Method of heat sanitization of a haemodialysis water circuit using a calculated dose

Information

  • Patent Grant
  • 12161787
  • Patent Number
    12,161,787
  • Date Filed
    Friday, February 17, 2023
    a year ago
  • Date Issued
    Tuesday, December 10, 2024
    12 days ago
Abstract
A method of sanitizing liquid for use in a medical device, the method comprising the steps of providing a medical device defining a water circuit with a volume of liquid, sensing the temperature of the volume of liquid with a sensor, heating the volume of liquid from an initial temperature to exceed a threshold temperature, maintaining the volume of liquid above the threshold temperature, determining a time-temperature value for the volume of liquid periodically once the threshold temperature has been exceeded, calculating a cumulative time-temperature value and providing an output signal once the cumulative time-temperature value has reached a level indicative of a sanitizing dose. A medical device and a liquid sanitizer are also disclosed.
Description

The present invention relates to the preparation of dialysis fluid for hemodialysis and related therapies and substitution fluid for use in online therapies, such as hemodiafiltration and hemofiltration. In particular, the present invention relates to a method for heat sanitization of a liquid used in one of the above processes.


It is known to use heat to destroy microorganisms. During a thermal destruction process, the rate of destruction of microorganisms is logarithmic, as is the rate of growth of the microorganisms. Thus bacteria subjected to heat are killed at a rate that is proportional to the number of organisms present. The process is dependent both on the temperature of exposure and the time required at this temperature to accomplish to desired rate of destruction.


Thermal calculations thus involve the need for knowledge of the concentration of organisms to be destroyed, the acceptable concentration of organisms that can remain behind (spoilage organisms, for example, but not pathogens), the thermal resistance of the target organisms (the most heat tolerant ones), and the time-temperature relationship required for destruction of the target organisms.


Disinfection of many water based systems in medical devices is frequently achieved by elevating the temperature for a stipulated period of time, thereby using heat to destroy the microorganism in the water. In dialysis it is common for a combination of 80 degrees Celsius (° C.) to be maintained for 30 minutes.


There are several well-established time-temperature relationships for moist heat disinfection which are regarded as equally acceptable. For moist heat disinfection a particular time at a particular temperature can be expected to have a predictable lethal effect against a standardised population of organisms. It is therefore possible to define a standard exposure which will yield a disinfected product in a correctly operated Washer Disinfector (WD). Actual exposures can then be related to these standard exposure conditions.


Definition of such disinfection processes may be achieved by means of the A0 method which uses a knowledge of the lethality of the particular process at different temperatures to assess the overall lethality of the cycle and express this as the equivalent exposure time at a specified temperature.


The A value is a measure of the heat resistance of a microorganism.


A is defined as the equivalent time in seconds at 80° C. to give a disinfection effect.


The z value indicates the temperature sensitivity of the reaction. It is defined as the change in temperature required to change the A value by a factor of 10.


When the z value is 10° C., the term A0 is used.


The A0 value of moist heat disinfection process is the equivalent time in seconds at a temperature of 80° C. delivered by that process to the product with reference to microorganisms possessing a z value of 10° C.







A
0

=




10

[


(

T
-
80

)

z

]



dt







Where:


A0 is the A value when z is 10° C.;


t is the chosen time interval, in seconds;


and T is the temperature in the load in ° C.


In calculating A0 values a temperature threshold for the integration is set at 65° C. since for temperatures below 65° C. the z and D value of thermophillic organisms may change dramatically and below 55° C. there are a number or organisms which will actively replicate.


In dialysis current practice, raising the temperature to 80° C. for 30 minutes gives a benchmark value A0 equal to 1800.


The present invention aims to provide an efficient method of heat sanitization of a haemodialysis water circuit.


According to the first aspect of the present invention, there is provided a method of sanitizing liquid for use in a medical device, comprising the steps of sensing the temperature of a volume of liquid with a sensor; heating the volume of liquid from an initial temperature to exceed a threshold temperature; maintaining the volume of liquid above the threshold temperature; determining a time-temperature value for the volume of liquid periodically once the threshold temperature has been exceeded; calculating a cumulative time-temperature value; and providing an output signal once the cumulative time-temperature value has reached a level indicative of a sanitizing dose.


Calculation of the time-temperature value for the volume of liquid based on the cumulative effect of heating the water provides a more accurate model of the sanitization process by ensuring a fixed dose of heat sanitization is applied to the volume of liquid. Furthermore, it maximises the benefits of high temperatures (in particular those above 80° C.) thereby reducing the time for which components are exposed to elevated temperatures. Natural variation in the control loop and water recirculation will cause natural temperature oscillations. Those time periods below 80° C. but above the minimum temperature range are integrated into the dose and those above are not leveraged according to the power law relationship.


The cumulative time-temperature value may be calculated by a processor. Alternatively, the cumulative time-temperature value may be calculated from a lookup table.


The method may comprise the further step of setting a target cumulative time-temperature value and providing the output signal once the target cumulative time-temperature value is reached.


The output signal may be in the form of an audible or visual alarm. This informs the user or operator that the sanitization process is complete.


