The present invention relates to a process for the manufacture of small sensors, including small electrochemical sensors. More particularly, the process of the invention includes disposing a conductive material on a substrate, preferably in channels formed on the surface of the substrate, thereby forming conductive traces and electrodes in a rapid, efficient manner, with reproducible surface areas and conductivites, and particularly forming very small conductive traces.
The monitoring of the level of glucose or other biochemicals, such as lactate, in individuals is often important. High or low levels of glucose or other biochemicals may be detrimental to an individual's health. The monitoring of glucose is particularly important to individuals with diabetes as they must determine when insulin is needed to reduce glucose levels in their bloodstream or when additional glucose is needed to raise the level of glucose in the bloodstream.
Conventional techniques for monitoring blood glucose levels currently include the periodic drawing of blood, the application of that blood to a test strip, and the determination of the blood glucose concentration using electrochemical, colorimetric, or photometric methods. This technique does not allow for continuous monitoring of blood glucose levels, but must be performed on a periodic basis.
A variety of other devices have also been developed for continuous monitoring of analytes in the blood stream or subcutaneous tissue. Many of these devices use electrochemical sensors which are directly implanted in a blood vessel or in the subcutaneous tissue of a user. However, these devices are often large, bulky, and/or inflexible and many can not be used effectively outside of a controlled medical facility, such as a hospital or a doctor's office, unless the user is restricted in his activities.
The user's comfort and the range of activities that can be performed while the sensor is implanted are important considerations in designing extended-use sensors for continuous in vivo monitoring of the level of an analyte, such as glucose. There is a need for a small, comfortable device which can continuously monitor the level of an analyte, such as glucose, while still permitting the user to engage in normal activities outside the boundaries of a controlled medical facility. There is also a need for methods that allow such small, comfortable devices to be relatively inexpensively, efficiently, reproducibly and precisely manufactured.
A significant problem in the manufacture of in vitro electrochemical sensors has been the inability to manufacture small electrodes with reproducible surfaces. Present techniques for printing or silk screening carbon electrodes onto substrates yield electrodes with poorly defined or irreproducible surface areas and conductivities, particularly at trace widths below 250 μm (10 mils).
Small sized non-electrochemical sensors including, for example, temperature probes, would also be useful if they could be reliably and reproducibly manufactured. A process for the manufacture of small sensors with reproducible surfaces is needed.
The present invention provides a process for the manufacture of small sensors which is efficient, reliable, and provides reproducible surfaces. The process of the invention includes forming one or more channels on a surface of a substrate and disposing a conductive material within the formed channels to form an electrode. Various embodiments of the process include the manufacture of electrochemical sensors by disposing a sensing layer on the conductive material within the formed channels; the manufacture of a sensor having one or more working electrodes; counter/reference electrodes, temperature sensors and the like formed in a plurality of channels on one or more surfaces of the substrate; and sensors having a plurality of electrode traces separated by very small distances to form a small electrochemical sensor.
One aspect of the present invention relates to a process for the manufacture of an electrochemical sensor using a web process, which may be continuous or non-continuous. The process includes the steps of providing a substrate web, and disposing a pattern of a conductive material on the continuous substrate web to form an electrode, including one or more working electrodes and counter electrodes. The method also includes the step of disposing a sensing layer on the working electrode disposed on the web. Such a continuous web process is adapted for relatively inexpensively, efficiently, reproducibly and precisely manufacturing electrochemical sensors.
Another aspect of the present invention includes a process for the manufacture of an electrochemical sensor having one or more working and/or counter electrodes disposed on a sensor substrate. The method includes the steps of providing a substrate and disposing a conductive material on the substrate to form one or more working electrodes and/or counter electrodes, and optionally disposing a sensing layer on the working electrode.
A further aspect of the present invention relates to process for the manufacture of an electrochemical sensor having electrodes and conductive traces disposed within channels defined by a sensor substrate. The process includes the steps of providing a substrate, and forming first and second channels in the substrate. The process also includes the step of disposing a conductive material within the channels to form a working electrode located at the first channel, and a counter electrode located at the second channel. The process further includes the optional step of disposing a sensing layer on the working electrode.
The invention includes a continuous process for multi-step preparation of sensors including the efficient and precise deposition of small electrode tracings; sensing layers; counter electrodes, temperature sensors, and like constituents to efficiently produce electrochemical and non-electrochemical biosensors.
The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures and the detailed description which follow more particularly exemplify these embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
The process of the present invention is applicable to the manufacture of an analyte sensor for the in vivo and/or in vitro determination of an analyte, such as glucose or lactate, in a fluid. The process is also applicable to the production of other sensors, including, for example biosensors relaying a chemical signal through a conductive tracing.
The analyte sensors of the present invention can be utilized in a variety of contexts. For example, one embodiment of the analyte sensor is subcutaneously implanted in the interstitial tissue of a patient for the continuous or periodic monitoring of a level of an analyte in a patient's interstitial fluid. This can then be used to infer the analyte level in the patient's bloodstream. Other in vivo analyte sensors can be made, according to the invention, for insertion into a vein, artery, or other portion of the body containing fluid in order to measure a bioanalyte. The in vivo analyte sensors may be configured for obtaining a single measurement and/or for monitoring the level of the analyte over a time period which may range from hours to days or longer.
Another embodiment of the analyte sensor is used for the in vitro determination of the presence and/or level of an analyte in a sample, and, particularly, in a small volume sample (e.g., 1 to 10 microliters or less). While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through a discussion of the examples provided below.
The following definitions are provided for terms used herein. A “counter electrode” refers to an electrode paired with the working electrode, through which passes a current equal in magnitude and opposite in sign to the current passing through the working electrode. In the context of the invention, the term “counter electrode” is meant to include counter electrodes which also function as reference electrodes (i.e., a counter/reference electrode).
An “electrochemical sensor” is a device configured to detect the presence and/or measure the level of an analyte in a sample via electrochemical oxidation and reduction reactions on the sensor. These reactions are transduced to an electrical signal that can be correlated to an amount, concentration, or level of an analyte in the sample.
“Electrolysis” is the electrooxidation or electroreduction of a compound either directly at an electrode or via one or more electron transfer agents.
A compound is “immobilized” on a surface when it is entrapped on or chemically bound to the surface.
A “non-leachable” or “non-releasable” compound or a compound that is “non-leachably disposed” is meant to define a compound that is affixed on the sensor such that it does not substantially diffuse away from the working surface of the working electrode for the period in which the sensor is used (e.g., the period in which the sensor is implanted in a patient or measuring a sample).
Components are “immobilized” within a sensor, for example, when the components are covalently, ionically, or coordinatively bound to constituents of the sensor and/or are entrapped in a polymeric or sol-gel matrix or membrane which precludes mobility.
An “electron transfer agent” is a compound that carries electrons between the analyte and the working electrode, either directly, or in cooperation with other electron transfer agents. One example of an electron transfer agent is a redox mediator.
A “working electrode” is an electrode at which the analyte (or a second compound whose level depends on the level of the analyte) is electrooxidized or electroreduced with or without the agency of an electron transfer agent.
A “working surface” is that portion of the working electrode which is coated with or is accessible to the electron transfer agent and configured for exposure to an analyte-containing fluid.
A “sensing layer” is a component of the sensor which includes constituents that facilitate the electrolysis of the analyte. The sensing layer may include constituents such as an electron transfer agent, a catalyst which catalyzes a reaction of the analyte to produce a response at the electrode, or both. In some embodiments of the sensor, the sensing layer is non-leachably disposed in proximity to or on the working electrode.
A “non-corroding” conductive material includes non-metallic materials, such as carbon and conductive polymers.
Analyte Sensor Systems
The sensors of the present invention can be utilized in a variety of devices and under a variety of conditions. The particular configuration of a sensor may depend on the use for which the sensor is intended and the conditions under which the sensor will operate (e.g., in vivo or in vitro). One embodiment of the analyte sensor is configured for implantation into a patient or user for in vivo operation. For example, implantation of the sensor may be made in the arterial or venous systems for direct testing of analyte levels in blood. Alternatively, a sensor may be implanted in the interstitial tissue for determining the analyte level in interstitial fluid. This level may be correlated and/or converted to analyte levels in blood or other fluids. The site and depth of implantation may affect the particular shape, components, and configuration of the sensor. Subcutaneous implantation may be preferred, in some cases, to limit the depth of implantation of the sensor. Sensors may also be implanted in other regions of the body to determine analyte levels in other fluids. Particularly useful sensors are described in U.S. Pat. No. 6,134,461, incorporated herein by reference.
An implantable analyte sensor may be used as part of an analyte monitoring system to continuously and/or periodically monitor the level of an analyte in a body fluid of a patient. In addition to the sensor 42, the analyte monitoring system 40 also typically includes a control unit 44 for operating the sensor 42 (e.g., providing a potential to the electrodes and obtaining measurements from the electrodes) and a processing unit 45 for analyzing the measurements from the sensor 42. The control unit 44 and processing unit 45 may be combined in a single unit or may be separate.
Another embodiment of the sensor may be used for in vitro measurement of a level of an analyte. The in vitro sensor is coupled to a control unit and/or a processing unit to form an analyte monitoring system. In some embodiments, an in vitro analyte monitoring system is also configured to provide a sample to the sensor. For example, the analyte monitoring system may be configured to draw a sample from, for example, a lanced wound using a wicking and/or capillary action. The sample may then be drawn into contact with the sensor. Examples of such sensors may be found in U.S. patent application Ser. No. 08/795,767 and PCT Patent Application Publication No. WO 98/35225, incorporated herein by reference.
