for each mask is shaped in accordance with a particular cross-section of material to be plated. At least one CC mask is needed for each unique cross-sectional pattern that is to be plated.
The support for a CC mask is typically a plate-like structure formed of a metal that is to be selectively electroplated and from which material to be plated will be dissolved. In this typical approach, the support will act as an anode in an electroplating process. In an alternative approach, the support may instead be a porous or otherwise perforated material through which deposition material will pass during an electroplating operation on its way from a distal anode to a deposition surface. In either approach, it is possible for CC masks to share a common support, i.e. the patterns of conformable dielectric material for plating multiple layers of material may be located in different areas of a single support structure. When a single support structure contains multiple plating patterns, the entire structure is referred to as the CC mask while the individual plating masks may be referred to as “submasks”. In the present application such a distinction will be made only when relevant to a specific point being made.
In preparation for performing the selective deposition of the first operation, the conformable portion of the CC mask is placed in registration with and pressed against a selected portion of the substrate (or onto a previously formed layer or onto a previously deposited portion of a layer) on which deposition is to occur. The pressing together of the CC mask and substrate occur in such a way that all openings, in the conformable portions of the CC mask contain plating solution. The conformable material of the CC mask that contacts the substrate acts as a barrier to electrodeposition while the openings in the CC mask that are filled with electroplating solution act as pathways for transferring material from an anode (e.g. the CC mask support) to the non-contacted portions of the substrate (which act as a cathode during the plating operation) when an appropriate potential and/or current are supplied.
An example of a CC mask and CC mask plating are shown in
Another example of a CC mask and CC mask plating is shown in
Unlike through-mask plating, CC mask plating allows CC masks to be formed completely separate from the fabrication of the substrate on which plating is to occur (e.g. separate from a three-dimensional (3D) structure that is being formed). CC masks may be formed in a variety of ways, for example, a photolithographic process may be used. All masks can be generated simultaneously prior to structure fabrication rather than during it. This separation makes possible a simple, low-cost, automated, self-contained, and internally-clean “desktop factory” that can be installed almost anywhere to fabricate 3D structures, leaving any required clean room processes, such as photolithography to be performed by service bureaus or the like.
An example of the electrochemical fabrication process discussed above is illustrated in
Various components of an exemplary manual electrochemical fabrication system 32 are shown in
The CC mask subsystem 36 shown in the lower portion of
The blanket deposition subsystem 38 is shown in the lower portion of
The planarization subsystem 40 is shown in the lower portion of
In addition to teaching the use of CC masks for electrodeposition purposes, the '630 patent also teaches that the CC masks may be placed against a substrate with the polarity of the voltage reversed and material may thereby be selectively removed from the substrate. It indicates that such removal processes can be used to selectively etch, engrave, and polish a substrate, e.g., a plaque.
The '630 patent further indicates that the electroplating methods and articles disclosed therein allow fabrication of devices from thin layers of materials such as, e.g., metals, polymers, ceramics, and semiconductor materials. It further indicates that although the electroplating embodiments described therein have been described with respect to the use of two metals, a variety of materials, e.g., polymers, ceramics and semiconductor materials, and any number of metals can be deposited either by the electroplating methods therein, or in separate processes that occur throughout the electroplating method. It indicates that a thin plating base can be deposited, e.g., by sputtering, over a deposit that is insufficiently conductive (e.g., an insulating layer) so as to enable subsequent electroplating. It also indicates that multiple support materials (i.e. sacrificial materials) can be included in the electroplated element allowing selective removal of the support materials.
Another method for forming microstructures from electroplated metals (i.e. using electrochemical fabrication techniques) is taught in U.S. Pat. No. 5,190,637 to Henry Guckel, entitled “Formation of Microstructures by Multiple Level Deep X-ray Lithography with Sacrificial Metal layers”. This patent teaches the formation of metal structure utilizing mask exposures. A first layer of a primary metal is electroplated onto an exposed plating base to fill a void in a photoresist, the photoresist is then removed and a secondary metal is electroplated over the first layer and over the plating base. The exposed surface of the secondary metal is then machined down to a height which exposes the first metal to produce a flat uniform surface extending across the both the primary and secondary metals. Formation of a second layer may then begin by applying a photoresist layer over the first layer and then repeating the process used to produce the first layer. The process is then repeated until the entire structure is formed and the secondary metal is removed by etching. The photoresist is formed over the plating base or previous layer by casting and the voids in the photoresist are formed by exposure of the photoresist through a patterned mask via X-rays or UV radiation.