The output signal may automatically cause termination of the liquid heating. This prevents the heat sanitization cycle from running for longer than is necessary.


The method may comprises the further step of maintaining the volume of liquid below an upper temperature. This may be to prevent boiling of the sanitizing liquid, or prevent unnecessary thermal stress on the components of the heat sanitization device.


The method may comprise the further step of setting the threshold temperature. The method may comprise the further step of setting an overall heating time. This allows the process to be tailored according to the environmental conditions (for example room temperature, liquid input temperature) the situational conditions, (for example emergency procedure, routine procedure, clinic timetables) and the patient's needs. Thus the time and/or temperature may be selected without compromising the dose of heat sanitization applied to the volume of liquid.


The threshold temperature may be between 55° C. and 65° C.


The upper temperature may be between 70° C. and 99° C.


Multiple temperature sensors may be used to provide the temperature of the volume of liquid.


In one embodiment, the cumulative time-temperature value may be calculated according to







A
0

=




10

[


(

T
-
80

)

z

]



dt







Where:


A0 is the A value when z is 10° C.;


t is the chosen time interval, in seconds;


and T is the temperature in the load in ° C.


This allows the destruction of organisms at 65° C. to 80° C. to be included in the calculation of the cumulative time-temperature value.


The A0 value may be equal to 1800.


According to a second aspect of the present invention, there is provided a liquid sanitizer comprising a tank containing a volume of liquid; a sensor arranged to sense the temperature of the volume of liquid; a heater arranged to heat the volume of liquid from an initial temperature to exceed a threshold temperature, and maintain the volume of liquid above the threshold temperature; and a processor, wherein the processor is configured to determine a time-temperature value for the volume of liquid periodically once the threshold temperature has been exceeded and calculate a cumulative time-temperature value so as to provide an output signal once a cumulative time-temperature value indicative of a sanitizing dose is reached.


The processor may be programmable to alter at least one of the threshold temperature and the cumulative time-temperature value.


According to a third aspect of the present invention, there is provided a dialyser incorporating the liquid sanitizer according to the second aspect of the present invention.





An embodiment of the present invention will now be described, by way of example only, with reference to the accompanying figures, in which:



FIG. 1 is a schematic of a dialysis machine incorporating the liquid sanitizer;



FIG. 2 is a magnified detail view of the liquid sanitizer of FIG. 1;



FIG. 3 is a temperature profile of the liquid in a liquid sanitizer undergoing a typical sanitization cycle; and



FIG. 4 is a temperature profile of the liquid in the liquid sanitizer of FIG. 1 undergoing a typical sanitization cycle.



FIG. 5 shows the non-linear contribution to the cumulative time-temperature value, during a single sanitization cycle referred to in the typical temperature profile of FIG. 4.





Referring to FIG. 1, a dialysis machine 10 is shown having a main body 12 and a hinged door 14. The door 14 is hinged so as to allow a dummy dialysis cartridge 16 to be received between the main body 12 and the door.


The machine 10 has a blood pumping portion indicated generally at 9 for pumping patient blood to and from a dialyser (not shown for clarity) in a known manner. The main body 12 has a platen 21 behind which is an engine portion (not shown for clarity). The platen 21 is configured to receive the dummy cartridge 16 within a recessed portion 25.


The engine portion includes a pneumatic pump for providing pressure and vacuum to operate the machine and a controller to control retention of the dummy cartridge 16 within the machine 10 and fluid flow on the dummy cartridge 16 as will be discussed in further detail below.


The door 14 has an outer side including a user interface 2. The door 14 includes an actuator in the form of an airbag (not shown), operable by the engine portion to provide a closure load to close the dummy cartridge 16 onto the platen 21 and to ensure that a continuous seal fully engages the dummy cartridge 16.


The dummy cartridge 16 will now be described in further detail. The dummy cartridge 16 has a chassis defining a door side and a platen side. In use the platen side of the cartridge 16 engages the platen 21 on the main body 12 of the machine 10, and the door side engages an interface plate (not shown) on the door 14 of the machine 10.


The dummy cartridge 16 is formed from an acrylic such as SG-10 which is moulded in two parts (a platen side and a patient side) before being bonded together to form the chassis. Both the platen side and door side are covered in a clear flexible membrane formed from, for example, DEHP-free PVC which is operable by pneumatic pressure applied to the membrane by the pneumatic compressor in the main body via the platen 21. In this way a series of flow paths 17 are formed in the cartridge for carrying sanitizing water.


In use, the engine portion of the machine 10 applies either a positive or negative pressure to the membrane via the platen 21 in order to selectively open and close valves and pumps to pump sanitizing fluid through the dummy cartridge 16, which is described in detail below.


The machine 10 has liquid sanitizer generally designated as 200. The arrows on FIG. 1 show the sanitizing water flow path when the liquid sanitizer is in use.


With reference to FIG. 2, the liquid sanitizer will be described in further detail.


The liquid sanitizer 200 has a tank 202, a heater 210 and a processor 230. The tank 202 contains, in use, a volume of water 203.