The Sensor
A sensor 42, according to the invention, includes at least one working electrode 58 formed on a substrate 50, as shown in FIG. 2. The sensor 42 may also include at least one counter electrode 60 (or counter/reference electrode) and/or at least one reference electrode 62 (see FIG. 8). The counter electrode 60 and/or reference electrode 62 may be formed on the substrate 50 or may be separate units. For example, the counter electrode and/or reference electrode may be formed on a second substrate which is also implanted in the patient or, for some embodiments of the implantable sensors, the counter electrode and/or reference electrode may be placed on the skin of the patient with the working electrode or electrodes being implanted into the patient. The use of an on-the-skin counter and/or reference electrode with an implantable working electrode is described in U.S. Pat. No. 5,593, 852, incorporated herein by reference.
The working electrode or electrodes 58 are formed using conductive traces 52 disposed on the substrate 50. The counter electrode 60 and/or reference electrode 62, as well as other optional portions of the sensor 42, such as a temperature probe 66 (see FIG. 8), may also be formed using conductive traces 52 disposed on the substrate 50. These conductive traces 52 may be formed over a smooth surface of the substrate 50 or within channels 54 formed by, for example, embossing, indenting or otherwise creating a depression in the substrate 50.
A sensing layer 64 (see
In addition to the electrodes 58, 60, 62 and the sensing layer 64, the sensor 42 may also include a temperature probe 66 (see FIGS. 6 and 8), a mass transport limiting layer 74 (see FIG. 9), a biocompatible layer 75 (see FIG. 9), and/or other optional components, as described below. Each of these items enhances the functioning of and/or results from the sensor 42, as discussed below.
The Substrate
The substrate 50 may be formed using a variety of non-conducting materials, including, for example, polymeric or plastic materials and ceramic materials. Suitable materials for a particular sensor 42 may be determined, at least in part, based on the desired use of the sensor 42 and properties of the materials.
In some embodiments, the substrate is flexible. For example, if the sensor 42 is configured for implantation into a patient, then the sensor 42 may be made flexible (although rigid sensors may also be used for implantable sensors) to reduce pain to the patient and damage to the tissue caused by the implantation of and/or the wearing of the sensor 42. A flexible substrate 50 often increases the patient's comfort and allows a wider range of activities. A flexible substrate 50 is also useful for an in vitro sensor 42, particularly for ease of manufacturing. Suitable materials for a flexible substrate 50 include, for example, non-conducting plastic or polymeric materials and other non-conducting, flexible, deformable materials. Examples of useful plastic or polymeric materials include thermoplastics such as polycarbonates, polyesters (e.g., Mylar™ and polyethylene terephthalate (PET)), polyvinyl chloride (PVC), polyurethanes, polyethers, polyamides, polyimides, or copolymers of these thermoplastics, such as PETG (glycol-modified polyethylene terephthalate).
In other embodiments, the sensors 42 are made using a relatively rigid substrate 50 to, for example, provide structural support against bending or breaking. Examples of rigid materials that may be used as the substrate 50 include poorly conducting ceramics, such as aluminum oxide and silicon dioxide. One advantage of an implantable sensor 42 having a rigid substrate is that the sensor 42 may have a sharp point and/or a sharp edge to aid in implantation of a sensor 42 without an additional insertion device. In addition, rigid substrates 50 may also be used in sensors for in vitro analyte monitors.
It will be appreciated that for many sensors 42 and sensor applications, both rigid and flexible sensors will operate adequately. The flexibility of the sensor 42 may also be controlled and varied along a continuum by changing, for example, the composition and/or thickness of the substrate 50.
In addition to considerations regarding flexibility, it is often desirable that implantable sensors 42, as well as in vitro sensors which contact a fluid that is returned to a patient's body, should have a substrate 50 which is non-toxic. Preferably, the substrate 50 is approved by one or more appropriate governmental agencies or private groups for in vivo use.
The sensor 42 may include optional features to facilitate insertion of an implantable sensor 42, as shown in FIG. 17. For example, the sensor 42 may be pointed at the tip 123 to ease insertion. In addition, the sensor 42 may include a barb 125 which assists in anchoring the sensor 42 within the tissue of the patient during operation of the sensor 42. However, the barb 125 is typically small enough that little damage is caused to the subcutaneous tissue when the sensor 42 is removed for replacement.
Although the substrate 50 in at least some embodiments has uniform dimensions along the entire length of the sensor 42, in other embodiments, the substrate 50 has a distal end 67 at a first portion 67a of sensor 42 and a proximal end 65 at a second portion 65a of sensor 42. First portion 67a and second portion 65a have different widths 53, 55, respectively, as illustrated in FIG. 2. Width 53 is measured between edge 67′ and edge 67″ of first portion 67a, and width 55 is measured between edge 65′ and edge 65″ of second portion 65a. In these embodiments, the first portion 67a having distal end 67 of the substrate 50 may have a relatively narrow width 53. For sensors 42 which are implantable into the subcutaneous tissue or another portion of a patient's body, the narrow width 53 of the first portion 67a having distal end 67 of the substrate 50 may facilitate the implantation of the sensor 42. Often, the narrower the width of the sensor 42, the less pain the patient will feel during implantation of the sensor and afterwards.
For subcutaneously implantable sensors 42 which are designed for continuous or periodic monitoring of the analyte during normal activities of the patient, the first portion 67a having distal end 67 of the sensor 42 which is to be implanted into the patient has a width 53 of 2 mm or less, preferably 1 mm or less, and more preferably 0.5 mm or less. If the sensor 42 does not have regions of different widths, then the sensor 42 will typically have an overall width of, for example, 2 mm, 1.5 mm, 1 mm, 0.5 mm, 0.25 mm, or less. However, wider or narrower sensors may be used. In particular, wider implantable sensors may be used for insertion into veins or arteries or when the movement of the patient is limited, for example, when the patient is confined in bed or in a hospital.
For sensors 42 which are designed for measuring small volume in vitro samples, the narrow width 53 may reduce the volume of sample needed for an accurate reading. The narrow width 53 of the sensor 42 results in all of the electrodes of the sensor 42 being closely congregated, thereby requiring less sample volume to cover all of the electrodes. The width of an in vitro sensor 42 may vary depending, at least in part, on the volume of sample available to the sensor 42 and the dimensions of the sample chamber in which the sensor 42 is disposed.
Returning to
The thickness of the substrate 50 may be determined by the mechanical properties of the substrate material (e.g., the strength, modulus, and/or flexibility of the material), the desired use of the sensor 42 including stresses on the substrate 50 arising from that use, as well as the depth of any channels or indentations formed in the substrate 50, as discussed below. Typically, the substrate 50 of a subcutaneously implantable sensor 42 for continuous or periodic monitoring of the level of an analyte while the patient engages in normal activities has a thickness of 50 to 500 μm and preferably 100 to 300 μm. However, thicker and thinner substrates 50 may be used, particularly in other types of in vivo and in vitro sensors 42.
The length of the sensor 42 may have a wide range of values depending on a variety of factors. Factors which influence the length of an implantable sensor 42 may include the depth of implantation into the patient and the ability of the patient to manipulate a small flexible sensor 42 and make connections between the sensor 42 and the sensor control unit 44. A subcutaneously implantable sensor 42 for the analyte monitor illustrated in
The lengths of other implantable sensors 42 will vary depending, at least in part, on the portion of the patient into which the sensor 42 is to be implanted or inserted. The length of in vitro sensors may vary over a wide range depending on the particular configuration of the analyte monitoring system and, in particular, the distance between the contacts of the control unit and the sample.
Conductive Traces
At least one conductive trace 52 is formed on the substrate for use in constructing a working electrode 58. In addition, other conductive traces 52 may be formed on the substrate 50 for use as electrodes (e.g., additional working electrodes, as well as counter, counter/reference, and/or reference electrodes) and other components, such as a temperature probe. The conductive traces 52 may extend most of the distance along a length 57 of the sensor 50, as illustrated in
The conductive traces 52 may be formed on the substrate 50 by a variety of techniques, including, for example, photolithography, screen printing, or other impact or non-impact printing techniques. The conductive traces 52 may also be formed by carbonizing conductive traces 52 in an organic (e.g., polymeric or plastic) substrate 50 using a laser.
Another method for disposing the conductive traces 52 on the substrate 50 includes the formation of recessed channels 54 in one or more surfaces of the substrate 50 and the subsequent filling of these recessed channels 54 with a conductive material 56, as shown in FIG. 3A. The recessed channels 54 may be formed by indenting, embossing, or otherwise creating a depression in the surface of the substrate 50. The depth of the channels is typically related to the thickness of the substrate 50. In one embodiment, the channels have depths in the range of about 12.5 to 75 μm (0.5 to 3 mils), and preferably about 25 to 50 μm (1 to 2 mils).
The conductive traces are typically formed using a conductive material 56 such as carbon (e.g., graphite), a conductive polymer, a metal or alloy (e.g., gold or gold alloy), or a metallic compound (e.g., ruthenium dioxide or titanium dioxide). The formation of films of carbon, conductive polymer, metal, alloy, or metallic compound are well-known and include, for example, chemical vapor deposition (CVD), physical vapor deposition, sputtering, reactive sputtering, printing, coating, and painting. The conductive material 56 which fills the channels 54 is often formed using a precursor material, such as a conductive ink or paste. In these embodiments, the conductive material 56 is deposited on the substrate 50 using methods such as coating, painting, or applying the material using a spreading instrument, such as a coating blade. Excess conductive material between the channels 54 is then removed by, for example, running a blade along the substrate surface.
In one embodiment, the conductive material 56 is a part of a precursor material, such as a conductive ink, obtainable, for example, from Ercon, Inc. (Wareham, Mass.), Metech, Inc. (Elverson, Pa.), E. I. du Pont de Nemours and Co. (Wilmington, Del.), Emca-Remex Products (Montgomeryville, Pa.), or MCA Services (Melbourn, Great Britain). The conductive ink is typically applied as a semiliquid or paste which contains particles of the carbon, metal, alloy, or metallic compound and a solvent or dispersant. After application of the conductive ink on the substrate 50 (e.g., in the channels 54), the solvent or dispersant evaporates to leave behind a solid mass of conductive material 56.
