This invention relates generally to high temperature superconductors, and more specifically relates to a method for heat treatment of the precursor assemblies for such superconductors.
High temperature superconductors (HTcs) must be precisely heat-treated to develop their maximum high current density. In the laboratory small sample lengths of conductors are heat-treated to obtain the maximum current density.
Furthermore, because of the very brittle nature of the heat-treated conductor any magnet or other device is made by the “wind and react method”, e.g. a magnet is wound with the wire conductor which is the precursor for the superconductor, and then the wound structure is heat treated in a furnace for an ideal superconducting performance. The winding depth and height are rather high, and it is very difficult to perform an ideal heat treatment for such a wound coil.
Now in accordance with the present invention, the superconductor precursor wires or strands are disposed about a central heating element, whereby the heating element can provide direct input heating to the surrounding wires or strands, in accordance with the desired heat treatment schedule. The internal heater additionally serves as reinforcement for the conductors, i.e., by increasing the mechanical strength.
In the drawings:
The following illustratively assumes that the device being fabricated is a magnet, although the method similarly applies to any device or spool of cable. As shown in
The heater element or core 12 also acts as a reinforcing element. Because of the high field environment in a superconducting magnet very high magnetic forces are produced, which in turn generate very large strains on the conductor, which could result in damage to the usually brittle superconductor.
In even a moderately large device it is almost impossible to heat-treat the entire object using a conventional furnace or, for that matter, any heating device that uses external heating. Because of the mass of the device, even if a relatively small one, external heating cannot control the heat-treatment process. As can be seen from
The heating element core 12 may also be a thermostatically formulated conductor which abruptly changes resistance at a preset temperature. While this is useful for only a single set temperature, not a progression of different temperatures, it can be set for the highest temperature that is the most critical. Two heating elements in a parallel-series arrangement can also control the temperature. One element is the thermostatic wire and the other a normal heating element. At intervals they are connected. When the thermostatic heater reaches temperature it will cut off. The overall wattage dissipated in that section will drop. This controls the heat input in the entire magnet in as short an increment as required. The thermostatic wires do not require any mechanical relays or any extra volume over a normal heating element. It is also possible to use a hollow central tube, connected to a high-pressure pump. The pump circulates a heat transfer fluid from a reservoir programmed to the temperature cycle required.
Thus in the present invention a high temperature oxide superconductor assembly is provided consisting of a central heating element upon which high temperature oxide superconductor strands are cabled. A high temperature oxide superconductor magnet or other device is thus heat-treated by the use of internal heaters. The use of the internal heater serves as well to create a reinforcing mechanical strength in the superconductor coil or the like.
While the present invention has been described in terms of specific embodiments thereof, it will be understood in view of the present disclosure, that numerous variations upon the invention are now enabled to those skilled in the art, which variations yet reside within the scope of the present teaching. Accordingly, the invention is to be broadly construed, and limited only by the scope and spirit of the claims now appended hereto.
This application claims priority from U.S. Provisional Application Ser. No. 60/547,392 filed Feb. 24, 2004.
| Number | Date | Country | |
|---|---|---|---|
| 60547392 | Feb 2004 | US |