Method of making a medicated stent

Information

  • Patent Grant
  • 7607208
  • Patent Number
    7,607,208
  • Date Filed
    Wednesday, May 7, 2003
    21 years ago
  • Date Issued
    Tuesday, October 27, 2009
    15 years ago
Abstract
A stent has surface sculpturing, preferably on its outer surface only, having, for example, microspheres, having the function of increasing the actual geometric surface area of the stent, of creating undercuts and roughness to encourage the application of coatings of active or activatable agents, as well as of improving the attachment of the stent to the blood vessel wall.
Description
FIELD OF THE INVENTION

The present invention concerns a stent for angioplasty and an associated method of production thereof.


BACKGROUND OF THE INVENTION

The term “stent for angioplasty” is intended to indicate generally devices intended for endoluminal application (for example, within a blood vessel) in association with the technique of percutaneous transluminal coronary angioplasty, or PTCA, usually effected by catheterisation of a stenotic site.


Expanding the stent at the site causes the lumen to expand giving rise to the consequent elimination of the stenosis, and the local support of the lumen by the stent, which is left in place expanded, avoids restenosis of the treated site due to the subsequent relaxation of the blood vessel wall. The use of a substantially similar structure for deploying vascular grafts and fixing them in place has already been proposed in the art: naturally, this possible extension of the field of application should be seen as included within the ambit of the present invention.


For a general review of vascular stents, reference may usefully be made to the work “Textbook of Interventional Cardiology” edited by Eric J. Topol, W. B. Saunders Company, 1994 and, in particular, to section IV of volume II, entitled “Coronary Stenting”.


Many patent documents have addressed this problem, for example, U.S. Pat Nos. 4,776,337, 4,800,882, 4,907,336, 4,886,062, 4,830,003, 4,856,516, 4,768,507 and 4,503,569.


The implantation of these devices, which is a factor in the treatment of various cardiac diseases, may require, or at least gain particular benefit from the possibility of being able to administer at the stent-implantation site agents or active principles (the two terms being used below in an equivalent sense) having various end purposes: they may, for example, be antithrombogenic agents or, more generally, agents for directly resisting restenosis of the treated site due to the formation of deposits, tissue proliferation, etc. In relation to this, reference may usefully be made to the following works:


“Local Drug Delivery: The Development of a Drug Delivery Stent” by Richard Stack, The Journal of Invasive Cardiology, Vol. 8, n. 8, October 1996, pp 396-397;


“Local Intraluminal Infusion of Biodegradable Polymeric Nanoparticles” by Louis A. Guzman et al., Circulation, 1996; 94; pp 1441-1448;


“Local Angiopeptin Delivery Using Coated Stents Reduces Neointimal Proliferation in Overstretched Porcine Coronary Arteries” by Ivan De Schreerder et al., the Journal of Invasive Cardiology, Vol. 8, n. 8, October 1996, pp 215-222.


Many applicational problems arise from this mode of operation, mostly related to the specific solutions adopted. For example, the problem exists of avoiding the agent or agents intended for administration in the zone of the stent being delivered or transported to different areas where they may have negative or damaging effects. Other problems may arise, for example, in ensuring the permanence and the gradual release over time of active substances capable of being, as it were, washed away by the blood passing through the stent.


These problems cannot themselves be solved or avoided by recourse to other solutions such as radioactive stents or so-called biodegradable stents, as illustrated, for example, in the work “Biodegradable Stents: The Future of Interventional Cardiology?” by M. Labinaz et al; Journal of International Cardiology, Vol. 8, n. 4, 1995, pp 395-405. Radioactive stents publicly proposed so far give rise to other problems related essentially to the fact that, in most cases, their use assumes the typical features of radiotherapy and/or nuclear medicine. The main disadvantage of biodegradable stents is that, at least in the long term when the stent has completely or substantially degraded, there is a reduction in the mechanical support of the blood vessel wall against the risk of collapse.


As a further solution for administering various kinds of active principle at the stent-implantation site a solution has recently been proposed in which at least a portion of the surface of the body of the stent (or implantation device in general) is coated with a receptor capable of binding with a ligand formed by combining an active principle with a substance capable of binding to the receptor.


In order for this new solution to be fully beneficial, that is, so that it can also be used with more conventional techniques for effective topical administration of the active principles, it appears important to obtain a good adhesion and/or retention on the stent of the substance or substances with which these active principles are associated and/or are intended to be associated.