The tank 202 has an inlet 204 and a drain 206. The inlet 204 is connectable to a water source (not shown) and the drain 206 is connectable to a waste pipe (also not shown). The tank 202 also has a feed pipe 220 connectable to the dummy cartridge 16 via the platen 21 and a return pipe 224, also connectable to the dummy cartridge 16 via the platen 21. Referring back to FIG. 1, the dummy cartridge 16 has a sanitizing water circulation path 17 so as to complete a sanitizing water circuit comprising the tank 202, feed pipe 220, dummy cartridge 16 and return pipe 224.


The heater 210 has a heating element 212 arranged to heat the volume of water 203 contained within the tank 202, in this case by immersion in the volume of water 203 in the tank 202. The heater 210 is electronically connected to processor 230 by heater connector 211.


Temperature sensors are arranged on the sanitizing water circuit. A driver temperature sensor 222 is arranged on the feed pipe 220 adjacent the water tank 202. A return temperature sensor 226 is arranged on the return pipe 224 adjacent the water tank 202. A check temperature sensor 228 is arranged on the return pipe adjacent, but offset from, the return temperature sensor 226. All three temperature sensors are electronically connected to the processor 230 via sensor connectors. Driver temperature sensor 222 is electronically connected to processor 230 by sensor connector 223. Return temperature sensor 226 is electronically connected to processor 230 by sensor connector 227. Check temperature sensor 228 is electronically connected to processor 230 by sensor connector 229.


The electronic connectors 211, 223, 228, 229 may be wired or wireless. The processor 203 may be remote to both the tank 202 and heater 210.


The processor 230 thereby controls both the heating of the water and receives the temperature values for the sanitizing water circuit.


In use, the tank 202 of liquid sanitizer 200 is filled with the desired quantity of water via inlet 204. This would typically be 500 ml, which is the amount sufficient to flush out the water circuit of a kidney dialyser.


The liquid sanitizer is then turned on. The processor 230 activates the heater 210 to heat the volume of water via the heating element 221 and the pump draws the water around the sanitizing water circuit. The temperature of the water exiting the tank 202 via feed pipe 220 is periodically sensed by drive temperature sensor 222, and the temperature data is periodically sent to processor 230 via sensor connector 223. The temperature of the water returning to the tank 202 via return pipe 224 is periodically sensed by return temperature sensor 226, and the temperature data is periodically sent to processor 230 via sensor connector 227. The processor 230 therefore periodically receives sensed temperature data to provide a feedback loop to moderate the heating of the volume of water 203 to maintain the temperature of the volume of water 203 above a threshold temperature.


When the processor 230 receives data from the sensor 220 that the volume of water 203 has exceeded the threshold temperature, the processor 230 periodically samples the temperature of the volume of water via the return temperature sensor 226, which theoretically represents the lowest possible temperature of the water on the sanitizing water circuit.


The value is checked by periodically sampling the temperature of the volume of water via the check temperature sensor 228.


The sampling is performed periodically at, for example, 1 second intervals. The sampling intervals may be varied as appropriate.


Each sampled temperature represents a time-temperature value, which can be calculated by the processor 230, or alternatively generated by a look-up table.


The processor 230 calculates a cumulative time-temperature value for the volume of liquid 20 by summing the sampled time-temperature values. This is compared to a target total time-temperature value indicative of a sanitizing dose.


Once the calculated cumulative time-temperature value and the target cumulative time-temperature value are equal, the processor 230 sends an output signal to indicate that a sanitizing dose has been reached. The output signal is received by the heater and automatically switches off the heater 210.


In an alternate embodiment, the processor 230 may switch off the water heater 210 in advance of a sanitizing dose being reached, by calculating that there is sufficient thermal energy contained within the water circuit that the water temperature will remain above the threshold temperature for long enough to ensure a sanitizing dose is reached. In that case, periodic sampling would be continued, such that the processor 230 is able to send the output signal to indicate that a sanitizing dose had indeed been reached.


The output signal is received by the LCD display unit, which displays the text “COMPLETE” in reference to the completed sanitizing dose. In alternate embodiments, the LCD display unit includes an audible alarm. The audible alarm can be configured to bleep repeatedly until the sanitizer is turned off.


With reference to FIG. 3, a typical temperature profile 300 of the water in a known liquid sanitizer is shown during a single disinfection cycle.


The water already contained within the tank is at room temperature 301 (18° C.) initially. As cool fresh water is added from a tap to ensure the correct quantity of water is provided in the tank (wherein the cool fresh water is typically 8° C.), the overall temperature of the liquid will drop slightly 302.


The water temperature then rises substantially linearly towards the target temperature of 80° C. 305, which is reached at about 60 seconds. There is a slight oscillation 304 of about one and a half wavelengths where the water temperature exceeds and passes below 80° C. (to approximately 85° C. and 75° C. respectively) as the water heater finds the correct balance to maintain a constant water temperature of 80° C. After approximately 30 minutes at 80° C. the water heater is switched off 307 and the water temperature steadily decreases to room temperature (18° C.) 301.


With reference to FIG. 4 a typical temperature profile 400 of the water in the liquid sanitizer 200 is shown during a single disinfection cycle.


Similar notable points on the temperature profile are given similar reference numerals as that for FIG. 3, prefixed by a “4” instead of a “3” to indicate that they represent the temperature profile 400 of the water in the liquid sanitizer 200.


