The present invention relates generally to forming a shaped tubular member and, more particularly, to a method of forming a thickened tubular member of hydroformed metal tubing for assembling automotive structures.
It is known to form a cross-sectional profile of a tubular member by a hydro-forming process in which a fluid filled tubular blank is placed within a cavity of a die and then the die is closed so that the tubular blank is pinched within the die. Fluid pressure is then increased inside the tubular member to expand the blank outwardly against the cavity of the die to provide a tubular product having a die formed cross-sectional profile.
It is also known that hydroformed components are formed from ductile materials in sheet or tubular form by exerting fluid pressure to push the component material against the part defining surfaces of the cavity of the die. In the case of tubular hydroforming, in which the tube may be either rolled and welded, seamless, or extruded, the fluid that causes pressure forming is introduced through seals located at axial ends of the tube. The seals may either be of a type that lock the ends of the tube in their starting position, seal in such a way that allows some forming inducing motion of the end of the tube, or makes contact with the end of the tube to create a contact end seal. The last mentioned seal is often used to feed material into the die to enhance formability by inducing axial stress and changing the strain path of the formed material.
Axial feeding is used to enhance the ability to produce forms having a perimeter substantially larger than a starting perimeter of the tube. The typical process of hydroforming a component with axial feeding is to concurrently control the axial feeding and the internal pressure so that the die is substantially filled with material at the lowest pressure that is compatible with controlling material folding and wrinkling. During axial feeding, the seals are moved or driven into the tube axially. After achieving substantial die filling, the pressure is raised, without additional axial feeding of the seals in order to complete forming detail features of the part. In some cases, the hydroformed component produced may experience thinning or thickening as a result of various influences of part shape, e.g. part expansion, or material flow re-direction at, for example, the base of an extrudate when forming a “T” fitting, or at locations opposite the extrudate in a “T” fitting.
As a result, it is desirable to provide a new method of forming a thickened tubular member. It is also desirable to provide a method of forming a thickened tubular member by axial feeding. It is further desirable to provide a method of forming a tubular member with thickened axial ends that would allow welding of the hydroformed component in a weldable range or in a more robust welding condition. Therefore, there is a need in the art to provide a method of forming a thickened tubular member that meets these desires.
It is, therefore, one object of the present invention to provide a new method of forming a thickened tubular member.
It is another object of the present invention to provide a method of forming an axially thickened tubular member.
To achieve the foregoing objects, the present invention is a method of forming a thickened tubular member. The method includes the steps of providing a tubular member and positioning the tubular member between open die halves mating with one another to define a tubular cavity portion. The method also includes the steps of sealing ends of the tubular member. The method also includes the steps of applying at least nominal internal hydraulic pressure to the tubular member and progressively closing the die halves to progressively deform the tubular member within the tubular cavity portion. The method includes the steps of raising the hydraulic pressure substantially within the tubular member to expand and conform the tubular member to the tubular cavity portion. The method further includes the steps of thickening a wall thickness of the axial ends of the tubular member, separating the die halves, and removing the tubular member having thickened axial ends from the die.
One advantage of the present invention is that a method of forming a thickened tubular member is provided, increasing the stiffness of an end of the tubular member. Another advantage of the present invention is that the method increases the weldability of the end of the tubular member by raising the thickness of a material that is otherwise too thin to weld reliably into a valid weld range. Yet another advantage of the present invention is that the method increases the weldability of the end of a part in a joint configuration in which the weld gap is small and difficult to achieve. Still another advantage of the present invention is that the method returns the end of the tubular member to a weldable thickness for cases in which the end of the tubular member has a significant expansion that has reduced the thickness below a weldable range. A further advantage of the present invention is that the method allows long rail components to be formed at a material gage not considered weldable, thereby enabling part mass reduction with weldable ends. Yet a further advantage of the present invention is that the method improves component weld quality, improves joint stiffness, ability to use thinner gage material, thereby reducing vehicle mass.
Other objects, features, and advantages of the present invention will be readily appreciated, as the same becomes better understood, after reading the subsequent description taken in conjunction with the accompanying drawings.