The '637 patent teaches the locating of a plating base onto a substrate in preparation for electroplating materials onto the substrate. The plating base is indicated as typically involving the use of a sputtered film of an adhesive metal, such as chromium or titanium, and then a sputtered film of the metal that is to be plated. It is also taught that the plating base may be applied over an initial sacrificial layer of material on the substrate so that the structure and substrate may be detached if desired. In such cases after formation of the structure the plating base may be patterned and removed from around the structure and then the sacrificial layer under the plating base may be dissolved to free the structure. Substrate materials mentioned in the '637 patent include silicon, glass, metals, and silicon with protected processed semiconductor devices. A specific example of a plating base includes about 150 angstroms of titanium and about 300 angstroms of nickel, both of which are sputtered at a temperature of 160° C. In another example it is indicated that the plating base may consist of 150 angstroms of titanium and 150 angstroms of nickel where both are applied by sputtering.
Even though electrochemical fabrication as taught and practiced to date, has greatly enhanced the capabilities of microfabrication, and in particular added greatly to the number of metal layers that can be incorporated into a structure and to the speed and simplicity in which such structures can be made, and even to the incorporation of some dielectric materials, room for enhancing dielectric incorporation and/or building on dielectric substrates exists.
It is an object of some embodiments of the invention to provide an enhanced electrochemical fabrication process capable of forming structures including electrically isolated regions via use of thin dielectric coatings.
It is an object of some embodiments of the invention to provide electrochemically fabricated structures that have improved electrical characteristics.
Other objects and advantages of various embodiments of the invention will be apparent to those of skill in the art upon review of the teachings herein. The various embodiments of the invention, set forth explicitly herein or otherwise ascertained from the teachings herein, may address one or more of the above objects alone or in combination, or alternatively may address some other object of the invention ascertained from the teachings herein. It is not necessarily intended that all objects be addressed by any single aspect of the invention even though that may be the case with regard to some aspects.
A first aspect of the invention provides a method for forming a three dimensional structure from a plurality of adhered layers, comprising: forming a plurality of layers with each comprising regions of a first conductive material and regions of a filler material, wherein regions of the first conductive material and regions of the filler material are conductively isolated from one another by a dielectric material and wherein at least one of the following conditions is met: (A) the dielectric material is deposited during the forming of each of the plurality of layers and which has a coating thickness less than a layer thickness; (B) the dielectric material is (i) not located between those portions of two consecutive layers where the filler material on an upper layer overlies filler material on a lower layer and (ii) not located between portions of two consecutive layers where the first conductive material on the upper layer overlies the first conductive material on the lower layer; (C) the dielectric material separates those portions of two consecutive layers where the filler material on the upper layer overlies the filler material on the lower layer; (D) the dielectric material is located in interface regions between up-facing regions of the first conductive material and down-facing regions of the filler material; or (E) the dielectric material is located in interface regions between up-facing regions of filler material and down-facing regions of the first conductive material.
A second aspect of the invention provides a fabrication method for forming a multi-layer three-dimensional structure, comprising: (a) forming a first layer of the multi-layer structure, wherein the first layer comprises at least two materials; (b) forming a plurality of successive layers of the structure with each successive layer adhered to a previously formed layer to build up the three-dimensional structure, where the forming of each of the plurality of successive layers comprises at least two deposition operations that deposit at least two materials, which may be the same or different from the materials deposited on a previously formed layer, and at least one planarization operation; wherein the forming of at least a portion of the plurality of layers comprises the deposition of at least a thin coating material, that is different from the at least two materials, that at least partially encapsulates one of the at least two materials.