The initial drop in temperature 402 from room temperature 401 (18° C.) and subsequent heating of the water occurs following a similar time-temperature profile to that shown in FIG. 3.


However, when the temperature of the water exceeds the threshold temperature. 65° C. 403, the liquid sanitizer begins to record a time-temperature value.


Furthermore, when the target temperature 80° C. 405 is reached, the water temperature is continually raised 406 such that a greater time-temperature value contribution can be achieved with each sample.


The heater is switched off 407 after less than 8 minutes as there is sufficient thermal energy within the water to ensure that a complete sanitizing dose is achieved before the temperature of the water falls below the threshold temperature of 65° C. 403.


The overall cycle time for the sanitizing dose is slightly more than 8 minutes. This compares to the overall cycle time for a sanitizing dose according to the temperature profile of FIG. 3 of over 30 minutes.


An exemplary Lookup Table may include the following values for 1 second sampled increments:









TABLE 1







Lookup Table










Temperature
Time-temperature



(° C.)
value














95
35.481



94
28.184



93
22.387



92
17.783



91
14.125



90
11.22



89
8.913



88
7.079



87
5.623



86
4.467



85
3.548



84
2.818



83
2.239



82
1.778



81
1.413



80
1.122



79
0.891



78
0.708



77
0.562



76
0.447



75
0.355



74
0.282



73
0.224



72
0.178



71
0.141



70
0.112



69
0.089



68
0.071



67
0.056



66
0.045



65
0.035



64
0










Thus it can be seen that for each 1° C. increase in water temperatures above 80° C., the time-temperature contribution is significantly increased. Three seconds at 85° C. is equivalent to over 10 seconds at 80° C.


In FIG. 5, the non-linear contribution to the cumulative time-temperature value, during the single disinfection cycle referred to in the typical temperature profile of FIG. 4, is shown in the main graph. The main graph has the cumulative time temperature value on the Y-axis, and the cycle time (in seconds) on the X-axis. Three distinct periods of 10, one second samples are represented in charts 510, 520, 530, during the disinfection cycle, representing different regions of the main graph. The charts 510, 520, 530 show the time-temperature value contribution for each second according to the temperature sensed during the 1 second intervals.


In chart 510, the 10, one second samples are taken after approximately 50 seconds. During the 10 seconds, the water temperature increases from 64 to 67° C. This is shown by the line graph corresponding to the water temperature Y-axis on the left hand side of the chart. The time temperature contribution at these temperatures is represented by the bars, corresponding to the time temperature Y-axis on the right hand side of the chart.


No contribution is made when the water temperature is 64° C. A relatively small contribution to the time temperature value is made when the water temperature is 65 to 67° C. This corresponds to the flat region of the main graph. Summing the values for the bars indicates that the total contribution of the 10, one second intervals is 0.296. Although these contributions are small, they are counted and do contribute to shorten the time required for sanitisation. In the prior art, no credit is given for this heating phase.


In chart 520, the 10, one second samples are taken after approximately 140 seconds. During the 10 seconds, the water temperature increases from 79 to 82° C. This is shown by the line graph corresponding to the water temperature Y-axis on the left hand side of the chart. The time temperature contribution at these temperatures is represented by the bars, corresponding to the time temperature Y-axis on the right hand side of the chart. Note the difference in scale of the time temperature Y-axis of chart 520 to chart 510.


Increasing contributions to the time temperature value are made as the water temperature increases from 79 to 82° C. This corresponds to the steadily increasing region of the main graph. Summing the values for the bars indicates that the total contribution of the 10, one second intervals is 12.056.


In chart 530, the 10, one second samples are taken after approximately 420 seconds. During the 10 seconds, the water temperature increases from 83 to 86° C. This is shown by the line graph corresponding to the water temperature Y-axis on the left hand side of the chart. The time temperature contribution at these temperatures is represented by the bars, corresponding to the time temperature Y-axis on the right hand side of the chart. Note the difference in scale of the time temperature Y-axis of chart 530 to charts 510 and 520.


Greatly increasing contributions to the time temperature value are made as the water temperature increases from 83 to 86° C. This corresponds to the steep region of the main graph. Summing the values for the bars indicates that the total contribution of the 10, one second intervals is 30.282. Counting the actual contribution to sanitisation for the periods above 80° C. rather than treating these as the same as 80° C. considerably shortens the required time.


The charts are exemplary in nature only, and different time, temperature and associated time-temperature values are possible, and indeed envisaged.


One second intervals have been chosen as a reasonable sampling rate. The sampling interval could be longer or shorter. A longer sampling interval would preferably be associated with a steady temperature profile, whilst a shorter temperature cycle would preferably be associated with greater processing power.


In alternate embodiments of the liquid sanitizer, the processor may be programmable. Therefore the threshold temperature may be set manually. For example the threshold temperature may be set to a temperature between 55° C. and 65° C. The overall heating time may be set manually. For example, the heating time may be set to 8, 9 or 10 minutes. In this case the processor 230 calculates the necessary temperature profile over the heating time to ensure the volume of water receives a sanitizing dose.