In addition to the particles of carbon, metal, alloy, or metallic compound, the conductive ink may also contain a binder. The binder may optionally be cured to further bind the conductive material 56 within the channel 54 and/or on the substrate 50. Curing the binder increases the conductivity of the conductive material 56. However, this is typically not necessary as the currents carried by the conductive material 56 within the conductive traces 52 are often relatively low (usually less than 1 μA and often less than 100 nA). Typical binders include, for example, polyurethane resins, cellulose derivatives, elastomers, and highly fluorinated polymers. Examples of elastomers include silicones, polymeric dienes, and acrylonitrile-butadiene-styrene (ABS) resins. One example of a fluorinated polymer binder is Teflon® (DuPont, Wilmington, Del.). These binders are cured using, for example, heat or light, including ultraviolet (UV) light. The appropriate curing method typically depends on the particular binder which is used.
Often, when a liquid or semiliquid precursor of the conductive material 56 (e.g., a conductive ink) is deposited in the channel 54, the precursor fills the channel 54. However, when the solvent or dispersant evaporates, the conductive material 56 which remains may lose volume such that the conductive material 56 may or may not continue to fill the channel 54. Preferred conductive materials 56 do not pull away from the substrate 50 as they lose volume, but rather decrease in height within the channel 54. These conductive materials 56 typically adhere well to the substrate 50 and therefore do not pull away from the substrate 50 during evaporation of the solvent or dispersant. Other suitable conductive materials 56 either adhere to at least a portion of the substrate 50 and/or contain another additive, such as a binder, which adheres the conductive material 56 to the substrate 50. Preferably, the conductive material 56 in the channels 54 is non-leachable, and more preferably immobilized on the substrate 50. In some embodiments, the conductive material 56 may be formed by multiple applications of a liquid or semiliquid precursor interspersed with removal of the solvent or dispersant.
In another embodiment, the channels 54 are formed using a laser. The laser carbonizes the polymer or plastic material. The carbon formed in this process is used as the conductive material 56. Additional conductive material 56, such as a conductive carbon ink, may be used to supplement the carbon formed by the laser.
In a further embodiment, the conductive traces 52 are formed by pad printing techniques. For example, a film of conductive material is formed either as a continuous film or as a coating layer deposited on a carrier film. This film of conductive material is brought between a print head and the substrate 50. A pattern on the surface of the substrate 50 is made using the print head according to a desired pattern of conductive traces 52. The conductive material is transferred by pressure and/or heat from the film of conductive material to the substrate 50. This technique often produces channels (e.g., depressions caused by the print head) in the substrate 50. Alternatively, the conductive material is deposited on the surface of the substrate 50 without forming substantial depressions.
In other embodiments, the conductive traces 52 are formed by non-impact printing techniques. Such techniques include electrophotography and magnetography. In these processes, an image of the conductive traces 52 is electrically or magnetically formed on a drum. A laser or LED may be used to electrically form an image. A magnetic recording head may be used to magnetically form an image. A toner material (e.g., a conductive material, such as a conductive ink) is then attracted to portions of the drum according to the image. The toner material is then applied to the substrate by contact between the drum and the substrate. For example, the substrate may be rolled over the drum. The toner material may then be dried and/or a binder in the toner material may be cured to adhere the toner material to the substrate.
Another non-impact printing technique includes ejecting droplets of conductive material onto the substrate in a desired pattern. Examples of this technique include ink jet printing and piezo jet printing. An image is sent to the printer which then ejects the conductive material (e.g., a conductive ink) according to the pattern. The printer may provide a continuous stream of conductive material or the printer may eject the conductive material in discrete amounts at the desired points.
Yet another non-impact printing embodiment of forming the conductive traces includes an ionographic process. In the this process, a curable, liquid precursor, such as a photopolymerizable acrylic resin (e.g., Solimer 7501 from Cubital, Bad Kreuznach, Germany) is deposited over a surface of a substrate 50. A photomask having a positive or negative image of the conductive traces 52 is then used to cure the liquid precursor. Light (e.g., visible or ultraviolet light) is directed through the photomask to cure the liquid precursor and form a solid layer over the substrate according to the image on the photomask. Uncured liquid precursor is removed leaving behind channels 54 in the solid layer. These channels 54 can then be filled with conductive material 56 to form conductive traces 52.
Conductive traces 52 (and channels 54, if used) can be formed with relatively narrow widths, for example, in the range of 25 to 250 μm, and including widths of, for example, 250 μm, 150 μm, 100 μm, 75 μm, 50 μm, 25 μm or less by the methods described above. In embodiments with two or more conductive traces 52 on the same side of the substrate 50, the conductive traces 52 are separated by distances sufficient to prevent conduction between the conductive traces 52. The edge-to-edge distance between the conductive traces is preferably in the range of 25 to 250 μm and may be, for example, 150 μm, 100 μm, 75 μm, 50 μm, or less. The density of the conductive traces 52 on the substrate 50 is preferably in the range of about 150 to 700 μm/trace and may be as small as 667 μm/trace or less, 333 μm/trace or less, or even 167 μm/trace or less.
The working electrode 58 and the counter electrode 60 (if a separate reference electrode is used) are often made using a conductive material 56, such as carbon. Suitable carbon conductive inks are available from Ercon, Inc. (Wareham, Mass.), Metech, Inc. (Elverson, Pa.), E. I. du Pont de Nemours and Co. (Wilmington, Del.), Emca-Remex Products (Montgomeryville, Pa.), or MCA Services (Melbourn, Great Britain). Typically, the working surface 51 of the working electrode 58 is at least a portion of the conductive trace 52 that is in contact with the analyte-containing fluid (e.g., implanted in the patient or in the sample chamber of an in vitro analyte monitor).
The reference electrode 62 and/or counter/reference electrode are typically formed using conductive material 56 that is a suitable reference material, for example silver/silver chloride or a non-leachable redox couple bound to a conductive material, for example, a carbon-bound redox couple. Suitable silver/silver chloride conductive inks are available from Ercon, Inc. (Wareham, Mass.), Metech, Inc. (Elverson, Pa.), E. I. du Pont de Nemours and Co. (Wilmington, Del.), Emca-Remex Products (Montgomeryville, Pa.), or MCA Services (Melbourn, Great Britain). Silver/silver chloride electrodes illustrate a type of reference electrode that involves the reaction of a metal electrode with a constituent of the sample or body fluid, in this case, Cl−.
Suitable redox couples for binding to the conductive material of the reference electrode include, for example, redox polymers (e.g., polymers having multiple redox centers.) It is preferred that the reference electrode surface be non-corroding so that an erroneous potential is not measured. Preferred conductive materials include less corrosive metals, such as gold and palladium. Most preferred are non-corrosive materials including non-metallic conductors, such as carbon and conducting polymers. A redox polymer can be adsorbed on or covalently bound to the conductive material of the reference electrode, such as a carbon surface of a conductive trace 52. Non-polymeric redox couples can be similarly bound to carbon or gold surfaces.
A variety of methods may be used to immobilize a redox polymer on an electrode surface. One method is adsorptive immobilization. This method is particularly useful for redox polymers with relatively high molecular weights. The molecular weight of a polymer may be increased, for example, by cross-linking.
Another method for immobilizing the redox polymer includes the functionalization of the electrode surface and then the chemical bonding, often covalently, of the redox polymer to the functional groups on the electrode surface. One example of this type of immobilization begins with a poly(4-vinylpyridine). The polymer's pyridine rings are, in part, complexed with a reducible/oxidizable species, such as [Os(bpy)2Cl]+/2+ where bpy is 2,2′-bipyridine. Part of the pyridine rings are quaternized by reaction with 2-bromoethylamine. The polymer is then crosslinked, for example, using a diepoxide, such as polyethylene glycol diglycidyl ether.
Carbon surfaces can be modified for attachment of a redox species or polymer, for example, by electroreduction of a diazonium salt. As an illustration, reduction of a diazonium salt formed upon diazotization of p-aminobenzoic acid modifies a carbon surface with phenylcarboxylic acid functional groups. These functional groups can then be activated by a carbodiimide, such as 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride. The activated functional groups are then bound with a amine-functionalized redox couple, such as the quaternized osmium-containing redox polymer described above or 2-aminoethylferrocene, to form the redox couple.
Similarly, gold can be functionalized by an amine, such as cystamine,. A redox couple such as [Os(bpy)2(pyridine-4-carboxylate)Cl]0/+ is activated by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride to form a reactive O-acylisourea which reacts with the gold-bound amine to form an amide.
In one embodiment, in addition to using the conductive traces 52 as electrodes or probe leads, two or more of the conductive traces 52 on the substrate 50 are used to give the patient a mild electrical shock when, for example, the analyte level exceeds a threshold level. This shock may act as a warning or alarm to the patient to initiate some action to restore the appropriate level of the analyte.
The mild electrical shock is produced by applying a potential between any two conductive traces 52 that are not otherwise connected by a conductive path. For example, two of the electrodes 58, 60, 62 or one electrode 58, 60, 62 and the temperature probe 66 may be used to provide the mild shock. Preferably, the working electrode 58 and the reference electrode 62 are not used for this purpose as this may cause some damage to the chemical components on or proximate to the particular electrode (e.g., the sensing layer on the working electrode or the redox couple on the reference electrode).