In relation to this it is therefore necessary to take account of various concomitant factors which often oppose one another.


In a significant number of applications it is important that the active principles are present mainly, although not exclusively, on the outer surface of the stent. Conversely, it is usually desirable that the inner surface of the stent itself is as inert as possible, that is, both from the chemical point of view and from the point of view of the possible mechanical anchorage of possible deposits.


This is the reason why currently available vascular stents are subjected to a polishing process, intended to make the surface of the stent (both inside and outside) very smooth. In relation to this, it is also possible to coat the stent with a layer of biocompatible material, such as a biocompatible carbon material (deposited, for example, using sputtering techniques), so as to confer a high degree of hemocompatability on the whole stent. Adopting this technique for the deposition of such a layer, given the very small dimensions of a stent for angioplasty, means that it is practically impossible to limit the deposition to just the inside surface of the stent. Consequently therefore, the entire surface of the stent is coated with a layer which, by its nature, makes the deposition of substances on the stent itself, in fact, impossible.


A further factor should not be forgotten: a stent for angioplasty is by its nature a heavily apertured structure, usually a mesh-like structure in which, especially in the radially-extended position, the effective surface intended to come into contact with the blood vessel wall is a small fraction of the theoretical tubular surface area defined by the outside of the stent itself. In other words: even by putting the other problems described above to one side, there is very little available surface on the stent for carrying the active principles intended for local delivery.


The object of the present invention is that of resolving the disadvantages described above.


In particular, the solution according to the invention, having the characteristics referred to in the following claims, enables the selective application, specifically to the outer surface only of the stent, of a completely effective quantity of active principle (either directly or in the form of a receptor capable of binding with a ligand carrying the active principle) without by this losing the possibility of having a very smooth surface, at least inside the stent, even if clad with coatings such as haemocompatible carbon coatings.


SUMMARY OF THE INVENTION

The invention provides a method of making a medicated stent comprising: providing a tubular body portion having an inner surface and an outer surface and defining a stent thickness therebetween; laser cutting a plurality of apertures in the tubular body portion extending from the outer surface to the inner surface, the apertures being positioned such that the tubular body portion is expandable from a radially-contracted position to a radially-expanded position; laser cutting a plurality of incisions in the outer surface of the tubular body portion, the incisions being defined at least in part by first and second side walls and a bottom surface between the side walls, a radial distance between the outer surface of the tubular body portion and the bottom surface of the incisions comprising an incision depth, the incision depth being less than the stent thickness; coating the tubular body of the stent with a biocompatible carbon material; and after the coating step, applying an outer coating in the plurality of incisions, the outer coating including an active agent. In an embodiment of the invention, the step of laser cutting the apertures is performed before the step of laser cutting the incisions. In another embodiment of the invention, the step of laser cutting the incisions is performed before the step of laser cutting the apertures. In an embodiment of the invention, the active agent is an antithrombogenic agent.

    • The invention provides a method of making a medicated stent comprising: providing a tubular body portion having an inner surface and an outer surface and defining a stent thickness therebetween; laser cutting a plurality of apertures in the tubular body portion extending from the outer surface to the inner surface, the apertures being positioned such that the tubular body portion is expandable from a radially-contracted position to a radially-expanded position; laser cutting a plurality of incisions in the outer surface of the tubular body portion, the incisions being defined at least in part by first and second side walls and a bottom surface between the side walls, a radial distance between the outer surface of the tubular body portion and the bottom surface of the incisions comprising an incision depth, the incision depth being less than the stent thickness; and coating the outer surface of the tubular body portion such that the coating is deposited in the plurality of incisions, the coating being the outermost layer of the medicated stent, the coating comprising an active agent.
    • The invention provides a method of making a medicated stent for deployment at a treatment site in a vessel of a human body comprising: providing a tubular body portion having an inner surface and an outer surface and defining a stent thickness therebetween; laser cutting a plurality of apertures in the tubular body portion extending from the outer surface to the inner surface, the apertures being positioned such that the tubular body portion is expandable from a radially-contracted position to a radially-expanded position; laser cutting a plurality of incisions in the outer surface of the tubular body portion, the incisions being defined at least in part by first and second side walls and a bottom surface between the side walls, a radial distance between the outer surface of the tubular body portion and the bottom surface of the incisions comprising an incision depth, the incision depth being less than the stent thickness; and depositing an active agent in the plurality of incisions in a manner that results in direct contact between the active agent and the walls of the vessel when the medicated stent is deployed at the treatment site in the vessel.
    • The invention provides a method of making a medicated stent for deployment at a treatment site in a vessel of a human body comprising: providing a tubular body portion having an inner surface and an outer surface and defining a stent thickness therebetween; laser cutting a plurality of apertures in the tubular body portion extending from the outer surface to the inner surface, the apertures being positioned such that the tubular body portion is expandable from a radially-contracted position to a radially-expanded position; laser cutting a plurality of incisions in the outer surface of the tubular body portion, the incisions being defined at least in part by first and second side walls and a bottom surface between the side walls, a radial distance between the outer surface of the tubular body portion and the bottom surface of the incisions comprising an incision depth, the incision depth being less than the stent thickness; and depositing a coating including an active agent in the plurality of incisions such that when the medicated stent is deployed at the treatment site in the vessel the coating is in direct contact with a wall of the vessel.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1 to 6 are partial enlarged views of a segment of a stent in transverse section secondary to various embodiments of the invention.