Claims
  • 1. A method of sanitizing liquid for use in a medical device, the method comprising: receiving, from a sensor, a temperature of a liquid in a return line adjacent to a tank of a water circuit defined by the medical device;heating a volume of the liquid in the tank from an initial temperature to exceed a threshold temperature;maintaining the volume of the liquid in the tank above the threshold temperature;based on the temperature of the liquid in the return line adjacent to the tank of the water circuit, determining a time-temperature value for the liquid periodically once temperature of the volume of the liquid in the tank exceeds the threshold temperature;calculating a cumulative time-temperature value;determining whether the cumulative time-temperature value has reached a level indicative of a sanitizing dose; andproviding an output signal based on whether the cumulative time-temperature value has reached the level indicative of the sanitizing dose.
  • 2. The method according to claim 1 wherein calculating the cumulative time-temperature value includes determining the cumulative time-temperature value from a lookup table.
  • 3. The method according to claim 1 further comprising setting the cumulative time-temperature value to a target cumulative time-temperature value, wherein providing the output signal is based on whether the target cumulative time-temperature value is reached.
  • 4. The method according to claim 3 wherein the output signal is an audible alarm, a visual alarm, or a combination thereof.
  • 5. The method according to claim 3 wherein the output signal terminates heating the liquid.
  • 6. The method of claim 1 further comprising maintaining the volume of the liquid in the tank below a predetermined upper temperature.
  • 7. The method according to claim 6 further comprising setting the predetermined upper temperature.
  • 8. The method according to claim 1 further comprising setting the threshold temperature.
  • 9. The method according to claim 1 further comprising setting an overall heating time.
  • 10. The method according to claim 1 wherein the threshold temperature is between 55° C. and 65° C.
  • 11. The method according to claim 6 wherein the predetermined upper temperature is between 70° C. and 99° C.
  • 12. The method according to claim 1 wherein the cumulative time-temperature value is calculated according to
  • 13. The method according to claim 1 where the A0 value is equal to 1800.
Priority Claims (1)
Number Date Country Kind
1409796 Jun 2014 GB national
Parent Case Info

The present application is a continuation of U.S. application Ser. No. 16/752,507, filed 24 Jan. 2020, which is a continuation of U.S. application Ser. No. 15/315,114, filed 30 Nov. 2016 (Now U.S. Pat. No. 10,543,305), which is a submission under 35 USC § 371 of international application no. PCT/GB2015/051610, filed 2 Jun. 2015 and published in the English language with publication number WO 2015/185920 A1 on 10 Dec. 2015, which claims the benefit of the filing date of GB 1409796.8, filed 2 Jun. 2014; each of the aforementioned applications is expressly incorporated herein by reference in its entirety.