The current used to produce the mild shock is typically 0.1 to 1 mA. Higher or lower currents may be used, although care should be taken to avoid harm to the patient. The potential between the conductive traces is typically 1 to 10 volts. However, higher or lower voltages may be used depending, for example, on the resistance of the conductive traces 52, the distance between the conductive traces 52 and the desired amount of current. When the mild shock is delivered, potentials at the working electrode 58 and across the temperature probe 66 may be removed to prevent harm to those components caused by unwanted conduction between the working electrode 58 (and/or temperature probe 66, if used) and the conductive traces 52 which provide the mild shock.
Contact Pads
Typically, each of the conductive traces 52 includes a contact pad 49. The contact pad 49 may simply be a portion of the conductive trace 52 that is indistinguishable from the rest of the trace 52 except that the contact pad 49 is brought into contact with the conductive contacts of a control unit (e.g., the sensor control unit 44 of FIG. 1). More commonly, however, the contact pad 49 is a region of the conductive trace 52 that has a larger width than other regions of the trace 52 to facilitate a connection with the contacts on the control unit. By making the contact pads 49 relatively large as compared with the width of the conductive traces 52, the need for precise registration between the contact pads 49 and the contacts on the control unit is less critical than with small contact pads.
The contact pads 49 are typically made using the same material as the conductive material 56 of the conductive traces 52. However, this is not necessary. Although metal, alloys, and metallic compounds may be used to form the contact pads 49, in some embodiments, it is desirable to make the contact pads 49 from a carbon or other non-metallic material, such as a conducting polymer. In contrast to metal or alloy contact pads, carbon and other non-metallic contact pads are not easily corroded if the contact pads 49 are in a wet, moist, or humid environment. Metals and alloys may corrode under these conditions, particularly if the contact pads 49 and contacts of the control unit are made using different metals or alloys. However, carbon and non-metallic contact pads 49 do not significantly corrode, even if the contacts of the control device are metal or alloy.
One embodiment of the invention includes a sensor 42 having contact pads 49 and a control unit 44 having conductive contacts (not shown). During operation of the sensor 42, the contact pads 49 and conductive contacts are in contact with each other. In this embodiment, either the contact pads 49 or the conductive contacts are made using a non-corroding, conductive material. Such materials include, for example, carbon and conducting polymers. Preferred non-corroding materials include graphite and vitreous carbon. The opposing contact pad or conductive contact is made using carbon, a conducting polymer, a metal, such as gold, palladium, or platinum group metal, or a metallic compound, such as ruthenium dioxide. This configuration of contact pads and conductive contacts typically reduces corrosion. Preferably, when the sensor is placed in a 3 mM, and more preferably, in a 100 mM, NaCl solution, the signal arising due to the corrosion of the contact pads and/or conductive contacts is less than 3% of the signal generated by the sensor when exposed to concentration of analyte in the normal physiological range. For at least some subcutaneous glucose sensors, the current generated by analyte in a normal physiological range ranges from 3 to 500 nA.
Each of the electrodes 58, 60, 62, as well as the two probe leads 68, 70 of the temperature probe 66 (described below), are connected to contact pads 49 as shown in
In other embodiments, the conductive traces 52 on at least one side are connected through vias in the substrate to contact pads 49a on the opposite surface of the substrate 50, as shown in
In yet other embodiments (not shown), vias through the substrate are used to provide contact pads on both sides of the substrate 50 for each conductive trace 52. The vias connecting the conductive traces 52 with the contact pads 49a can be formed by making holes through the substrate 50 at the appropriate points and then filling the holes with conductive material 56.
Exemplary Electrode Configurations
A number of exemplary electrode configurations are described below, however, it will be understood that other configurations may also be used. In one embodiment, illustrated in
Alternatively, one or more of the electrodes may be formed on an opposing side of the substrate 50. This may be convenient if the electrodes are formed using two different types of conductive material 56 (e.g., carbon and silver/silver chloride). Then, at least in some embodiments, only one type of conductive material 56 needs to be applied to each side of the substrate 50, thereby reducing the number of steps in the manufacturing process and/or easing the registration constraints in the process. For example, if the working electrode 58 is formed using a carbon-based conductive material 56 and the reference or counter/reference electrode is formed using a silver/silver chloride conductive material 56, then the working electrode and reference or counter/reference electrode may be formed on opposing sides of the substrate 50 for ease of manufacture.
In another embodiment, two working electrodes 58 and one counter electrode 60 are formed on one side of the substrate 50 and one reference electrode 62 and a temperature probe 66 are formed on an opposing side of the substrate 50, as illustrated in FIG. 6. The opposing sides of the tip of this embodiment of the sensor 42 are illustrated in
Sensing Layer
Some analytes, such as oxygen, can be directly electrooxidized or electroreduced on the working electrode 58. Other analytes, such as glucose and lactate, require the presence of at least one electron transfer agent and/or at least one catalyst to facilitate the electrooxidation or electroreduction of the analyte. Catalysts may also be used for those analyte, such as oxygen, that can be directly electrooxidized or electroreduced on the working electrode 58. For these analytes, each working electrode 58 has a sensing layer 64 formed proximate to or on a working surface of the working electrode 58. Typically, the sensing layer 64 is formed near or on only a small portion of the working electrode 58, often near a tip of the sensor 42. This limits the amount of material needed to form the sensor 42 and places the sensing layer 64 in the best position for contact with the analyte-containing fluid (e.g., a body fluid, sample fluid, or carrier fluid).
The sensing layer 64 includes one or more components designed to facilitate the electrolysis of the analyte. The sensing layer 64 may include, for example, a catalyst to catalyze a reaction of the analyte and produce a response at the working electrode 58, an electron transfer agent to indirectly or directly transfer electrons between the analyte and the working electrode 58, or both.
The sensing layer 64 may be formed as a solid composition of the desired components (e.g., an electron transfer agent and/or a catalyst). These components are preferably non-leachable from the sensor 42 and more preferably are immobilized on the sensor 42. For example, the components may be immobilized on a working electrode 58. Alternatively, the components of the sensing layer 64 may be immobilized within or between one or more membranes or films disposed over the working electrode 58 or the components may be immobilized in a polymeric or sol-gel matrix. Examples of immobilized sensing layers are described in U.S. Pat. Nos. 5,262,035, 5,264,104, 5,264,105, 5,320,725, 5,593,852, and 5,665,222, and PCT Patent Application Publication No. WO 98/35053, incorporated herein by reference.
In some embodiments, one or more of the components of the sensing layer 64 may be solvated, dispersed, or suspended in a fluid within the sensing layer 64, instead of forming a solid composition. The fluid may be provided with the sensor 42 or may be absorbed by the sensor 42 from the analyte-containing fluid. Preferably, the components which are solvated, dispersed, or suspended in this type of sensing layer 64 are non-leachable from the sensing layer. Non-leachability may be accomplished, for example, by providing barriers(e.g., the electrode, substrate, membranes, and/or films) around the sensing layer which prevent the leaching of the components of the sensing layer 64. One example of such a barrier is a microporous membrane or film which allows diffusion of the analyte into the sensing layer 64 to make contact with the components of the sensing layer 64, but reduces or eliminates the diffusion of the sensing layer components (e.g., a electron transfer agent and/or a catalyst) out of the sensing layer 64.
A variety of different sensing layer configurations can be used. In one embodiment, the sensing layer 64 is deposited on the conductive material 56 of a working electrode 58a, as illustrated in
In another embodiment, two sensing layers 63, 64 are used, as shown in FIG. 4B. Each of the two sensing layers 63, 64 may be independently formed on the working electrode 58a or in proximity to the working electrode 58a. One sensing layer 64 is typically, although not necessarily, spaced apart from the working electrode 58a. For example, this sensing layer 64 may include a catalyst which catalyzes a reaction of the analyte to form a product compound. The product compound is then electrolyzed in the second sensing layer 63 which may include an electron transfer agent to transfer electrons between the working electrode 58a and the product compound and/or a second catalyst to catalyze a reaction of the product compound to generate a signal at the working electrode 58a.
For example, a glucose or lactate sensor may include a first sensing layer 64 which is spaced apart from the working electrode and contains an enzyme, for example, glucose oxidase or lactate oxidase. The reaction of glucose or lactate in the presence of the appropriate enzyme forms hydrogen peroxide. A second sensing layer 63 is provided directly on the working electrode 58a and contains a peroxidase enzyme and an electron transfer agent to generate a signal at the electrode in response to the hydrogen peroxide. The level of hydrogen peroxide indicated by the sensor then correlates to the level of glucose or lactate. Another sensor which operates similarly can be made using a single sensing layer with both the glucose or lactate oxidase and the peroxidase being deposited in the single sensing layer. Examples of such sensors are described in U.S. Pat. No. 5,593,852, U.S. Pat. No. 5,665,222 and PCT Patent Application Publication No. WO 98/35053, incorporated herein by reference.
In some embodiments, one or more of the working electrodes 58b do not have a corresponding sensing layer 64, as shown in
As described above, a second catalyst may also be used. This second catalyst is often used to catalyze a reaction of a product compound resulting from the catalyzed reaction of the analyte. The second catalyst typically operates with an electron transfer agent to electrolyze the product compound to generate a signal at the working electrode. Alternatively, the second catalyst may be provided in an interferent-eliminating layer to catalyze reactions that remove interferents, as described below.
One embodiment of the invention is an electrochemical sensor in which the catalyst is mixed or dispersed in the conductive material 56 which forms the conductive trace 52 of a working electrode 58. This may be accomplished, for example, by mixing a catalyst, such as an enzyme, in a carbon ink and applying the mixture into a channel 54 on the surface of the substrate 50. Preferably, the catalyst is immobilized in the channel 53 so that it can not leach away from the working electrode 58. This may be accomplished, for example, by curing a binder in the carbon ink using a curing technique appropriate to the binder. Curing techniques include, for example, evaporation of a solvent or dispersant, exposure to ultraviolet light, or exposure to heat. Typically, the mixture is applied under conditions that do not substantially degrade the catalyst. For example, the catalyst may be an enzyme that is heat-sensitive. The enzyme and conductive material mixture should be applied and cured, preferably, without sustained periods of heating. The mixture may be cured using evaporation or UV curing techniques or by the exposure to heat that is sufficiently short that the catalyst is not substantially degraded.