Referring to the drawings and in particular
The method also includes the step of hydroforming the tubular member 10 to form a thickened tubular member. As illustrated in
The method also includes the step of sealing the first and second ends 12 and 14 of the tubular member 10 with first and second seals 20 and 22, respectively. The first seal 20 has an aperture 24 extending axially therethrough and the second seal 22 has an aperture 26 extending axially therethrough for feeding of a hydraulic fluid for hydroforming the tubular member 10. It should be appreciated that the first and second seals 20 and 22 make contact with the first and second ends 12 and 14 to create a contact end seal.
The method includes the step of applying at least nominal internal hydraulic pressure to the tubular member 10. The nominal internal hydraulic pressure is applied by pumping hydraulic fluid through the seals 20 and 22 and into the tubular member 10 under pressure. The first and second die halves are progressively closed so that the tubular member 10 is contained within the die and the pressurized fluid captured therein expands the walls of the tubular member 10 into the cavity 18 of the die.
The method includes the step of fully closing the die halves upon one another with the tubular member 10 being tightly clamped between the die halves. During this closing of the die halves, a relatively constant hydraulic pressure may be maintained within the tubular member 10 by incorporating a pressure control valve (not shown) into the seals 20 and 22 enclosing the ends 14 and 16 of the tubular member 10 so that hydraulic fluid may be forced from the tubular member 10 as it collapses.
Once the die is closed, the tubular member 10 is then expanded to a final cross-sectional profile by increasing the hydraulic pressure sufficient to exceed the yield limit of the tubular member 10 so that the tubular member 10 is forced into conformity with the tubular forming cavity 18 of the die halves. The method includes the steps of feeding axially the seals 20 and 22 into the ends 12 and 14 of the tubular member 10 and increasing the hydraulic pressure to expand and conform the tubular member 10 to the tubular cavity portion 18. The method further includes the steps of additional end feeding of tube wall material to the tubular member 10 by feeding axially the seals 20 and 22 further into the ends 12 and 14 of the tubular member 10 and stopping or terminating the additional end feeding after a predetermined time period. The method includes increasing the hydraulic pressure in the tubular member 10 after stopping or terminating the additional end feeding.
The method includes the steps of opening the die halves and removing the hydroformed tubular member with the ends 12 and 14 having a thickened wall thickness greater than the original wall thickness before hydroforming. For example, the wall thickness before hydroforming may be 1.2 mm and the wall thickness after hydroforming may be greater than 1.3 mm for a distance of 10 mm from the end of the first and second ends 20 and 22. The hydroformed tubular member may be assembled into a vehicle body (not shown). It should be appreciated that the ends of the part to be formed by axial feed forming are intentionally thickened by providing specifically modified pressure and material end feeding that are imposed near what would normally be considered the end of the forming cycle.
Referring to
The present invention has been described in an illustrative manner. It is to be understood that the terminology, which has been used, is intended to be in the nature of words of description rather than of limitation.
Many modifications and variations of the present invention are possible in light of the above teachings. Therefore, within the scope of the appended claims, the present invention may be practiced other than as specifically described.
Number | Name | Date | Kind |
---|---|---|---|
2992479 | Walton et al. | Jul 1961 | A |
3579805 | Kast | May 1971 | A |
5170557 | Rigsby | Dec 1992 | A |
5333775 | Bruggemann et al. | Aug 1994 | A |
5720092 | Ni et al. | Feb 1998 | A |
5899498 | Horton | May 1999 | A |
5918494 | Kojima et al. | Jul 1999 | A |
6014879 | Jaekel et al. | Jan 2000 | A |
6065502 | Horton | May 2000 | A |
6183013 | Mackenzie et al. | Feb 2001 | B1 |
6474534 | Gabbianelli et al. | Nov 2002 | B1 |
6484384 | Gibson et al. | Nov 2002 | B1 |
6497128 | Canfield et al. | Dec 2002 | B1 |
6609301 | Morris et al. | Aug 2003 | B1 |
6654995 | Wang et al. | Dec 2003 | B1 |
6701598 | Chen et al. | Mar 2004 | B1 |
6739166 | Shah | May 2004 | B1 |
20010000119 | Jaekel et al. | Apr 2001 | A1 |
20030204994 | Norek | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
43 37 517 | May 1995 | DE |
44 37 395 | May 1998 | DE |
Number | Date | Country | |
---|---|---|---|
20050166382 A1 | Aug 2005 | US |