US Referenced Citations (240)
Number Name Date Kind
2696173 Thormod et al. Dec 1954 A
3338171 Conklin et al. Aug 1967 A
3468261 Schmierer et al. Sep 1969 A
3605566 Vetter et al. Sep 1971 A
3606592 Madurski et al. Sep 1971 A
3753493 Mellor Aug 1973 A
3774762 Lichtenstein Nov 1973 A
3807906 Breit Apr 1974 A
3921622 Cole Nov 1975 A
3972320 Kalman Aug 1976 A
4070725 Austin et al. Jan 1978 A
4142845 Lepp et al. Mar 1979 A
4161264 Malmgren et al. Jul 1979 A
4205686 Harris et al. Jun 1980 A
4353990 Manske et al. Oct 1982 A
4366061 Papanek et al. Dec 1982 A
4368261 Klose et al. Jan 1983 A
4370983 Lichtenstein Feb 1983 A
4430048 Fritsch Feb 1984 A
4494912 Pauliukonis Jan 1985 A
D277991 Becker Mar 1985 S
4534755 Calvert et al. Aug 1985 A
4534756 Nelson Aug 1985 A
4546669 Fischer et al. Oct 1985 A
4564342 Weber et al. Jan 1986 A
4599165 Chevallet Jul 1986 A
4648869 Bobo, Jr. Mar 1987 A
4666598 Heath et al. May 1987 A
4710163 Butterfield Dec 1987 A
4771792 Seale Sep 1988 A
4828543 Weiss et al. May 1989 A
4897184 Shouldice et al. Jan 1990 A
D308249 Buckley May 1990 S
4969991 Valadez Nov 1990 A
5000664 Lawless et al. Mar 1991 A
5012197 Seiffert et al. Apr 1991 A
5032265 Jha et al. Jul 1991 A
5055198 Shettigar Oct 1991 A
5095910 Powers Mar 1992 A
5103211 Daoud et al. Apr 1992 A
5126831 Nakagawara Jun 1992 A
5232434 Inagaki et al. Aug 1993 A
5252213 Ahmad et al. Oct 1993 A
D341890 Sievert et al. Nov 1993 S
D344339 Yoshikawa et al. Feb 1994 S
5304349 Polaschegg Apr 1994 A
D347896 Dickinson et al. Jun 1994 S
D351470 Scherer et al. Oct 1994 S
5385540 Abbott et al. Jan 1995 A
5421823 Kamen et al. Jun 1995 A
5458468 Ye et al. Oct 1995 A
5476368 Rabenau et al. Dec 1995 A
5476792 Ezrielev et al. Dec 1995 A
D370979 Pascale et al. Jun 1996 S
5558347 Nicholson Sep 1996 A
5586872 Skobelev et al. Dec 1996 A
5586873 Novak et al. Dec 1996 A
5591344 Kenley et al. Jan 1997 A
5643201 Peabody et al. Jul 1997 A
5650071 Brugger et al. Jul 1997 A
5653456 Mough Aug 1997 A
5658456 Kenley et al. Aug 1997 A
5665307 Kirschner et al. Sep 1997 A
5727550 Montecalvo Mar 1998 A
D395085 Kenley et al. Jun 1998 S
5788851 Kenley et al. Aug 1998 A
5807322 Lindsey et al. Sep 1998 A
5882300 Malinouskas et al. Mar 1999 A
5948247 Gillerfalk et al. Sep 1999 A
5957670 Duncan et al. Sep 1999 A
5995910 Discenzo Nov 1999 A
6077443 Goldau Jun 2000 A
6126831 Goldau et al. Oct 2000 A
6132378 Marino Oct 2000 A
6143181 Falkvall et al. Nov 2000 A
6153102 Kenley et al. Nov 2000 A
6216029 Paltieli Apr 2001 B1
6218329 Singh et al. Apr 2001 B1
6251279 Peterson et al. Jun 2001 B1
6261065 Nayak et al. Jul 2001 B1
6303036 Collins et al. Oct 2001 B1
6382923 Gray May 2002 B1
6514462 Simons Feb 2003 B1
6517239 Roth Feb 2003 B1
6558347 Jhuboo et al. May 2003 B1
6582206 Schluecker Jun 2003 B2
6626832 Paltieli et al. Sep 2003 B1
6626878 Leisner et al. Sep 2003 B1
6645176 Christenson et al. Nov 2003 B1
6663829 Kjellstrand Dec 2003 B1
6733476 Christenson et al. May 2004 B2
6743204 Christenson et al. Jun 2004 B2
6801646 Pena et al. Oct 2004 B1
6814547 Childers et al. Nov 2004 B2
6967002 Edgson et al. Nov 2005 B1
7040142 Burbank May 2006 B2
7107837 Lauman et al. Sep 2006 B2
7153286 Busby et al. Dec 2006 B2
7220358 Schacht et al. May 2007 B2
7284964 McDowell et al. Oct 2007 B2
7383721 Parsons et al. Jun 2008 B2
7434312 Christenson et al. Oct 2008 B2
7494590 Felding et al. Feb 2009 B2
7604398 Akers et al. Oct 2009 B1
7648627 Beden et al. Jan 2010 B2
7857976 Bissler et al. Dec 2010 B2
7874999 Busby Jan 2011 B2
7896197 Furey et al. Mar 2011 B2
D641882 Hickey et al. Jul 2011 S
8114043 Muller Feb 2012 B2
8132388 Nagy et al. Mar 2012 B2
8137184 Ajiro et al. Mar 2012 B2
8137300 Han et al. Mar 2012 B2
8167431 DeCusatis et al. May 2012 B2
8187184 Muller et al. May 2012 B2
8192388 Hogard Jun 2012 B2
8197431 Bennison Jun 2012 B2
8221320 Bouton Jul 2012 B2
8348850 Frinak et al. Jan 2013 B2
8360977 Marttila et al. Jan 2013 B2
8529490 Wariar et al. Sep 2013 B2
8535522 Fulkerson et al. Sep 2013 B2
8535525 Heyes et al. Sep 2013 B2
