The invention relates to a method of heating the interior of a vehicle having an internal combustion engine with fuel injection wherein the waste heat transferred from the internal combustion engine to the coolant is supplied via a heat exchanger to the vehicle interior and for increasing the heat transferred to the coolant during low load operation of the internal combustion engine the injector is operated so as to reduce the efficiency of the engine.
DE 196 44 402 C1 discloses a method of heating the interior of a vehicle which includes a diesel internal combustion engine with a heating circuit including a heat exchanger for heating the vehicle interior. The internal combustion engine is operated during low load operation, particularly during engine warm-up with reduced efficiency and increased heat transfer to the coolant in order to increase the heat capacity for heating the vehicle interior. For the reduction of the efficiency, the ignition timing is retarded with respect to the optimal fuel injection timing.
In a motor vehicle with an internal combustion engine having external exhaust gas recirculation and a heating system for the vehicle interior according to WO97/47865, the exhaust gas recirculation is utilized for reducing the temperature as far as the combustion peak temperature is concerned in that in a heat exchanger, heat is removed from the exhaust gas flowing through the exhaust gas recirculation line and used for the heating system of the vehicle. The residual heat of the recirculated exhaust gas consequently should be as small as possible in order to hold the temperature of the intake gas comprising fresh air and the recirculated exhaust gas as low as possible in order to reduce combustion peak temperature since with increasing combustion temperature also the formation of nitrogen oxides is increased.
For charged internal combustion engines with exhaust gas recirculation, it is known from DE 196 18 868 A1 to connect the exhaust gas turbine and the compressor to the exhaust gas side of the engine by way of a heat exchanger in such a way that by means of the fuel exchanger the gas temperature is reduced upstream of the gas turbine and ahead of the compressor the temperature is increased such that the pressure differential required for the exhaust gas circulation is increased and ensured.
Furthermore, from DE 100 29 231 A1, an arrangement and a method for increasing the heating capacity for heating the passenger space of a motor vehicle is known, wherein the internal combustion engine of the vehicle is controlled for an operation at reduced efficiency that is, at increased losses in order to heat the engine more rapidly and, by the increase of waste heat, to more rapidly heat the vehicle interior via corresponding heat transfer devices.
It is the object of the present invention to provide a method of heating a motor vehicle interior wherein the heat transfer to the coolant is further increased so that the heating capacity of the engine coolant is increased.
In a method of heating the interior of a vehicle having an internal combustion engine with fuel injection and a coolant circuit for transferring waste heat from the internal combustion engine via a heat exchanger to the vehicle interior by increasing the amount of heat transferred to the coolant during low load engine operation by intentional reduction of the engine operating efficiency, the engine is operated with high exhaust gas recirculation rates while transferring heat from the exhaust gas to the coolant for heating the vehicle interior and heating with the relatively large amount of recirculated gas the intake air so that, during the following compression of the intake air and recirculated gas in the engine combustion chamber, the air is heated early to an ignition temperature permitting early combustion of injected fuel whereby the fuel injection phase can be extended not only toward late injection but also toward early injection providing for a relative long combustion period with a decrease in engine efficiency but an increase in heat generation by the engine.
The increase of the combustion period is also advantageous for the noise behavior of the diesel engine which is particularly critical during engine warm-up so that the solution according to the invention results in an “oven-like” combustion behavior with—in comparison with an efficiency-optimized fuel injection—an intentionally reduced efficiency and therefore improved heating capacity for the vehicle interior, which also acoustically improves the passenger comfort.
In a particular embodiment, the internal combustion engine can be operated in the low load warm-up phase with—in comparison with common exhaust gas recirculation rates of internal combustion engines—very high exhaust recirculation rates which may reach up to 70% and preferably are set up for a range of 50 to 60%.
Furthermore, particularly in connection with a turbocharged diesel engine, an operation has been found to be expedient wherein exhaust gas is branched off the exhaust line ahead of the connection of the exhaust pipe to the exhaust gas turbocharger, so that the exhaust gases have a high temperature level at the heat exchanger. The high thermal energy of the exhaust gases are advantageous for the efficiency and the power output of the turbocharger.