Another consideration for in vivo analyte sensors is the thermostability of the catalyst. Many enzymes have only limited stability at biological temperatures. Thus, it may be necessary to use large amounts of the catalyst and/or use a catalyst that is thermostable at the necessary temperature (e.g., 37° C. or higher for normal body temperature). A thermostable catalyst may be defined as a catalyst which loses less than 5% of its activity when held at 37° C. for at least one hour, preferably, at least one day, and more preferably at least three days. One example of a thermostable catalyst is soybean peroxidase. This particular thermostable catalyst may be used in a glucose or lactate sensor when combined either in the same or separate sensing layers with glucose or lactate oxidase or dehydrogenase. A further description of thermostable catalysts and their use in electrochemical inventions is found in U.S. Pat. No. 5,665,222 and in PCT Patent Application Publication No. WO 98/35053.
Electrolysis of the Analyte
To electrolyze the analyte, a potential (versus a reference potential) is applied across the working and counter electrodes 58, 60. The minimum magnitude of the applied potential is often dependent on the particular electron transfer agent, analyte (if the analyte is directly electrolyzed at the electrode), or second compound (if a second compound, such as oxygen or hydrogen peroxide, whose level is dependent on the analyte level, is directly electrolyzed at the electrode). The applied potential usually equals or is more oxidizing or reducing, depending on the desired electrochemical reaction, than the redox potential of the electron transfer agent, analyte, or second compound, whichever is directly electrolyzed at the electrode. The potential at the working electrode is typically large enough to drive the electrochemical reaction to or near completion.
The magnitude of the potential may optionally be limited to prevent significant (as determined by the current generated in response to the analyte) electrochemical reaction of interferents, such as urate, ascorbate, and acetaminophen. The limitation of the potential may be obviated if these interferents have been removed in another way, such as by providing an interferent-limiting barrier, as described below, or by including a working electrode 58b (see
When a potential is applied between the working electrode 58 and the counter electrode 60, an electrical current will flow. The current is a result of the electrolysis of the analyte or a second compound whose level is affected by the analyte. In one embodiment, the electrochemical reaction occurs via an electron transfer agent and the optional catalyst. Many analytes B are oxidized (or reduced) to products C by an electron transfer agent species A in the presence of an appropriate catalyst (e.g., an enzyme). The electron transfer agent A is then oxidized (or reduced) at the electrode. Electrons are collected by (or removed from) the electrode and the resulting current is measured. This process is illustrated by reaction equations (1) and (2) (similar equations may be written for the reduction of the analyte B by a redox mediator A in the presence of a catalyst):
As an example, an electrochemical sensor may be based on the reaction of a glucose molecule with two non-leachable ferricyanide anions in the presence of glucose oxidase to produce two non-leachable ferrocyanide anions, two hydrogen ions, and gluconolactone. The amount of glucose present is assayed by electrooxidizing the non-leachable ferrocyanide anions to non-leachable ferricyanide anions and measuring the current.
In another embodiment, a second compound whose level is affected by the analyte is electrolyzed at the working electrode. In some cases, the analyte D and the second compound, in this case, a reactant compound E, such as oxygen, react in the presence of the catalyst, as shown in reaction equation (3).
The reactant compound E is then directly oxidized (or reduced) at the working electrode, as shown in reaction equation (4)
Alternatively, the reactant compound E is indirectly oxidized (or reduced) using an electron transfer agent H (optionally in the presence of a catalyst), that is subsequently reduced or oxidized at the electrode, as shown in reaction equations (5) and (6).
In either case, changes in the concentration of the reactant compound, as indicated by the signal at the working electrode, correspond inversely to changes in the analyte (i.e., as the level of analyte increase then the level of reactant compound and the signal at the electrode decreases.)
In other embodiments, the relevant second compound is a product compound F, as shown in reaction equation (3). The product compound F is formed by the catalyzed reaction of analyte D and then be directly electrolyzed at the electrode or indirectly electrolyzed using an electron transfer agent and, optionally, a catalyst. In these embodiments, the signal arising from the direct or indirect electrolysis of the product compound F at the working electrode corresponds directly to the level of the analyte (unless there are other sources of the product compound). As the level of analyte increases, the level of the product compound and signal at the working electrode increases.
Those skilled in the art will recognize that there are many different reactions that will achieve the same result; namely the electrolysis of an analyte or a compound whose level depends on the level of the analyte. Reaction equations (1) through (6) illustrate non-limiting examples of such reactions.
Temperature Probe
A variety of optional items may be included in the sensor. One optional item is a temperature probe 66 (FIGS. 8 and 11). The temperature probe 66 may be made using a variety of known designs and materials. One exemplary temperature probe 66 is formed using two probe leads 68, 70 connected to each other through a temperature-dependent element 72 that is formed using a material with a temperature-dependent characteristic. An example of a suitable temperature-dependent characteristic is the resistance of the temperature-dependent element 72.
The two probe leads 68, 70 are typically formed using a metal, an alloy, a semimetal, such as graphite, a degenerate or highly doped semiconductor, or a small-band gap semiconductor. Examples of suitable materials include gold, silver, ruthenium oxide, titanium nitride, titanium dioxide, indium doped tin oxide, tin doped indium oxide, or graphite. The temperature-dependent element 72 is typically made using a fine trace (e.g., a conductive trace that has a smaller cross-section than that of the probe leads 68, 70) of the same conductive material as the probe leads, or another material such as a carbon ink, a carbon fiber, or platinum, which has a temperature-dependent characteristic, such as resistance, that provides a temperature-dependent signal when a voltage source is attached to the two probe leads 68, 70 of the temperature probe 66. The temperature-dependent characteristic of the temperature-dependent element 72 may either increase or decrease with temperature. Preferably, the temperature dependence of the characteristic of the temperature-dependent element 72 is approximately linear with temperature over the expected range of biological temperatures (about 25 to 45° C.), although this is not required.
Typically, a signal (e.g., a current) having an amplitude or other property that is a function of the temperature can be obtained by providing a potential across the two probe leads 68, 70 of the temperature probe 66. As the temperature changes, the temperature-dependent characteristic of the temperature-dependent element 72 increases or decreases with a corresponding change in the signal amplitude. The signal from the temperature probe 66 (e.g., the amount of current flowing through the probe) may be combined with the signal obtained from the working electrode 58 by, for example, scaling the temperature probe signal and then adding or subtracting the scaled temperature probe signal from the signal at the working electrode 58. In this manner, the temperature probe 66 can provide a temperature adjustment for the output from the working electrode 58 to offset the temperature dependence of the working electrode 58.
One embodiment of the temperature probe includes probe leads 68, 70 formed as two spaced-apart channels with a temperature-dependent element 72 formed as a cross-channel connecting the two spaced-apart channels, as illustrated in FIG. 8. The two spaced-apart channels contain a conductive material, such as a metal, alloy, semimetal, degenerate semiconductor, or metallic compound. The cross-channel may contain the same material (provided the cross-channel has a smaller cross-section than the two spaced-apart channels) as the probe leads 68, 70. In other embodiments, the material in the cross-channel is different than the material of the probe leads 68, 70.
One exemplary method for forming this particular temperature probe includes forming the two spaced-apart channels and then filling them with the metallic or alloyed conductive material. Next, the cross-channel is formed and then filled with the desired material. The material in the cross-channel overlaps with the conductive material in each of the two spaced-apart channels to form an electrical connection.
For proper operation of the temperature probe 66, the temperature-dependent element 72 of the temperature probe 66 can not be shorted by conductive material formed between the two probe leads 68, 70. In addition, to prevent conduction between the two probe leads 68, 70 by ionic species within the body or sample fluid, a covering may be provided over the temperature-dependent element 72, and preferably over the portion of the probe leads 68, 70 that is implanted in the patient. The covering may be, for example, a non-conducting film disposed over the temperature-dependent element 72 and probe leads 68, 70 to prevent the ionic conduction. Suitable non-conducting films include, for example, Kapton™ polyimide films (DuPont, Wilmington, Del.).
Another method for eliminating or reducing conduction by ionic species in the body or sample fluid is to use an ac voltage source connected to the probe leads 68, 70. In this way, the positive and negative ionic species are alternately attracted and repelled during each half cycle of the ac voltage. This results in no net attraction of the ions in the body or sample fluid to the temperature probe 66. The maximum amplitude of the ac current through the temperature-dependent element 72 may then be used to correct the measurements from the working electrodes 58.
The temperature probe can be placed on the same substrate as the electrodes. Alternatively, a temperature probe may be placed on a separate substrate. In addition, the temperature probe may be used by itself or in conjunction with other devices.
Biocompatible Layer
An optional film layer 75 is formed over at least that portion of the sensor 42 which is subcutaneously inserted into the patient, as shown in FIG. 9. This optional film layer 74 may serve one or more functions. The film layer 74 prevents the penetration of large biomolecules into the electrodes. This is accomplished by using a film layer 74 having a pore size that is smaller than the biomolecules that are to be excluded. Such biomolecules may foul the electrodes and/or the sensing layer 64 thereby reducing the effectiveness of the sensor 42 and altering the expected signal amplitude for a given analyte concentration. The fouling of the working electrodes 58 may also decrease the effective life of the sensor 42. The biocompatible layer 74 may also prevent protein adhesion to the sensor 42, formation of blood clots, and other undesirable interactions between the sensor 42 and body.