D693469 Chung et al. Nov 2013 S
8597505 Fulkerson et al. Dec 2013 B2
D702842 Hyde et al. Apr 2014 S
8685244 Heyes et al. Apr 2014 B2
8696571 Marttila et al. Apr 2014 B2
8708908 Bouton Apr 2014 B2
8708946 Han et al. Apr 2014 B2
D705432 Lura et al. May 2014 S
8798908 Bourdeaut Aug 2014 B2
8801646 Han et al. Aug 2014 B2
D714454 Amemiya et al. Sep 2014 S
D714946 Lura et al. Oct 2014 S
8926544 Hogard Jan 2015 B2
D724740 Collins et al. Mar 2015 S
8974394 Frinak et al. Mar 2015 B2
9011334 Bouton Apr 2015 B2
D735868 Mareguddi et al. Aug 2015 S
9220825 Buckberry Dec 2015 B2
D781410 Ritter et al. Mar 2017 S
9744285 Heyes et al. Aug 2017 B2
9833553 Higgitt et al. Dec 2017 B2
10314962 Buckberry Jun 2019 B2
10456516 Heyes et al. Oct 2019 B2
D867597 Bauer et al. Nov 2019 S
10543305 Buckberry et al. Jan 2020 B2
D879967 Verguldi et al. Mar 2020 S
D907211 Spurling Jan 2021 S
10881775 Wallace Jan 2021 B2
10960120 Wallace et al. Mar 2021 B2
D924410 Mendoza et al. Jul 2021 S
D938046 Gupta et al. Dec 2021 S
11365728 Westenbrink Jun 2022 B2
11571499 Milad et al. Feb 2023 B2
11583618 Buckberry et al. Feb 2023 B2
20030217962 Childers et al. Nov 2003 A1
20040195157 Mullins et al. Oct 2004 A1
20040206703 Bosetto et al. Oct 2004 A1
20040215129 Edgson et al. Oct 2004 A1
20040223857 Kline et al. Nov 2004 A1
20050020961 Burbank et al. Jan 2005 A1
20050205476 Chevallet et al. Sep 2005 A1
20050209547 Burbank et al. Sep 2005 A1
20050234384 Westberg et al. Oct 2005 A1
20060121623 He et al. Jun 2006 A1
20070083193 Werneth et al. Apr 2007 A1
20080006089 Adnan et al. Jan 2008 A1
20080200865 Bedingfield Aug 2008 A1
20080283096 Scheringer et al. Nov 2008 A1
20090007642 Busby et al. Jan 2009 A1
20090009290 Kneip et al. Jan 2009 A1
20090012450 Shah et al. Jan 2009 A1
20090012452 Slepicka et al. Jan 2009 A1
20090012457 Childers et al. Jan 2009 A1
20090101550 Muller et al. Apr 2009 A1
20090211975 Brugger et al. Aug 2009 A1
20090230043 Heyes et al. Sep 2009 A1
20100043694 Patel Feb 2010 A1
20100045471 Meyers Feb 2010 A1
20100089807 Heyes et al. Apr 2010 A1
20100139254 Sebestyen et al. Jun 2010 A1
20100263687 Braun et al. Oct 2010 A1
20110009797 Kelly et al. Jan 2011 A1
20110034850 Jonsson Feb 2011 A1
20110132838 Curtis et al. Jun 2011 A1
20110168614 Pouchoulin et al. Jul 2011 A1
20120164022 Muginstein et al. Jun 2012 A1
20120269907 Coates Oct 2012 A1
20120276549 Cunningham et al. Nov 2012 A1
20120292237 Heyes et al. Nov 2012 A1
20120308431 Kotsos et al. Dec 2012 A1
20130037465 Heyes et al. Feb 2013 A1
20130056419 Curtis Mar 2013 A1
20130153495 Kelly et al. Jun 2013 A1
20130199998 Kelly et al. Aug 2013 A1
20130274642 Soykan et al. Oct 2013 A1
20140224736 Heide et al. Aug 2014 A1
20140251885 Heyes Sep 2014 A1
20140271106 Alessandro et al. Sep 2014 A1
20140299544 Wilt et al. Oct 2014 A1
20150027951 Wallace et al. Jan 2015 A1
20150076053 Higgitt et al. Mar 2015 A1
20150112119 Buckberry Apr 2015 A1
20150129481 Higgitt et al. May 2015 A1
20150238673 Gerber et al. Aug 2015 A1
20150258263 Hogard et al. Sep 2015 A1
20150352269 Gerber et al. Dec 2015 A1
20150359954 Gerber et al. Dec 2015 A1
20160045656 Buckberry Feb 2016 A1
20160051743 Buckberry Feb 2016 A1
20160058933 Ballantyne et al. Mar 2016 A1
20160076535 Clifton et al. Mar 2016 A1
20160077644 Ritter et al. Mar 2016 A1
20170056576 Doyle et al. Mar 2017 A1
20170167983 Klomp et al. Jun 2017 A1
20170252498 Heyes et al. Sep 2017 A1
20170296730 Soto et al. Oct 2017 A1
20180133391 Heyes et al. May 2018 A1
20180154059 Heyes et al. Jun 2018 A1
20180193545 Crnkovich et al. Jul 2018 A1
20180344915 Wallace Dec 2018 A1
20190001042 Buckberry Jan 2019 A1
20190015577 Garrido et al. Jan 2019 A1
20190024654 May et al. Jan 2019 A1
20190358381 Westenbrink Nov 2019 A1
20190374698 Buckberry et al. Dec 2019 A1
20190376504 Westenbrink Dec 2019 A1
20190385434 Yuds et al. Dec 2019 A1
20200030515 Merchant et al. Jan 2020 A1
20200075159 Bardorz et al. Mar 2020 A1
20200268958 Heyes et al. Aug 2020 A1
20200276372 Milad et al. Sep 2020 A1