FIG. 7 shows a portion of a stent comprising apertures extending from the outer surface to the inner surface.



FIG. 8A shows an end view of a stent in a radially-contracted position and FIG. 8B shows an end view of the stent in a radially-expanded position. FIGS. 9A to 9D show methods of the invention.





DETAILED DESCRIPTION OF THE INVENTION

The invention, which concerns a stent as well as the associated procedure for the manufacture thereof, will now be described with reference to the accompanying drawings, comprising FIGS. 1 to 6, which illustrate different possible embodiments of the invention.


In all of the accompanying Figures, the reference numeral 1 indicates a wall portion of a stent for angioplasty. By way of example, FIGS. 1 to 6 can be considered as partial views on an enlarged scale of a segment of a stent in transverse section. Such a section is usually circular in shape regardless of whether the stent is radially-contracted or radially-expanded.


The specific details of construction of the stent and, in particular, its geometry, are factors which are in themselves clear in the context of the invention and which apply regardless of the particular structure of the stent. This is also substantially true as regards the basic manufacturing technique (for example, starting from a wire or microtube which is then subjected to an operation for cutting the apertures, for example, using lasers) and/or the material (usually metal) of which the stent is made. All of these factors are dealt with in a fairly large volume of literature and do not require detailed description here.


In essence, the invention provides for the formation of surface sculpturing on the stent 1, at least—and preferably—over a part of, or the whole of the outer surface, indicated 2, and having substantially the aim of:

    • increasing the theoretical surface area of the stent in order to encourage the application of coatings, such as those intended to carry or bind active principles,
    • creating in any case undercuts and roughness so as to form anchorage sites for the substances, without requiring specific surface-adhesion sites, and, as a complementary advantage,
    • improving the attachment of the stent to the blood vessel wall that is already in the acute phase, specifically by preventing relative movements which can give rise to microlesions.


For clarity, the term “sculpturing” is used to distinguish clearly the surface conformation attributed to the stent according to the invention from the degree of surface (residual) roughness that the surfaces of the stent have in any case, even when they have been previously subjected, according to convention, to a polishing or finishing process.


By way of example, one such treatment confers such a degree of residual roughness on the stent surfaces that the peak-to-trough distances recognizable in a theoretical section of the surface in question at right angles to the surface itself are not, in any case, greater than approximately 2-3 microns.


The degree of surface irregularity, or sculpturing, characteristic of the invention is, instead, such that the peak-to-trough distances found in similar conditions are, typically approximately 10-20 microns, that is, with the possibility of achieving values of an order of magnitude even greater than those of the normal surface finishing of a stent.



FIGS. 1 to 6 illustrate, in order of current preference, different techniques that can be used to confer the desired degree of sculpturing on the surface 2.


In particular, FIG. 1 concerns the application of microspheres 3 formed from the same material (usually metal) as the stent or from different materials with the subsequent anchorage of the microspheres (the average diameter of which is approximately 10-20 microns) using the method known as “hot partial melting”. This is a method known in the art and is used, for example, to confer a surface appearance approximately similar to the surface appearance characteristic of a work-piece obtained by sintering the surfaces of mechanical work-pieces intended for various purposes. From this one understands that such an embodiment can be practiced also in connection with a stent realized, as a whole, or at least in those part(s) corresponding to the surface sculpturing, by sintering.