For example, the sensor may be completely or partially coated on its exterior with a biocompatible coating. A preferred biocompatible coating is a hydrogel which contains at least 20 wt. % fluid when in equilibrium with the analyte-containing fluid. Examples of suitable hydrogels are described in U.S. Pat. No. 5,593,852, incorporated herein by reference, and include crosslinked polyethylene oxides, such as polyethylene oxide tetraacrylate.
Interferent-Eliminating Layer
An interferent-eliminating layer (not shown) may be included in the sensor 42. The interferent-eliminating layer may be incorporated in the biocompatible layer 75 or in the mass transport limiting layer 74 (described below) or may be a separate layer. Interferents are molecules or other species that are electroreduced or electrooxidized at the electrode, either directly or via an electron transfer agent, to produce a false signal. In one embodiment, a film or membrane prevents the penetration of one or more interferents into the region around the working electrodes 58. Preferably, this type of interferent-eliminating layer is much less permeable to one or more of the interferents than to the analyte.
The interferent-eliminating layer may include ionic components, such as Nafion®, incorporated into a polymeric matrix to reduce the permeability of the interferent-eliminating layer to ionic interferents having the same charge as the ionic components. For example, negatively charged compounds or compounds that form negative ions may be incorporated in the interferent-eliminating layer to reduce the permeation of negative species in the body or sample fluid.
Another example of an interferent-eliminating layer includes a catalyst for catalyzing a reaction which removes interferents. One example of such a catalyst is a peroxidase. Hydrogen peroxide reacts with interferents, such as acetaminophen, urate, and ascorbate. The hydrogen peroxide may be added to the analyte-containing fluid or may be generated in situ, by, for example, the reaction of glucose or lactate in the presence of glucose oxidase or lactate oxidase, respectively. Examples of interferent eliminating layers include a peroxidase enzyme crosslinked (a) using gluteraldehyde as a crosslinking agent or (b) oxidation of oligosaccharide groups in the peroxidase glycoenzyme with NaIO4, followed by coupling of the aldehydes formed to hydrazide groups in a polyacrylamide matrix to form hydrazones are describe in U.S. Pat. Nos. 5,262,305 and 5,356,786, incorporated herein by reference.
Mass Transport Limiting Layer
A mass transport limiting layer 74 may be included with the sensor to act as a diffusion-limiting barrier to reduce the rate of mass transport of the analyte, for example, glucose or lactate, into the region around the working electrodes 58. By limiting the diffusion of the analyte, the steady state concentration of the analyte in the proximity of the working electrode 58 (which is proportional to the concentration of the analyte in the body or sample fluid) can be reduced. This extends the upper range of analyte concentrations that can still be accurately measured and may also expand the range in which the current increases approximately linearly with the level of the analyte.
It is preferred that the permeability of the analyte through the film layer 74 vary little or not at all with temperature, so as to reduce or eliminate the variation of current with temperature. For this reason, it is preferred that in the biologically relevant temperature range from about 25° C. to about 45° C., and most importantly from 30° C. to 40° C., neither the size of the pores in the film nor its hydration or swelling change excessively. Preferably, the mass transport limiting layer is made using a film that absorbs less than 5 wt. % of fluid over 24 hours. This may reduce or obviate any need for a temperature probe. For implantable sensors, it is preferable that the mass transport limiting layer is made using a film that absorbs less than 5 wt. % of fluid over 24 hours at 37° C.
Particularly useful materials for the film layer 74 are membranes that do not swell in the analyte-containing fluid that the sensor tests. Suitable membranes include 3 to 20,000 nm diameter pores. Membranes having 5 to 500 nm diameter pores with well-defined, uniform pore sizes and high aspect ratios are preferred. In one embodiment, the aspect ratio of the pores is preferably two or greater and more preferably five or greater.
Well-defined and uniform pores can be made by track etching a polymeric membrane using accelerated electrons, ions, or particles emitted by radioactive nuclei. Most preferred are anisotropic, polymeric, track etched membranes that expand less in the direction perpendicular to the pores than in the direction of the pores when heated. Suitable polymeric membranes included polycarbonate membranes from Poretics (Livermore, Calif., catalog number 19401, 0.01 μm pore size polycarbonate membrane) and Coming Costar Corp. (Cambridge, Mass., Nucleopore™ brand membranes with 0.015 μm pore size). Other polyolefin and polyester films may be used. It is preferred that the permeability of the mass transport limiting membrane changes no more than 4%, preferably, no more than 3%, and, more preferably, no more than 2%, per ° C. in the range from 30° C. to 40° C. when the membranes resides in the subcutaneous interstitial fluid.
In some embodiments of the invention, the mass transport limiting layer 74 may also limit the flow of oxygen into the sensor 42. This can improve the stability of sensors 42 that are used in situations where variation in the partial pressure of oxygen causes non-linearity in sensor response. In these embodiments, the mass transport limiting layer 74 restricts oxygen transport by at least 40%, preferably at least 60%, and more preferably at least 80%, than the membrane restricts transport of the analyte. For a given type of polymer, films having a greater density (e.g., a density closer to that of the crystalline polymer) are preferred. Polyesters, such as polyethylene terephthalate, are typically less permeable to oxygen and are, therefore, preferred over polycarbonate membranes.
Anticlotting Agent
An implantable sensor may also, optionally, have an anticlotting agent disposed on a portion the substrate which is implanted into a patient. This anticlotting agent may reduce or eliminate the clotting of blood or other body fluid around the sensor, particularly after insertion of the sensor. Blood clots may foul the sensor or irreproducibly reduce the amount of analyte which diffuses into the sensor. Examples of useful anticlotting agents include heparin and tissue plasminogen activator (TPA), as well as other known anticlotting agents.
The anticlotting agent may be applied to at least a portion of that part of the sensor 42 that is to be implanted. The anticlotting agent may be applied, for example, by bath, spraying, brushing, or dipping. The anticlotting agent is allowed to dry on the sensor 42. The anticlotting agent may be immobilized on the surface of the sensor or it may be allowed to diffuse away from the sensor surface. Typically, the quantities of anticlotting agent disposed on the sensor are far below the amounts typically used for treatment of medical conditions involving blood clots and, therefore, have only a limited, localized effect.
Sensor Lifetime
The sensor 42 may be designed to be a replaceable component in an in vivo or in vitro analyte monitor, and particularly in an implantable analyte monitor. Typically, the sensor 42 is capable of operation over a period of days. Preferably, the period of operation is at least one day, more preferably at least three days, and most preferably at least one week. The sensor 42 can then be removed and replaced with a new sensor. The lifetime of the sensor 42 may be reduced by the fouling of the electrodes or by the leaching of the electron transfer agent or catalyst. These limitations on the longevity of the sensor 42 can be overcome by the use of a biocompatible layer 75 or non-leachable electron transfer agent and catalyst, respectively, as described above.
Another primary limitation on the lifetime of the sensor 42 is the temperature stability of the catalyst. Many catalysts are enzymes, which are very sensitive to the ambient temperature and may degrade at temperatures of the patient's body (e.g., approximately 37° C. for the human body). Thus, robust enzymes should be used where available. The sensor 42 should be replaced when a sufficient amount of the enzyme has been deactivated to introduce an unacceptable amount of error in the measurements.
Manufacturing Process—Substrate and Channel Formation
The continuous substrate web 202 ultimately forms the substrate 50 of the sensor 42. Consequently, for certain applications, the web 202 is made of nonconducting plastic or polymeric materials such as those previously identified in the specification with respect to the substrate 50. In one particular embodiment, the web 202 comprises a continuous plastic or polymeric film having a thickness in the range of 50 to 500 μm (2-20 mil), and preferably in the range of 100 to 300 μm (4-12 mil).
To initiate the manufacturing process, the web 202 is pulled from a source reel 203 and passed through a heater 204. As shown in
With respect to the heating step, it will be appreciated that certain web materials may have sufficient deformability to allow channels to be pressed therein without requiring a heating step. Similarly, if no channels are desired to be formed in the web 202, or channels are to be formed through non-mechanical techniques such as laser or chemical etching, the initial heating step can also be eliminated from the process. Furthermore, if it is desired to soften the web 202 via heat, it will be appreciated that any number of known heating sources/configurations, such as radiant or convection heaters, can be utilized. Alternatively, the forming tool may be heated and not the web.
After the web 202 has been heated to a desired temperature by the heater 204, the web 202 is preferably conveyed to a channel formation station/zone 205 where the channels 54 are preferably mechanically pressed into the web 202 by a continuous embossing process. For example, as shown in
It will be appreciated that embossing rollers suitable for use with the present invention can be designed to form a wide range of different channel patterns. For example,
The raised portions 210 further include tabs or punch members 215 adapted for forming contact pad depressions in which conductive material can be disposed to form the contact pads 49 of the sensor 42. When the web 202 is pressed against the outer surface of the roller 208, the raised portions 210 project or extend into the web 202 causing the web 202 to deform or indent such that the channels 54 and contact pad depressions are formed within the web 202. In other words, the raised portions 210 of the roller 208 form a pattern of depressions in the web 202 that includes such features as the channels 54 and the contact pad depressions.
As shown in
Referring now to
It will be appreciated that embossing tools suitable for use with the present invention, such as rollers, presses or stamps, can be manufactured using a variety of techniques. For example, such tools can be molded, formed or cast using conventional techniques. Exemplary materials for making such embossing tools include steel and other metals, minerals such as sapphire and silicon, epoxides, ceramics, and appropriate polymers.
In one particular embodiment of the present invention, silicon is used to make an embossing tool such as an embossing roller or stamp. Preferably, a desired pattern of raised portions is formed on the embossing surface of the tool using photolithographic and etching techniques to remove selected portions of the tool. It has been determined that such a process can yield an embossing tool having a desirable surface finish, precisely shaped features at small sizes, no burrs, and sharp features (e.g., small radii between intersecting features).