The invention will become more readily apparent from the following description of a particular embodiment thereof on the basis of the accompanying drawings.
The internal combustion engine is cooled by a liquid in a conventional way and includes a cooling circuit which is connected to the exhaust gas recirculation line by a heat exchanger 9. The connection to the cooling circuit of the internal combustion engine 1 is indicated by the connecting lines 12. The fuel injection into the combustion chamber 4 of the diesel engine 1 is indicated by an injection nozzle 13. Furthermore, the internal combustion engine 1 is provided with a control unit 14 which, in a well-known manner, depending on a multitude of parameters relevant to the operation of the vehicle and the operation of the internal combustion engine, controls for example the exhaust gas valve 10, the injection nozzle 13 and, if present, the turbocharger 11. The respective control paths are indicated by the lines 15 to 17.
Modern diesel internal combustion engines operate at such a good efficiency that waste heat, particularly during warm-up, but also generally during low load operation, is often insufficient for heating the vehicle interior, particularly for a fast heating thereof, by heat exchange with the cooling circuit of the internal combustion engine, particularly at low ambient temperatures. In accordance with the invention, therefore also the thermal energy contained in the exhaust gas of the internal combustion engine is utilized for heating the vehicle interior and this is done by cooling the exhaust gas recirculated through the exhaust gas recirculation line 8 to the inlet via the heat exchanger 9. The exhaust gas recirculation results in a temperature increase of the engine intake air and consequently also increases the start-out temperature in the combustion chamber 4 for the compression so that, inspite of a reduced filling degree because of the higher temperature of the gas-air mixture entering the combustion chamber the gas compression in the combustion chamber rapidly causes heating of the gas to the ignition temperature so that the fuel injection timing can be advanced. As a result, particularly with a correspondingly timed interrupted injection of the injection volume, the combustion can be extended over a relatively long period which on one hand reduces the efficiency of the internal combustion engine but, on the other hand, increases the heat generated and results in a more rapid and intense heating of the engine cooling circuit and also in higher exhaust gas temperatures. This again is utilized for increasing the heating capacity. The reduced efficiency of the internal combustion engine combustion engine obtained with this procedure has no further disadvantages since, in accordance with the invention, it is used only during low load operation of the engine. The procedure is in fact alleviates a disadvantage of diesel engines, that is, the loud knocking noise during a cold start is reduced since small amounts of fuel are injected over a longer time period.
Under b)
The fuel injection curves according to
In connection with the method according to the invention exhaust gas recirculation can be established, in comparison with high power operation of the internal combustion engine, with higher exhaust gas recirculation rates of up to 70%. Ranges of 40-70% particularly of about 50-60% have been found to be very advantageous. Depending on the design of the internal combustion engine, the size of the engine displacement and the respective engine operation method, it may however be advantageous to use lower exhaust gas recirculation rates. The recirculation rates are not dependent on a supercharged engine operation which is very advantageous, since in connection with the present invention engine operation with the higher exhaust gas recirculation rates is established only during low load engine operation where the relatively high thermal energy of the exhaust gases does not result in a thermal overload of the exhaust gas turbocharger because the exhaust gas volume supplied to the turbine is relatively small. On the other hand, the comparatively small exhaust gas volume results in a relatively high turbocharger power output.
This makes it possible to provide for a high turbocharger speed in a relatively low power operating range of the engine. Upon changing over to higher engine power output (torque), noticeably increased engine dynamics are obtained in this way.
Number | Date | Country | Kind |
---|---|---|---|
102 60 781.8 | Dec 2002 | DE | national |
This is a Continuation-In-Part Application of International Application PCT/EP03/13068 filed 21 Nov. 2003 and claiming the priority of German application 102 60 781.8 filed 23 Dec. 2002.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP03/13068 | Nov 2003 | US |
Child | 11159091 | Jun 2005 | US |