A third aspect of the invention provides a method for forming a multi-layer three-dimensional structure, comprising: (a) forming a first layer of the multi-layer structure, wherein the first layer comprises at least two materials; (b) forming a plurality of successive layers of the structure with each successive layer adhered to a previously formed layer to build up the three-dimensional structure, where the forming of each of the plurality of successive layers comprises at least three deposition operations that deposit at least three materials, which may be the same or different from the materials deposited on a previously formed layer, and at least one planarization operation, wherein one of the deposited materials is a sacrificial material and two of deposited materials are structural materials; and (c) after formation of the plurality of successive layers, removing at least a portion of the sacrificial material to release the structural material; wherein at least one of the structural material forms thin coatings over at least a portions of the surfaces of the other of the structural material.
A fourth aspect of the invention provides a method for forming a multi-layer three-dimensional structure, comprising: (a) forming a first layer of the multi-layer structure, wherein the first layer comprises at least two materials; (b) forming a plurality of successive layers of the structure with each successive layer adhered to a previously formed layer to build up the three-dimensional structure, where the forming of each of the plurality of successive layers comprises at least three deposition operations that deposit at least three materials, which may be the same or different from the materials deposited on a previously formed layer, and at least one planarization operation, wherein the formation of at least a portion of the plurality of layers comprises the deposition of at least two structural materials, a first of which encapsulates a second wherein the encapsulating first material does not completely isolate regions the second material on successive layers when those regions of second material at least partially intersect.
Further aspects of the invention will be understood by those of skill in the art upon reviewing the teachings herein. Other aspects of the invention may involve apparatus that can be used in implementing one or more of the above process aspects of the invention or devices formed using one of the above process aspects of the invention. These other aspects of the invention may provide various combinations of the aspects, embodiments, and associated alternatives explicitly set forth herein as well as provide other configurations, structures, functional relationships, and processes that have not been specifically set forth above.
The various embodiments, alternatives, and techniques disclosed herein may be used in combination with electrochemical fabrication techniques that use different types of patterning masks and masking techniques. For example, conformable contact masks and masking operations may be used, proximity masks and masking operations (i.e. operations that use masks that at least partially selectively shield a substrate by their proximity to the substrate even if contact is not made) may be used, non-conformable masks and masking operations (i.e. masks and operations based on masks whose contact surfaces are not significantly conformable) may be used, and adhered masks and masking operations (masks and operations that use masks that are adhered to a substrate onto which selective deposition or etching is to occur as opposed to only being contacted to it). Adhered mask may be formed in a number of ways including (1) by application of a photoresist, selective exposure of the photoresist, and then development of the photoresist, (2) selective transfer of pre-patterned masking material, and/or (3) direct formation of masks from computer controlled depositions of material.
Patterning operations may be used in selectively depositing material and/or may be used in the selective etching of material. Selectively etched regions may be selectively filled in or filled in via blanket deposition, or the like, with a different desired material. In some embodiments, the layer-by-layer build up may involve the simultaneous formation of portions of multiple layers. In some embodiments, depositions made in association with some layer levels may result in depositions to regions associated with other layer levels. Such use of selective etching and interlaced material deposited in association with multiple layers is described in U.S. patent application Ser. No. 10/434,519, by Smalley, and entitled “Methods of and Apparatus for Electrochemically Fabricating Structures Via Interlaced Layers or Via Selective Etching and Filling of Voids layer elements” which is hereby incorporated herein by reference as if set forth in full.
The “build axis” or “build orientation” is the axis or orientation that is perpendicular to the planes of the layers that are used in building up structures. The build axis points in the direction of layer build up.
An “up-facing feature” is an element dictated by the cross-sectional data for a given layer “n” and a next layer “n+1” that is to be formed from a given material that exists on the layer “n” but does not exist on the immediately succeeding layer “n+1”. For convenience the term “up-facing feature” will apply to such features regardless of whether the layers are stacked one above the other, one below the other, or along any other orientation of the build axis.
A “down-facing feature” is an element dictated by the cross-sectional data for a given layer “n” and a preceding layer “n−1” that is to be formed from a given material that exists on layer “n” but does not exist on the immediately preceding layer “n−1”. As with up-facing features, the term “down-facing feature” shall apply to such features regardless of whether the layers are stacked one above the other, one below the other, or along any other oriented build axis.