Silicon is preferred for a flat (non-cylindrical) tool, and may be etched using techniques common to the integrated circuit industry to create profiles in the wafer surface. Such profiles may be either positive in relief above the surface or negative below the wafer surface. Positive profiles may be used directly as tools to create indentations in a softer substrate. Negative profiles may be used as a master to create a series of second generation positives that are used as the final tool. The second generation positives may be made from any castable material with the appropriate mechanical properties.
Manufacturing Process—Formation of Conductive Traces
Referring back to
After the channels 54 have been substantially filled with conductive material or precursor conductive material, the web 202 is preferably passed through an arrangement/device for scraping or wiping excess conductive material/precursor conductive material from the surface of the web 202. For example, as shown in
As shown in
Manufacturing Process—Other Methods for Forming Conductive Traces
In addition to the above identified mechanical techniques for forming the channels 54 in the web 202, other techniques can also be utilized. For example, the channels can be formed by removing or carbonizing a portion of the substrate 50 or web 202 using a laser, or photolithographic patterning and etching of the substrate 50 or web 202. Furthermore, for certain applications, channels may not be formed in the substrate 50 or web 202 at all. For example, as discussed above, the conductive traces 52 can be formed on the substrate 50 by a variety of techniques, including photolithography, screen printing, other printing techniques, stamping traces into the substrate or web 202, or using a laser to micro-machine traces into the substrate 50 or web 202. Each of these techniques has corresponding limits on the reproducibility, precision, and cost of producing the conductive traces.
Another method for forming the conductive traces uses techniques common to pad printing or hot stamping methods, whereby a film of conductive material is formed, for example, as a continuous sheet or as a coating layer deposited on a carrier film. The film of conductive material is brought between a print head and the substrate 500. A pattern of conductive traces 52 is formed on the substrate 50 using the print head. The conductive material is transferred by pressure and/or heat from the conductive film to the substrate 50. This technique may produce channels (e.g., depressions caused by impact of the print head on the substrate 50). Alternatively, the conductive material is deposited directly without forming substantial depressions in the surface of the substrate 50.
In other embodiments, the conductive traces 52 are formed by non-impact printing techniques. These methods do not require the formation of channels in the substrate. Instead, conductive traces may be formed directly on a planer substrate. Such techniques include electrophotography and magnetography. In these processes, an image of the conductive traces 52 is electrically or magnetically formed on a drum. A laser or LED may be used to electrically form the image or a magnetic recording head may be used to magnetically form the image. A toner material (e.g., a conductive material, such as a conductive ink) is then attracted to portions of the drum according to the image. The toner material is then applied to the substrate by contact between the drum and the substrate. For example, the substrate may be rolled over the drum. The toner material may then be dried and/or a binder in the toner material may be cured to adhere the toner material to the substrate.
Another non-impact printing technique includes ejecting droplets of conductive material onto the substrate in a desired pattern. Examples of this technique include ink jet printing and piezo jet printing. An image is sent to the printer which then ejects the conductive material (e.g., a conductive ink) according to the pattern. The printer may provide a continuous stream of conductive material or the printer may eject the conductive material in discrete amounts at the desired points.
Yet another embodiment of forming the conductive traces includes an ionographic process. In the this process, a curable, liquid precursor, such as a photopolymerizable acrylic resin (e.g., Solimer 7501 from Cubital, Bad Kreuznach, Germany), is deposited over a surface of a substrate 50. A photomask having a positive or negative image of the conductive traces 52 is then used to cure the liquid precursor. Light (e.g., visible or ultraviolet light) is directed through the photomask to cure the liquid precursor and form a solid layer over the substrate according to the image on the photomask. Uncured liquid precursor is removed leaving behind channels 54 in the solid layer. These channels 54 can then be filled with conductive material 56 to form conductive traces 52.
Manufacturing Process—Drying and Curing
Once the web 202 has been wiped by the coating blade 212 and roller mechanism 214, the web 202 is moved through a drying chamber 216. The drying chamber 216 preferably provides sufficient heat to drive off or evaporate solvents or dispersants that may be contained in precursor conductive material within the channels 54. After heating, conductive material is preferably left as a residue in the channels 54. In certain cases, the drying chamber 216 exposes the web 202 to sufficient temperatures to cure optional binders that may be present with the conductive material. It will be appreciated that ultraviolet light could also be used to cure optional binders interspersed with the conductive material.
Manufacturing Process—Sensor Chemistry Deposition
After the web 202 has been heated in the heating chamber 216, the web 202 is directed to a sensor chemistry deposition station/zone 218 at which sensor chemistry is deposited, placed, or otherwise disposed over portions of the conductive material within the channels 54 so as to form the sensing layers 64 over the working electrodes 58.
It will be appreciated that a variety of techniques can be used to apply or deposit the sensor chemistry on the web 202. In one particular embodiment of the present invention, piezo jet technology or the like is used to deposit the chemistry upon the web 202 to form the sensing layers 64. A solenoid valve can be rapidly shuttered and when supplied with liquid under a precisely controlled over-pressure condition, a droplet of controlled size will be ejected from the valve. Resolutions to 500 picoliters can be achieved. Conventional ink jet printers can also be used.
To enhance adhesion of the sensor chemistry to the web 202, the surface of the web 202 can optionally be roughened by techniques such as abrasion or plasma treatment prior to applying the sensor chemistry. For example, by pre-treating the surface of the web 202, for example, by a corona discharge, free radicals are generated on the web surface to enhance adhesion of the sensor chemistry to the web 202 and working electrodes 58.
Once the sensor chemistry has been applied to the web 202, the web 202 is preferably conveyed through another heating chamber 220. The heating chamber 220 preferably provides sufficient temperature/heating to release solvents from the deposited sensor chemistry. The heating chamber 220 can also heat the web 202 to sufficient temperatures to cause potential polymerization reactions such as cross link reactions between polymers and the redox mediator and/or redox enzyme.
Manufacturing Process—Membrane Layer
Upon exiting the heating station 220, the substrate web 202 is brought into alignment with a membrane web 222 adapted for forming a membrane layer, that may include one or more individual membranes, such as a mass transport limiting layer 74 or a biocompatible layer 75, over at least some portions of the electrodes. The membrane layer may be applied to only one or two or more surfaces of the substrate. For certain embodiments, solvents such as methyl ethyl ketone and acetone can be applied, for example, sprayed, on the web 202 to soften the web 202 and solvent bond it to the membrane web 222. By heating the solvent after the web 202 has been brought in contact with the membrane web 222, the two webs 202 and 222 can be bonded together such that the web 222 covers and protects portions of the sensor adapted to be implanted. Alternatively, the two webs 202 and 222 can be bonded or fused together at a welding station 224 such as a sonic or laser welding station. The resultant combination of the substrate web 202 and the membrane web 222 results in a laminated structure in which the protective membrane 74 is selectively fused to the polymer substrate 50. In some embodiments, individual membrane webs 222 are bonded to two or more surfaces of the web 202.
The membrane layer may include one or membranes that individually or in combination serve a number of functions. These include protection of the electrode surface, prevention of leaching of components in the sensing layer, mass transport limitation of the analyte, exclusion of interfering substances, reduction or enhancement of oxygen mass transport, and/or biocompatibility. In one embodiment, a membrane is selected which has mass transport limiting pores that do not change appreciably in size over a physiologically relevant temperature range (e.g., 30° C. to 40° C.). This may reduce the temperature dependence of the sensor output.
Manufacturing Process—Cutting
As a final step in the sequence 200, the laminated webs 202 and 222 enter a cutting station/zone 226 in which the sensor 42 planform, as shown in
Multiple Traces/Multiple Surfaces
In basic operation of the system, the web 302 is first pulled from a spool or reel 301 and preferably heated. Next, the channels for the working electrode and counter electrodes 58, 60 are formed in the first side of the web 302 by the first embossing roller 308. It will be appreciated that the first embossing roller 308 preferably includes a pattern of raised portions having a configuration that corresponds to the channel configuration depicted in FIG. 7. Thereafter, the channels of the working and counter electrodes 58, 60 are filled with conductive material/precursor conductive material, such as a flowable conductive carbon ink, at a first channel filling station 314. Subsequently, excess conductive material/precursor conductive material is wiped from the web 302 by a first web wiping arrangement 316.
Once the channels for the working and counter electrodes 58, 60 have been filled with conductive material/precursor conductive material and wiped, the opposite second side of the web 302 is embossed by the second embossing roller 310 such that the channels for the temperature probe leads 68, 70 and the reference electrode 62 are formed in the opposite side of the web 302. It will be appreciated that the second embossing roller 310 preferably includes a pattern of raised portions having a configuration that corresponds to the channel configuration depicted in
After the channels for the temperature probe leads 68, 70 and reference electrode 72 have been formed in the web 202, such channels are filled with suitable conductive material/precursor conductive material at a second channel filling station 318 and excess conductive material/precursor conductive material is wiped from the web 302 at wiping mechanism 320. While one filling station 318 is shown for filling both channels for the temperature probe leads 68, 70 and the reference electrode 62, it will be appreciated that the filling station 318 may include multiple separate filling steps for individually or separately filling each channel.
Once the channels for the temperature probe leads 68, 70 and reference electrode 62 have been filled with conductive material/precursor conductive material and wiped, the channel for the temperature-dependent element 72 of the temperature probe 66 is formed between the channels for the temperature probe leads 68, 70 by the third embossing roller 312. Subsequently, the channel for the temperature-dependent element 72 is filled with appropriate material at channel filling station 322, and excess material is wiped from the web 302 by wiping mechanism 324.
