The present invention relates generally to power generation systems and more specifically to a method of joining at least two components, a method of rendering a component resistant to erosion and a turbine blade.
Components in power generation systems, such as the turbine rotor blades and the turbine stator blades that are used in turbine equipment are exposed to an erosive environment in which these components are susceptible to erosion caused by water droplets in the steam and by fine dust from oxide scale. In particular, water droplets can cause substantial erosion of rear-stage turbine blades, where such water droplets are mixed with the steam for turbine driving. Erosion of turbine blades is problematic because it results in blade thinning and fatigue breakdown of the blade brought about by erosion.
Various erosion preventive measures have been implemented to try to increase the durability of turbine components against erosion. One of these preventative measures involves methods that use low heat-input build-up welding with a high energy-density heat source, such as laser beams to build up a plurality of single layers of on the turbine component.
Build-up welding takes a significant amount to time to achieve the desired erosion protection layer. Another problem with using a build-up method is that the erosion layer must also be machined after formation to the desired blade geometry, increasing processing steps and time in manufacturing. Yet another problem with build-up welding methods using laser beams is that STELLITE®, a traditional erosion shielding material, has a considerable amount of carbon, of about 1.0 wt %. As a result, a complex carbon dilution layer forms through mixing of the STELLITE® layer and the matrix of the underlying turbine component during welding, even with low heat input. This carbon dilution layer is undesirable in welding operations, as it may result in high-temperature cracking at build-up welded portions. In addition to the problem posed by the formation of the carbon dilution layer, the residual stresses (tensile residual stresses) caused by contraction during build-up welding increases as the STELLITE® build-up amount becomes greater. These residual stresses, which are difficult to remedy significantly through heat treatment after build-up welding, may give rise to breakage in the form of peeling of the end of the build-up portion, or cracking at the weld metal portions, in the environment where the turbine operates.
When STELLITE® is build-up welded by laser the hardness of STELLITE® weld metal portions becomes extremely large compared to that of ordinary forged parts. When using STELLITE® No. 6, for instance, the Rockwell C scale hardness of a forged part is of about 35 to 40, whereas the hardness of a build-up welded portion formed using laser welding exhibits a higher value, of 50 or more. That is, build-up welded portions formed using laser are extremely hard, and hence susceptible to cracking in the welded portions. A rise in the hardness of the build-up welded portions is accompanied by an increase in strength, but also by a drop in ductility and toughness. That is, the hardness of the build-up welded portions promotes the occurrence of cracking in weld metal portions and breakage in the form of peeling of the end of the build-up portion.
Therefore, a method of joining at least two components, a method of preventing erosion of a base component and an erosion resistant turbine blade for power generation systems that do not suffer from the above drawbacks is desirable in the art.
According to an exemplary embodiment of the present disclosure, a method of joining at least two components is provided. The method includes providing a laser cladding apparatus and aligning and joining a first component and a second component. The first component has a first joining surface adjacent to a second joining surface of a second component. In the step of joining, the first joining surface and the second joining surface are joined along a joining plane by the laser cladding apparatus. A joining material from the laser cladding apparatus provides at least one joining layer between the first joining surface and the second joining surface. The first and second joining surfaces include a bevel angle.
According to another exemplary embodiment of the present disclosure, a method for rendering of a component resistant to erosion is provided. The method includes providing a first component and an erosion preventative component, the erosion preventive component comprising a unitary structure. The method includes aligning the first component with the erosion preventative component along a joining plane. The method includes joining the first component with the erosion preventative component using high-density energy irradiation. The step of joining includes a joining material that is excited by the high-density energy irradiation, wherein the joining material fuses the erosion preventative component to the first component. The first component and the erosion preventive component include a bevel angle.
According to another exemplary embodiment of the present disclosure a turbine blade is provided. The turbine blade includes an airfoil having a leading edge and an erosion shield joined to the leading edge of the airfoil with a joining material. The airfoil and erosion shield are joined by at least one joining layer formed by the joining material and a laser cladding process.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.
Provided is a method of joining at least two components, a method of preventing erosion of a base component and an erosion resistant turbine blade for power generation systems that do not suffer from the drawbacks in the prior art.
One advantage of an embodiment of the present disclosure includes a localized thicker erosion shield for increased protection against water droplets on the last stage buckets (LSBs). Another advantage of an embodiment of the present disclosure includes a method that applies an erosion shield with less surface disruption of the base component metal and less surface disruption of the erosion shield metal. Another advantage of an embodiment of the present disclosure is that the method allows for customized alloy spray for cladding and joining two different materials, namely the base component metal and the erosion shield metal. Yet another advantage of an embodiment of the present disclosure is that the method allows for stronger, less stressed joining of two dissimilar metals. Yet another advantage of an embodiment of the present disclosure is that the joining method provides a more cost effective process of applying an erosion shield to a base component than using multiple cladding passes with electron beam (EB)/TIG welding with shims to apply the erosion shield. Yet another advantage of an embodiment of the present disclosure is reduced cycle time for applying the erosion shield than using traditional electron beam (EB)/TIG welding with shims. Another advantage of an embodiment of the present disclosure is that the method prevents diffusion of carbides across the joined surface of the base metal component and the erosion shield component.
Components constructed using the method of the present disclosure have increased structural integrity because the joining method prevents diffusion of carbides across the joined surface of the base metal component and the attached component. An embodiment of the disclosure is shown in
Power generation systems include, but are not limited to, gas turbines, steam turbines, and other turbine assemblies. As referred to herein, turbine blades and turbine buckets are used interchangeably.
As shown in
Returning to
As shown in
Second joining surface includes bevel angle 84 from approximately 0 degrees to approximately −45 degrees, or alternatively approximately −5 degrees to approximately −40 degrees, or alternatively −10 degrees to −35 degrees relative to the joining plane 34 (see FIG. 4). Without being bound by theory bevel angle 82 and 84 allows for a functional joining surface while preventing carbon migration from the underlying first component 40 to the second component 50.
As shown in
As shown in
As shown in
As shown in
A method 500 for preventing erosion of base component 12 used in an erosive environment is shown in
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.