A “continuing region” is the portion of a given layer “n” that is dictated by the cross-sectional data for a given layer “n”, a next layer “n+1” and a preceding layer “n−1” that is neither up-facing nor down-facing for that layer “n”.
Various embodiments of various aspects of the invention are directed to formation of three-dimensional structures from materials some of which are to be electrodeposited. Some of these structures may be formed form a single layer of one or more deposited materials while others are formed from a plurality of layers of deposited materials (e.g. two or more layers, more preferably five or more layers, and most preferably ten or more layers). In some embodiments structures having features positioned with micron level precision and minimum features size on the order of tens of microns are to be formed. In other embodiments structures with less precise feature placement and/or larger minimum features may be formed. In still other embodiments, higher precision and smaller minimum feature sizes may be desirable.
In EFAB, with some exceptions, one normally thinks of using thicknesses of materials that are defined by the layer levels. In turn, layer levels, or layer thicknesses, are typically defined as the thickness between planarization operations that provide the boundaries between successive layers or the nominal boundaries between layer levels when interlacing techniques are used in forming structures. In some embodiments, the planarization operations may be successive planarization operations, as only one planarization operation occurs during the formation of each layer, while in other embodiments they are not. In some embodiments, multiple planarization operations may be performed during the formation of each layer or no planarization operations may be used during the formation of some layers. In such cases the determination of layer thickness may be more complicated. For example, layer levels may be extracted from the sampling resolution at which layer representation information is extracted from a three-dimensional CAD design. In a given build, regions of a structural conductive material are thought of in terms of integral multiples (i.e. n=1, 2, 3, . . . ) of a layer thickness, regions of sacrificial material are thought of in terms of integral multiples of layer thickness, and regions of dielectric are also thought of in terms of integral multiples of layer thickness.
Exceptions to this rule include seed layer and adhesion layer materials which are typically applied in thicknesses equal to small fractions of a layer thickness. Such coatings may be applied in a planar manner (e.g. over previously planarized layers of material) as taught in U.S. patent application Ser. No. 10/607,931. In other embodiments, such coatings may be applied in a non-planar manner, for example, in openings in and over a patterned masking material that has been applied to previously planarized layers of material as taught in U.S. patent application Ser. No. 10/841,383.
Another exception includes the layer-by-layer formation of thin metallic coatings (e.g. gold coatings) over portions of structural material. This last exception results in coating material forming cup-like shapes around the bottom & sides of regions that will receive deposits of structural conductive material and is similar in some respects to the resulting seed layer deposits that surround conductive structural material during some implementations of the non-planar seed layer approach. Examples of such techniques are set forth in U.S. Patent Application No. 60/533,897 and in U.S. patent application Ser. No. 11/029,221. These referenced patent applications also set forth a process for fully encapsulating the conductive structural material with other material. These referenced applications are incorporated herein by reference as if set forth in full herein.
Embodiments of the present innovation remove the previous mind set involving the need for dielectric coatings to be thick and particularly needing to be thick to achieve complete electric isolation of EFAB produced conductive structures. According to various embodiments of the present innovation thin coatings of dielectric material may be used to achieve electric isolation of conductive structures. Some potential advantages of using thin dielectric coatings include:
Embodiments of the invention may take a variety of forms some of which are set forth below in detail while others are described or summarized in a more cursory manner, while still others though not explicitly set forth will be apparent to those of skill in the art upon review of the teachings herein.