FIG. 2 concerns an embodiment of the arrangement illustrated in FIG. 1 in which, while retaining the same typical surface irregularity, irregular-shape granules 4 are used in place of the microspheres 3. The same remarks made in the foregoing in respect of possibly manufacturing the stent, at least partly, by sintering apply also in this case.



FIG. 3 illustrates a further embodiment based on the deposition of a receptor material using, for example, sputtering or plasma spray techniques to form an irregular-shape accretion, for example, having a pseudocolumnar structure.


From this point of view, the solution according to FIG. 1 (the application of microspheres) seems to be preferred when it is desired to create undercuts and roughness on the surface 2, having a mechanical anchorage function and precisely defined geometric characteristics which are identified by the (precisely determinable) grain size of the microspheres 3.


Conversely, the arrangement shown in FIG. 3 appears preferable where the objective is to maximize the effect of increasing the theoretical surface area that is effectively exposed. This latter solution is therefore preferred when, for example, it is desired to apply a coating to the surface of the stent 1, which coating transports and/or is intended to transport active principles and is essentially in the form of a monomolecular layer.


The arrangement according to FIG. 2 constitutes, to a certain extent, a kind of intermediate between the arrangements of FIGS. 1 and 3.


The arrangements to which FIGS. 1 to 3 refer, which comprise possible equivalent arrangements, are characterised essentially by the fact that the surface sculpturing is formed by the application to the surface 2 of material identical with or different from that of the stent 1. These arrangements are generally preferred when greater or smaller undercut zones are desired on the surface 2.


In any case, objects substantially similar to those described at the beginning of this detailed description of the invention can be achieved by treating the surface 2 in ways intended to confer a generally sculpted appearance thereon.


In relation to this, FIG. 4 illustrates the results obtained by subjecting the outer surface 2 to sand-blasting or shot-blasting (a term reserved for a treatment which—instead of using sand as in sand-blasting—is effected using microspheres (“balls”) as the ballistic agents, for impact with the treated surface).



FIG. 5 illustrates the results of a mechanical scoring operation (incision or knurling) performed on the outer surface 2 of the stent.


Finally, FIG. 6 illustrates the results obtained from a localized chemical attack (etching) of the surface 2. This method is effected using a resist material (for example, photoresist) which, following exposure through masks or polymerisation using laser beams, is selectively removed from some zones of the surface 2 so as to enable the attack thereof. The resist tracks remaining on the surface 2 are then removed by washing.


This technology is well known in the art (for example, for the manufacture of integrated circuits) and does not need to be illustrated in great detail in this context.


Results substantially similar to those illustrated in FIG. 5 and, in particular, FIG. 6, can also be obtained by incision using laser beams, for example, before or after the operation for cutting the stent structure from a blank constituted by a microtube of metal.



FIG. 7 shows a cross-section view of a portion of a stent 1 comprising apertures 10 extending from the outer surface to the inner surface.



FIG. 8A shows an end view of a stent 1 in a radially-contracted position and FIG. 8B shows an end view of the stent 1 in a radially-expanded position.



FIGS. 9A to 9D show methods of the invention.


As a rule, all of the solutions illustrated in FIGS. 1 to 6, and any equivalents thereto, can apply to stents obtained from a metal microtube, possibly manufactured totally or partly by sintering, as well as stents obtained from a wire, the processes illustrated being performed either before or after cutting the tube and/or winding the wire. For reasons of manufacturing simplicity, the applicant has in any case established that it is preferred to form the surface sculpturing before cutting the tube or winding the wire.

