The present invention will become more fully understood from the detailed description provided hereinafter and the accompanying drawings, which are not necessarily to scale, and are given by way of illustration only, and wherein:
Similar reference characters refer to similar parts throughout the several Figs.
Although the invention is applicable to various semiconductor materials it will be described, by way of example with respect to a semiconductor structure utilizing SiC (silicon carbide). SiC is a preferred material over, for example Silicon, since SiC exhibits higher breakdown voltage, lower thermal impedance due to superior thermal conductivity, higher frequency performance, higher maximum current, higher operating temperature, and improved reliability, particularly in harsh environments.
In
The layers of epitaxial material are covered with a thick oxide layer such as TEOS (tetraethyl orthosilicate) 20 which may be applied by a CVD (chemical vapor deposition) process. In order to ensure good adhesion of the oxide layer 20, a thin oxide layer 21 is thermally grown on layer 18 so that oxide layer 20 firmly bonds with oxide layer 21. A mask having a plurality of strips 22, of a metal composition such as chromium/nickel, is deposited on top of oxide layer 20 in a manner that the strips 22 are parallel to one another and extend into the plane of the Fig. An isometric view of this is illustrated in
The body 10 is subjected to a RIE (reactive ion etch) to remove all of the oxide 20, except that under the strips 22. The result of the RIE is illustrated in
Oxide skirts are next grown around the base of the pillars 26. This is illustrated in
Since SiC is consumed in the process, layer 18 effectively shrinks to the position represented by line 32 which is spaced from its original position, represented by dotted line 34. The remaining SiC then defines the source 36 of the SIT. The oxidation process also forms an oxide layer 38 on layer 16. Since the oxidation process is more rapid in the horizontal direction than the vertical direction, this oxide layer 38 is very thin and may be removed by RIE.
As indicated in
The photoresists 40, 42, 43 and 44 are then dissolved by a photoresist strip solvent. In the process, the dissolving photoresist also lifts off any silicon monoxide which is deposited on it thereby leaving the exposed pillars 26 and carbon monoxide concentric rings 49, 50, 51 and end section 52 on layer 16, as illustrated in
The structure of
Ions also penetrate skirts 30, however the ions are retarded by that oxide such that implanted p+ areas 62 of gates 60 are shallow and miniscule. Ions also penetrate into the thick oxide layer 20 but fail to penetrate down into the sources 36 due to the thickness of the oxide layer 20.
Implanted simultaneously with the gates 60 are a plurality of concentric p+ guard rings 64, 65 and 66, three being illustrated by way of example. These guard rings surround the array 24 of pillars 26 and are implanted without the requirement for masks by virtue of silicon monoxide depositions 49, 50, 51 and 52 which confine the ion implantation of the guard rings to the areas illustrated. The guard rings 64, 65 and 66 reduce the electric field concentration at the edge of the gate region and enhance the breakdown voltage of the device. Ion implant area 68 surrounds the array 24 and electrically connects all of the gates together. This simultaneous implantation of gates and guard rings proves to be effective to increase the gate-to-drain voltage breakdown. The number of guard rings and their related width and spacing are optimizes to achieve a desired gate-to-drain breakdown voltage.
The ion implant step tends to degrade the SiC crystal structure. Therefore, after the ion implantation, an annealing process is performed to undo the deleterious effects of the ion implantation.
The last process step, as illustrated in
This structure is placed in the aforementioned oxygen furnace whereby the oxide skirts are grown, as previously described. Due to the added thickness of the spacer layer 80, the implanted gate will be narrower than that illustrated in
As an alternative, and as illustrated in
Accordingly a method for making a structure for use in a SIT has been described wherein the difficulties in making a Schottky type SIT have been eliminated. Further, the method does not require any masks for formation of gate regions, thus eliminating any misalignment problems. When formed using SiC, a resulting SIT may be used in high temperature and harsh environments such as may be encountered in radar, motor control for tank motors or hybrid cars, and space applications, to name a few.
The foregoing detailed description merely illustrates the principles of the invention. It will thus be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are thus within its spirit and scope.
This application is related to an application entitled “A SEMICONDUCTOR STRUCTURE FOR USE IN A STATIC INDUCTION TRANSISTOR HAVING IMPROVED GATE-TO-DRAIN BREAKDOWN VOLTAGE”, (Northrop Grumman Case No. 001230-078; BSKB Case No. 1215-0591PUS1) filed on Jun. 1, 2006, Ser. No. ______. This application is assigned to the assignee of the present invention and is intended to be incorporated herein by reference for any and all purposes.