In variations of the embodiment exemplified by
In still other variations of the embodiment of
The process of
The operations used in forming the layer (according to block 308) in this embodiment include (1) applying and patterning a masking material (e.g. a first photoresist—PR1) to leave openings where a first conductive material (CM1) is to be located—block 308-1, (2) applying a first seed layer (SL1)—block 308-2, (3) depositing CM1 to a height which extends above the upper level of the layer being formed—block 308-3, (4) planarizing CM1, PR1, and SL1 to set the height of the partially formed layer to a level at or slightly above the layer's intended upper level—block 308-4, (5) removing the masking material (e.g., striping PR1)—block 308-5, (6) applying a thin layer of dielectric material (DM)—block 308-6, (7) applying a second seed layer (SL2)—block 308-7, (8) depositing a second conductive material (i.e. the filler material—CM2)—block 308-8, and (9) planarizing the materials to a level that corresponds to an upper level of the layer or possibly slightly less than the upper level of the layer depending on whether or not the capped layer will have an upper surface corresponding to the layer level or whether the pre-capped layer will have its upper surface at the level of the upper surface of the layer—block 308-9.
The operations used in capping the layer (according to block 322) in this embodiment include (1) applying and patterning a masking material (e.g. a second photoresist—PR2) to have one or more openings over regions of layer “n” where CM1 or SL1 were not deposited—e.g. the pattern is the complement of the pattern of PR1—block 322-1, (2) applying a thin layer of DM, e.g. by sputtering—block 322-2, (3) lifting off PR2 and any covering DM to yield the capped final layer “n” which is substantially planar—block 322-3.
The process of
Many alternatives to the embodiments of
The process of the embodiment of
After formation of layer “n” the process moves to decision block 310 which inquires as to whether the layer number variable “n” equals the number of the final layer to be formed “N”. If the inquiry produces a positive response, the process moves forward to block 324 which is another decision block which inquires as to whether the last layer should receive a cap of dielectric material. If the response to the inquiry of block 310 is negative, the process moves forward to block 312.
If the response to the inquiry of block 324 is negative, the process moves forward to block 330 and the process ends. After the end of the process additional operations may be performed to complete the fabrication and to prepare the produced structure/device or structures/devices for shipment or use. If the response to the inquiry of block 324 is positive, the process moves forward to block 328 which calls for the capping of the last layer with a dielectric. The operations of block 328 may be a selective or blanket capping operation depending on the desired result and the operations used. From operation 328 the process moves forward to block 330 and ends.
As noted above, a negative response to the inquiry of block 310 causes the process to move forward to block 312 which is another decision block. Block 312 inquires as to whether the Boolean difference (i.e. Boolean subtraction) between the area of the first conductive material on layer “n” (CM1n)and the area of first conductive material on layer “n+1” (CM1n+1) is null:
CM1n−CM1n+1=null?
If the inquiry of block 312 produces a positive response, there is no need to cap layer “n” with a dielectric as it will be appropriately covered during the formation of layer “n+1”. A positive response causes the process to move forward to block 314 which increments the layer number “n” by one and thereafter the process loops back to block 308 for formation of the next layer. If the inquiry of block 312 produces a negative response, the process moves forward to block 318 which calls for the capping of appropriate portions of CM1 on layer “n” with a dielectric before moving on to the formation of layer “n+1”. After completion of the capping, the process moves to block 314 (as discussed above) which calls for the incrementing of the layer variable by one and then the process loops back to block 308 for formation of the next layer. The process then continues through the various operations and loops until the entire structure or structures are formed.
The embodiment of the example of
Other alternative implementations are possible. For example, the material that is to be encased in dielectric may be the first deposited material and various modifications to the above outlined process may be made. In still other embodiments, more than two materials may be used and the material to be encased in dielectric may be any one of the materials. In still other embodiments, for the purpose of determining where dielectric material should be deposited, multiple materials may be treated as a single material for determining the various up-facing regions, down-facing regions, and the like. In still other embodiments, other Boolean operations may be performed to determine the regions of each layer that will receive dielectric material. The regions may be determined via programmed algorithms or via manual selection or via a combination.
In still other embodiments, the determinations of alternative actions may be completed entirely up front (prior to beginning formation of the structure) or they may be determined on an as needed basis during formation of the structure.