Claims
  • 1. A method of making a medicated stent comprising: providing a tubular body portion having an inner surface and an outer surface and defining a stent thickness therebetween;laser cutting a plurality of apertures in the tubular body portion extending from the outer surface to the inner surface, the apertures being positioned such that the tubular body portion is expandable from a radially-contracted position to a radially-expanded position;laser cutting a plurality of incisions in the outer surface of the tubular body portion, the incisions being defined at least in part by first and second side walls and a bottom surface between the side walls, a radial distance between the outer surface of the tubular body portion and the bottom surface of the incisions comprising an incision depth, the incision depth being less than the stent thickness;coating the tubular body of the stent with a biocompatible carbon material; andafter the coating step, applying an outer coating in the plurality of incisions, the outer coating including an active agent.
  • 2. The method of claim 1 wherein the step of laser cutting the apertures is performed before the step of laser cutting the incisions.
  • 3. The method of claim 1 wherein the step of laser cutting the incisions is performed before the step of laser cutting the apertures.
  • 4. The method of claim 1 wherein the active agent is an antithrombogenic agent.
  • 5. A method of making a medicated stent comprising: providing a tubular body portion having an inner surface and an outer surface and defining a stent thickness therebetween;laser cutting a plurality of apertures in the tubular body portion extending from the outer surface to the inner surface, the apertures being positioned such that the tubular body portion is expandable from a radially-contracted position to a radially-expanded position;laser cutting a plurality of incisions in the outer surface of the tubular body portion, the incisions being defined at least in part by first and second side walls and a bottom surface between the side walls, a radial distance between the outer surface of the tubular body portion and the bottom surface of the incisions comprising an incision depth, the incision depth being less than the stent thickness; andcoating the outer surface of the tubular body portion such that the coating is deposited in the plurality of incisions, the coating being the outermost layer of the medicated stent, the coating comprising an active agent.
  • 6. A method of making a medicated stent for deployment at a treatment site in a vessel of a human body comprising: providing a tubular body portion having an inner surface and an outer surface and defining a stent thickness therebetween;laser cutting a plurality of apertures in the tubular body portion extending from the outer surface to the inner surface, the apertures being positioned such that the tubular body portion is expandable from a radially-contracted position to a radially-expanded position;laser cutting a plurality of incisions in the outer surface of the tubular body portion, the incisions being defined at least in part by first and second side walls and a bottom surface between the side walls, a radial distance between the outer surface of the tubular body portion and the bottom surface of the incisions comprising an incision depth, the incision depth being less than the stent thickness; anddepositing an active agent in the plurality of incisions in a manner that results in direct contact between the active agent and the walls of the vessel when the medicated stent is deployed at the treatment site in the vessel.
  • 7. A method of making a medicated stent for deployment at a treatment site in a vessel of a human body comprising: providing a tubular body portion having an inner surface and an outer surface and defining a stent thickness therebetween;laser cutting a plurality of apertures in the tubular body portion extending from the outer surface to the inner surface, the apertures being positioned such that the tubular body portion is expandable from a radially-contracted position to a radially-expanded position;laser cutting a plurality of incisions in the outer surface of the tubular body portion, the incisions being defined at least in part by first and second side walls and a bottom surface between the side walls, a radial distance between the outer surface of the tubular body portion and the bottom surface of the incisions comprising an incision depth, the incision depth being less than the stent thickness; anddepositing a coating including an active agent in the plurality of incisions such that when the medicated stent is deployed at the treatment site in the vessel the coating is in direct contact with a wall of the vessel.
Priority Claims (1)
Number Date Country Kind
TO96A1095 Dec 1996 IT national
Parent Case Info

This application is a continuation of application Ser. No. 08/997,597, filed Dec. 23, 1997, the contents of which are hereby incorporated herein by reference, now U.S. Pat. No. 6,638,302 B1.