20200330671 Buckberry et al. Oct 2020 A1
20210110920 Heyes et al. Apr 2021 A1
20220001087 Heyes et al. Jan 2022 A1
20220160943 Buckberry et al. May 2022 A9
20220241480 Fincham Aug 2022 A1
20220241573 Fincham Aug 2022 A1
Foreign Referenced Citations (64)
Number Date Country
81430 Aug 1997 CA
10024447 Nov 2001 DE
EU0043757640001 Oct 2017 EM
EU0043757640002 Oct 2017 EM
EU0079551250002 Jun 2020 EM
0165751 Dec 1985 EP
0754468 Jan 1997 EP
2219703 Aug 2010 EP
2955512 Dec 2015 EP
2310136 Dec 1976 FR
90079551250001 May 2020 GB
90079551250002 May 2020 GB
H04266740 Sep 1992 JP
H06261872 Sep 1994 JP
H07174659 Jul 1995 JP
2000130334 May 2000 JP
1645323 Nov 2020 JP
WO-8101800 Jul 1981 WO
WO-9100113 Jan 1991 WO
WO-9116542 Oct 1991 WO
WO-9506205 Mar 1995 WO
WO-9525893 Sep 1995 WO
WO-9625214 Aug 1996 WO
WO-9710013 Mar 1997 WO
WO-9728368 Aug 1997 WO
WO-9929356 Jun 1999 WO
WO-0006217 Feb 2000 WO
WO-0057935 Oct 2000 WO
WO-02066833 Aug 2002 WO
WO-02081917 Oct 2002 WO
WO-03101510 Dec 2003 WO
WO-2005044339 May 2005 WO
WO-2005080794 Sep 2005 WO
WO-2006120415 Nov 2006 WO
WO-2006120417 Nov 2006 WO
WO-2008100671 Aug 2008 WO
WO-2008106191 Sep 2008 WO
WO-2008135245 Nov 2008 WO
WO-2009006489 Jan 2009 WO
WO-2009024333 Feb 2009 WO
WO-2009038834 Mar 2009 WO
WO-2009061608 May 2009 WO
WO-2009127624 Oct 2009 WO
WO-2010089130 Aug 2010 WO
WO-2010146343 Dec 2010 WO
WO-2011027118 Mar 2011 WO
WO-2011068885 Jun 2011 WO
WO-2011105697 Sep 2011 WO
WO-2011105698 Sep 2011 WO
WO-2013052680 Apr 2013 WO
WO-2013057109 Apr 2013 WO
WO-2013110906 Aug 2013 WO
WO-2013110919 Aug 2013 WO
WO-2013114063 Aug 2013 WO
WO-2013121162 Aug 2013 WO
WO-2013121163 Aug 2013 WO
WO-2014072195 May 2014 WO
WO-2014082855 Jun 2014 WO
WO-2014155121 Oct 2014 WO
WO-2015007596 Jan 2015 WO
WO-2015022537 Feb 2015 WO
WO-2016016870 Feb 2016 WO
WO-2017137723 Aug 2017 WO
WO-2018115816 Jun 2018 WO
Non-Patent Literature Citations (8)
Entry
Ergo-Express Motorized Dialysis Cart, Aug. 14, 2017, youtube.com [online], [site visited Jan. 9, 2022], Available from internet, URL: [https://www.youtube.com/watch?v=j4rAXthOmbY] (Year: 2017), 1 page.
He et al., “A Fluorescent Sensor with High Selectivity and Sensitivity for Potassium in Water,” Journal of the American Chemical Society 2003 125 (6), 1468-1469.
Home Dialysis Tescon Aqua Tech, Aug. 1, 2020, youtube.com [online], [site visited Jan. 9, 2022], Available from internet, URL: [https://www.youtube.com/watch?v=WLLPZoS_mz] (Year: 2020), 1 page.
Kivi, Air Embolism, Healthline, Aug. 20, 2012, p. 1-5.
LHO2028 Portable Hemodialysis Machine, date unknown, aliexpress.com [online], [site visited Jan. 4, 2022], Available from internet: [https://www.aliexpress.com/item/1005003324875329.html?randl_currency=USD&_randl_shipto=US&src=google&afffcid=1003bab3b8db4e93b9ba88522a14cfc1-1641319351626-05232-UneMJZVf&aff_fsk=UneMJZVf&aff_platform=aaf&sk=UneMJZVf&aff_trace_key=] (Year: 2022), 9 pages.
Medical Hemodialysis Machine, date unknown, aliexpress.com [online], [site visited Jan. 4, 2022], Available from internet: [https://www.aliexpress.com/item/1005003445721549.html?_randl_currency=USD&_randl_shipto=US&src=google&aff_fcid=a524f3f9cd9b4976b6b47962f3439d62-1641319166409-02691-UneMJZVf&aff_fsk=UneMJZVf&aff_platform=aaf&sk=UneMJZVf&aff_trace_key=a524f3f9cd9b4976b6b47962f3439d62-1641319166409-02691-UneMJZVf&terminal_id=d0c2cca4b7664d 128cb4801 a9ef03ff2] (Year: 2022), 12 pages.
Millenium HX Portable Dialysis Water System, Jul. 2, 2014, youtube.com [online], [site visited Jan. 10, 2022], Available from internet, URL: [https://www.youtube.com/watch?v=IGEbPi2CDsw] (Year: 2014), 1 page.
Portable home dialysis device, Nov. 2, 2017, med-technews.com [online], [site visited Jan. 4, 2022], Available from internet: [https://www.med-technews.com/news/portable-home-dialysis-device-to-launch-next-year/] (Year: 2017), 2 pages.
Related Publications (1)
Number Date Country
20230201433 A1 Jun 2023 US
Continuations (2)
Number Date Country
Parent 16752507 Jan 2020 US
Child 18111529 US
Parent 15315114 US
Child 16752507 US