In still other embodiments, the directional etching operations may be eliminated in favor of additional masking operations and potential approximations concerning the widths of some dielectric placement. If masking operations will be solely used to set dielectric placement, it may be necessary to create some regions of dielectric that would otherwise not be desirable in order to meet any minimum width requirements associated with forming viable masks or openings in masks or associated with maximum (height to width) aspect ratios for openings into which dielectric material may be reliably deposited. Widths of various regions on each layer may be determined by various processes including, for example, via erosion or expansion routines as set forth in U.S. patent application Ser. No. 10/434,519; and in U.S. Pat. Nos. 5,945,058; 5,999,184; 6,103,176; and 6,024,980 which are incorporated herein by reference as if set forth in full herein. These incorporated applications also provide further teachings on the use of Boolean operations in manipulating data that may be useful in alternative implementations of some embodiments of the present invention. Based on the results of width determinations, minimum width requirements, and the like, the extent of the approximation and the impacted layers may be determined.
It will be understood by those of skill in the art that the other processes may be defined to achieve other desired results, such as for example, those illustrated in
It will be understood by those of skill in the art or will be readily ascertainable by them that various additional operations may be added to the processes set forth herein. For example, between performances of the various deposition operations, the various etching operations, and the various planarization operations cleaning operations, activation operations, and the like may be desirable.
Some embodiments may employ diffusion bonding or the like to enhance adhesion between successive layers of material. Various teachings concerning the use of diffusion bonding in electrochemical fabrication processes are set forth in U.S. patent application Ser. No. 10/841,384 which was filed May 7, 2004 by Cohen et al. which is entitled “Method of Electrochemically Fabricating Multilayer Structures Having Improved Interlayer Adhesion” and which is hereby incorporated herein by reference as if set forth in full. This application is hereby incorporated herein by reference as if set forth in full.
Further teachings about planarizing layers and setting layers thicknesses and the like are set forth in the following US Patent Applications which were filed Dec. 31, 2003: (1) U.S. Patent Application No. 60/534,159 by Cohen et al. and which is entitled “Electrochemical Fabrication Methods for Producing Multilayer Structures Including the use of Diamond Machining in the Planarization of Deposits of Material” and (2) U.S. Patent Application No. 60/534,183 by Cohen et al. and which is entitled “Method and Apparatus for Maintaining Parallelism of Layers and/or Achieving Desired Thicknesses of Layers During the Electrochemical Fabrication of Structures”. The techniques disclosed explicitly herein may benefit by combining them with the techniques disclosed in U.S. patent application Ser. No. 11/029,220, filed Jan. 3, 2005 by Frodis, et al., and which is entitled “Method and Apparatus for Maintaining Parallelism of Layers and/or Achieving Desired Thicknesses of Layers During the Electrochemical Fabrication of Structures”. These patent filings are each hereby incorporated herein by reference as if set forth in full herein.
Additional teachings concerning the formation of structures on dielectric substrates and/or the formation of structures that incorporate dielectric materials into the formation process and possibility into the final structures as formed are set forth in a number of patent applications: (1) U.S. Patent Application No. 60/534,184, by Cohen, which as filed on Dec. 31, 2003, and which is entitled “Electrochemical Fabrication Methods Incorporating Dielectric Materials and/or Using Dielectric Substrates”; (2) U.S. Patent Application No. 60/533,932, by Cohen, which was filed on Dec. 31, 2003, and which is entitled “Electrochemical Fabrication Methods Using Dielectric Substrates”; (3) U.S. Patent Application No. 60/534,157, by Lockard et al., which was filed on Dec. 31, 2004, and which is entitled “Electrochemical Fabrication Methods Incorporating Dielectric Materials”; (4) U.S. Patent Application No. 60/574,733, by Lockard et al., which was filed on May 26, 2004, and which is entitled “Methods for Electrochemically Fabricating Structures Using Adhered Masks, Incorporating Dielectric Sheets, and/or Seed Layers that are Partially Removed Via Planarization”; and U.S. Patent Application No. 60/533,895, by Lembrikov et al., which was filed on Dec. 31, 2003, and which is entitled “Electrochemical Fabrication Method for Producing Multi-layer Three-Dimensional Structures on a Porous Dielectric”. The techniques disclosed explicitly herein may benefit by combining them with the techniques disclosed in U.S. patent application Ser. No. 11/029,216 filed concurrently herewith by Cohen et al. and entitled “Electrochemical Fabrication Methods Incorporating Dielectric Materials and/or Using Dielectric Substrates”. These patent filings are each hereby incorporated herein by reference as if set forth in full herein.