US Referenced Citations (87)
Number Name Date Kind
3526005 Bokros et al. Sep 1970 A
3700380 Kitrilakis Oct 1972 A
4219520 Kline Aug 1980 A
4254180 Kline Mar 1981 A
4300244 Bokros Nov 1981 A
4503569 Dotter Mar 1985 A
4729766 Bergentz et al. Mar 1988 A
4767418 Deininger et al. Aug 1988 A
4768507 Fischell et al. Sep 1988 A
4776337 Palmaz Oct 1988 A
4800882 Gianturco Jan 1989 A
4830003 Wolff et al. May 1989 A
4856516 Hillstead Aug 1989 A
4886062 Wiktor Dec 1989 A
4907336 Gianturco Mar 1990 A
4932964 Bittmann et al. Jun 1990 A
4994033 Shockey et al. Feb 1991 A
5015253 MacGregor May 1991 A
5084151 Vallana et al. Jan 1992 A
5133845 Vallana et al. Jul 1992 A
5213580 Slepian et al. May 1993 A
5356433 Rowland et al. Oct 1994 A
5370684 Vallana et al. Dec 1994 A
5387247 Vallana et al. Feb 1995 A
5423886 Arru et al. Jun 1995 A
5449373 Pinchasik et al. Sep 1995 A
5455100 White Oct 1995 A
5609629 Fearnot et al. Mar 1997 A
5643580 Subramaniam Jul 1997 A
5672638 Verhoeven et al. Sep 1997 A
5718973 Lewis et al. Feb 1998 A
5723004 Dereume et al. Mar 1998 A
5725567 Wolff et al. Mar 1998 A
5728420 Keogh Mar 1998 A
5733303 Israel et al. Mar 1998 A
5735896 Amon et al. Apr 1998 A
5746272 Mastrorio et al. May 1998 A
5759192 Saunders Jun 1998 A
5788626 Thompson Aug 1998 A
5800510 Schmitt Sep 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5836962 Gianotti Nov 1998 A
5837313 Ding et al. Nov 1998 A
5843172 Yan Dec 1998 A
5846613 Neuville Dec 1998 A
5848987 Baudino et al. Dec 1998 A
5873725 Perler et al. Feb 1999 A
5972027 Johnson Oct 1999 A
6071305 Brown et al. Jun 2000 A
6096070 Ragheb et al. Aug 2000 A
6120536 Ding et al. Sep 2000 A
6120847 Yang et al. Sep 2000 A
6193747 von Oepen Feb 2001 B1
6210436 Weadock Apr 2001 B1
6253443 Johnson Jul 2001 B1
6254632 Wu et al. Jul 2001 B1
6273913 Wright et al. Aug 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6315794 Richter Nov 2001 B1
6379381 Hossainy et al. Apr 2002 B1
6387121 Alt May 2002 B1
6398806 You Jun 2002 B1
6451049 Vallana et al. Sep 2002 B2
6506437 Harish et al. Jan 2003 B1
6551353 Baker et al. Apr 2003 B1
6562065 Shanley May 2003 B1
6569195 Yang et al. May 2003 B2
6585764 Wright et al. Jul 2003 B2
6699281 Vallana et al. Mar 2004 B2
6758859 Dang et al. Jul 2004 B1
6764505 Hossainy et al. Jul 2004 B1
6774278 Ragheb et al. Aug 2004 B1
6783543 Jang Aug 2004 B2
6805898 Wu et al. Oct 2004 B1
6913617 Reiss Jul 2005 B1
20010029351 Falotico et al. Oct 2001 A1
20020038145 Jang Mar 2002 A1
20020082680 Shanley et al. Jun 2002 A1
20030028242 Vallana et al. Feb 2003 A1
20030195613 Curcio et al. Oct 2003 A1
20040220662 Dang et al. Nov 2004 A1
20040249444 Reiss Dec 2004 A1
20050209684 Alexander et al. Sep 2005 A1
20060136051 Furst et al. Jun 2006 A1
20060224237 Furst et al. Oct 2006 A1
20060241739 Besselink et al. Oct 2006 A1
Foreign Referenced Citations (36)
Number Date Country
1709210 Dec 2005 CN
102 00 387 Aug 2003 DE
0 274 846 Jul 1987 EP
0 540 290 Oct 1992 EP
0 601 804 Jun 1994 EP
0 603 959 Jun 1994 EP
0 701 803 Mar 1996 EP
0 747 069 Dec 1996 EP
0 806 190 Nov 1997 EP
0 850 604 Jul 1998 EP
0 857 470 Aug 1998 EP
0 875 215 Nov 1998 EP
0 875 218 Nov 1998 EP
0 895 759 Feb 1999 EP
0 895 760 Feb 1999 EP
0 950 386 Oct 1999 EP
1 080 738 Mar 2001 EP
1 088 528 Apr 2001 EP
1 103 234 May 2001 EP
1 181 903 Feb 2002 EP
1 277 449 Jan 2003 EP
1 527 754 May 2005 EP
2005117361 Dec 2005 KR
WO 9509659 Apr 1995 WO
WO 9512369 Nov 1995 WO
WO 9603092 Feb 1996 WO
WO 9612450 May 1996 WO
WO 9823228 Jun 1998 WO
WO 9834669 Aug 1998 WO
WO 9856312 Dec 1998 WO
WO 9949928 Oct 1999 WO
WO 0012147 Mar 2000 WO
WO 0071054 Nov 2000 WO
WO 0076557 Dec 2000 WO
WO 0117577 Mar 2001 WO
WO 03039407 May 2003 WO
Related Publications (1)
Number Date Country
20030195613 A1 Oct 2003 US
Continuations (1)
Number Date Country
Parent 08997597 Dec 1997 US
Child 10431557 US