Some embodiments may not use any blanket deposition process and/or they may not use a planarization process. Some embodiments may involve the selective deposition of a plurality of different materials on a single layer or on different layers. Some embodiments may use blanket or selective depositions processes that are not electrodeposition processes. Some embodiments may form structures from two or more materials where one or more of the materials are coated with thin deposits of dielectric material and one or more materials are treated as a sacrificial material and removed after the formation of a plurality of layers. Some embodiments may use nickel or a nickel alloy as a structural material while other embodiments may use different materials such as gold, silver, or any other electrodepositable materials. Some embodiments may use copper as the structural material with or without a sacrificial material. Some embodiments may remove a sacrificial material while other embodiments may not.
Many other alternative embodiments will be apparent to those of skill in the art upon review or the teachings herein. Further embodiments may be formed from a combination of the various teachings explicitly set forth in the body of this application. Even further embodiments may be formed by combining the teachings set forth explicitly herein with teachings set forth in the various applications and patents referenced herein, each of which is incorporated herein by reference.
Furthermore, U.S. Application Nos. 60/533,975, filed Dec. 31, 2003; 60/533,947, filed Dec. 31, 2003; and 60/533,948, filed Dec. 31, 2003; 60/540,510, filed Jan. 29, 2004; Ser. No. 10/949,738, filed Sep. 24, 2004; Ser. No. 10/772,943, filed Feb. 4, 2004; 60/445,186, filed Feb. 4, 2003; 60/506,015, filed Sep. 24, 2003; 60/533,933, filed Dec. 31, 2003, and 60/536,865 filed Jan. 15, 2004 are incorporated herein by reference.
In view of the teachings herein, many further embodiments, alternatives in design and uses of the instant invention will be apparent to those of skill in the art. As such, it is not intended that the invention be limited to the particular illustrative embodiments, alternatives, and uses described above but instead that it be solely limited by the claims presented hereafter.
This application is a continuation of U.S. patent application Ser. No. 13/657,375 (P-US152-C-MF), filed Oct. 22, 2012. The '375 application is a continuation of U.S. patent application Ser .No. 12/506,547 (P-US152-B-MF), filed Jul. 21, 2009. The '547 application is a continuation of U.S. patent application Ser. No. 11/325,405 (P-US152-A-MF), filed Jan. 3, 2006. The '405 application claims benefit of U.S. Provisional Patent Application No. 60/641,292, filed Jan. 3, 2005 and is a continuation in part of U.S. patent application Ser. No. 11/029,221 (P-US138-A-MF), filed Jan. 3, 2005, now U.S. Pat. No. 7,531,077, issued on May 12, 2009. The '221 application in turn claims benefit of U.S. Provisional Patent Application Nos. 60/533,897, 60/533,975, 60/533,947, 60/533,948, each filed on Dec. 31, 2003; and of 60/540,510, filed Jan. 29, 2004. The '221 application is also a continuation in part of U.S. patent application Ser. No. 10/949,738 (P-US119-A-MF), filed Sep. 24, 2004. The '738 application is a continuation in part of U.S. patent application Ser. No. 10/772,943 (P-US097-A-MF), filed Feb. 4, 2004, which in turn claims benefit of U.S. Provisional Patent Application No. 60/445,186, filed Feb. 4, 2003. Both of the '738 and the '943 applications claim benefit of U.S. Provisional Application Nos. 60/506,015, filed Sep. 24, 2003; 60/533,933, filed Dec. 31, 2003, and 60/536,865, filed Jan. 15, 2004. Each of these applications, including any appendices attached thereto, is incorporated herein by reference as if set forth in full herein.
Number | Date | Country | |
---|---|---|---|
60641292 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13657375 | Oct 2012 | US |
Child | 15091537 | US | |
Parent | 12506547 | Jul 2009 | US |
Child | 13657375 | US | |
Parent | 11325405 | Jan 2006 | US |
Child | 12506547 | US |