Once both sides of the web 302 have been filled with the appropriate conductive and/or resistive material, sensor chemistry is applied to the working electrodes 58 at a sensor chemical application station 326. The sensor chemistry can be applied at the sensor chemical application station 326 by a variety of techniques. Exemplary techniques include piezo jet printing, ink jet printing, spraying, flowing the sensor chemistry onto the electrodes, coating chemistry on the electrodes, or any other technique suitable for applying chemistry to a relatively precise location. As shown in
As a next step in the process, a protective membrane web 328 is then bought into contact with the substrate web 302 such that at least portions of the working and counter electrodes 58 and 60 are covered by the membrane 328. At membrane bonding station 330, the protective membrane 328 and the substrate web 302 are bonded or fused together by techniques such as solvent bonding, adhesive bonding, laser bonding, laser welding, and/or sonic welding. In the case of solvent bonding, the solvent is applied before the protective membrane is brought into contact with the substrate web. A second membrane may optionally be laminated onto the opposing side of the substrate web to protect the reference electrode and temperature probe. The resulting laminate structure that exits the membrane bonding station 330 is conveyed to a cutting station 332 in which individual discrete planforms of the sensor 42″ are cut, pressed, stamped or otherwise separated from the continuous web 302. For certain applications, it may be desirable to only partially cut the individual sensor planforms from the web 302 such that the sensors are retained on the web for secondary operations. Remaining web material is taken up by take-up reel 334.
It will be appreciated that the particular operating sequence illustrated in
The process of the invention for the manufacture of sensors is rapid and efficient. The process of the invention can produce approximately 5000 conductive traces per hour. Within batch variation of the sensors will be less than between batch variation, thus it is desirable to produce the sensors in large batches. For example, batches of 100 or more or of 1000 or more sensors may be produced.
The sensor may be provided with a code, for example a batch code, during processing. The code may be applied to the sensor, for example by printing the code on the substrate. The sensor code may include information such as the batch number, the type and quantity of chemistry applied to the sensor, and/or calibration data.
The present invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as fairly set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable will be readily apparent to those of skill in the art to which the present invention is directed upon review of the instant specification. The claims are intended to cover such modifications and devices.
This application is a continuation Ser. No. 09/958,776 filed Jun. 16, 2000 abandoned, which is continuation Ser. No. 09/034,422 filed Mar. 4,1998, now U.S. Pat. No. 6,103,033.
Number | Name | Date | Kind |
---|---|---|---|
3260656 | Ross, Jr. | Jul 1966 | A |
3653841 | Klein | Apr 1972 | A |
3719564 | Lilly, Jr. et al. | Mar 1973 | A |
3776832 | Oswin et al. | Dec 1973 | A |
3837339 | Aisenberg et al. | Sep 1974 | A |
3911901 | Niedrach et al. | Oct 1975 | A |
3926760 | Allen et al. | Dec 1975 | A |
3972320 | Kalman | Aug 1976 | A |
3979274 | Newman | Sep 1976 | A |
4008717 | Kowarski | Feb 1977 | A |
4016866 | Lawton | Apr 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4059406 | Fleet | Nov 1977 | A |
4076596 | Connery et al. | Feb 1978 | A |
4098574 | Dappen | Jul 1978 | A |
4100048 | Pompei et al. | Jul 1978 | A |
4151845 | Clemens | May 1979 | A |
4168205 | Danninger et al. | Sep 1979 | A |
4172770 | Semersky et al. | Oct 1979 | A |
4178916 | McNamara | Dec 1979 | A |
4206755 | Klein | Jun 1980 | A |
4224125 | Nakamura et al. | Sep 1980 | A |
4240438 | Updike et al. | Dec 1980 | A |
4247297 | Berti et al. | Jan 1981 | A |
4340458 | Lerner et al. | Jul 1982 | A |
4352960 | Dormer et al. | Oct 1982 | A |
4356074 | Johnson | Oct 1982 | A |
4365637 | Johnson | Dec 1982 | A |
4366033 | Richter et al. | Dec 1982 | A |
4375399 | Havas et al. | Mar 1983 | A |
4384586 | Christiansen | May 1983 | A |
4390621 | Bauer | Jun 1983 | A |
4401122 | Clark, Jr. | Aug 1983 | A |
4404066 | Johnson | Sep 1983 | A |
4418148 | Oberhardt | Nov 1983 | A |
4427770 | Chen et al. | Jan 1984 | A |
4431004 | Bessman et al. | Feb 1984 | A |
4436094 | Cerami | Mar 1984 | A |
4440175 | Wilkins | Apr 1984 | A |
4450842 | Zick et al. | May 1984 | A |
4458686 | Clark, Jr. | Jul 1984 | A |
4461691 | Frank | Jul 1984 | A |
4469110 | Slama | Sep 1984 | A |
4477314 | Richter et al. | Oct 1984 | A |
4484987 | Gough | Nov 1984 | A |
4522690 | Venkatasetty | Jun 1985 | A |
4524114 | Samuels et al. | Jun 1985 | A |
4526661 | Steckhan et al. | Jul 1985 | A |
4534356 | Papadakis | Aug 1985 | A |
4538616 | Rogoff | Sep 1985 | A |
4543955 | Schroeppel | Oct 1985 | A |
4545382 | Higgins et al. | Oct 1985 | A |
4552840 | Riffer | Nov 1985 | A |
4560534 | Kung et al. | Dec 1985 | A |
4571292 | Liu et al. | Feb 1986 | A |
4573994 | Fischell et al. | Mar 1986 | A |
4581336 | Malloy et al. | Apr 1986 | A |
4595011 | Phillips | Jun 1986 | A |
4610741 | Mase et al. | Sep 1986 | A |
4619754 | Niki et al. | Oct 1986 | A |
4627445 | Garcia et al. | Dec 1986 | A |
4627908 | Miller | Dec 1986 | A |
4633878 | Bombardieri | Jan 1987 | A |
4637403 | Garcia et al. | Jan 1987 | A |
4650547 | Gough | Mar 1987 | A |
4654197 | Lilja et al. | Mar 1987 | A |
4655880 | Liu | Apr 1987 | A |
4655885 | Hill et al. | Apr 1987 | A |
4671288 | Gough | Jun 1987 | A |
4679562 | Luksha | Jul 1987 | A |
4680268 | Clark, Jr. | Jul 1987 | A |
4682602 | Prohaska | Jul 1987 | A |
4684537 | Graetzel et al. | Aug 1987 | A |
4685463 | Williams | Aug 1987 | A |
4703756 | Gough et al. | Nov 1987 | A |
4711245 | Higgins et al. | Dec 1987 | A |
4717673 | Wrighton et al. | Jan 1988 | A |
4721601 | Wrighton et al. | Jan 1988 | A |
4721677 | Clark, Jr. | Jan 1988 | A |
4726378 | Kaplan | Feb 1988 | A |
4726716 | McGuire | Feb 1988 | A |
4757022 | Shults et al. | Jul 1988 | A |
4758323 | Davis et al. | Jul 1988 | A |
4759371 | Franetzki | Jul 1988 | A |
4759828 | Young et al. | Jul 1988 | A |
4764416 | Ueyama et al. | Aug 1988 | A |
4776944 | Janata et al. | Oct 1988 | A |
4781798 | Gough | Nov 1988 | A |
4784736 | Lonsdale et al. | Nov 1988 | A |
4795707 | Niiyama et al. | Jan 1989 | A |
4796634 | Huntsman et al. | Jan 1989 | A |
4805624 | Yao et al. | Feb 1989 | A |
4813424 | Wilkins | Mar 1989 | A |
4815469 | Cohen et al. | Mar 1989 | A |
4820399 | Senda et al. | Apr 1989 | A |
4822337 | Newhouse et al. | Apr 1989 | A |
4830959 | McNeil et al. | May 1989 | A |
4832797 | Vadgama et al. | May 1989 | A |
RE32947 | Dormer et al. | Jun 1989 | E |
4840893 | Hill et al. | Jun 1989 | A |
4848351 | Finch | Jul 1989 | A |
4871351 | Feingold | Oct 1989 | A |
4871440 | Nagata et al. | Oct 1989 | A |
4874500 | Madou et al. | Oct 1989 | A |
4890620 | Gough | Jan 1990 | A |
4894137 | Takizawa et al. | Jan 1990 | A |
4897162 | Lewandowski et al. | Jan 1990 | A |
4897173 | Nankai et al. | Jan 1990 | A |
4909908 | Ross et al. | Mar 1990 | A |
4911794 | Parce et al. | Mar 1990 | A |
4917800 | Lonsdale et al. | Apr 1990 | A |
4919141 | Zier et al. | Apr 1990 | A |
4919767 | Vadgama et al. | Apr 1990 | A |
4923586 | Katayama et al. | May 1990 | A |
4927516 | Yamaguchi et al. | May 1990 | A |
4934369 | Maxwell | Jun 1990 | A |
4935105 | Churchouse | Jun 1990 | A |
4935345 | Guilbeau et al. | Jun 1990 | A |
4938860 | Wogoman | Jul 1990 | A |
4944299 | Silvian | Jul 1990 | A |
4950378 | Nagata | Aug 1990 | A |
4953552 | DeMarzo | Sep 1990 | A |
4954129 | Giuliani et al. | Sep 1990 | A |
4969468 | Byers et al. | Nov 1990 | A |
4970145 | Bennetto et al. | Nov 1990 | A |
4974929 | Curry | Dec 1990 | A |
4986271 | Wilkins | Jan 1991 | A |
4994167 | Shults et al. | Feb 1991 | A |
5001054 | Wagner | Mar 1991 | A |
5058592 | Whisler | Oct 1991 | A |
5070535 | Hochmair et al. | Dec 1991 | A |
5082550 | Rishpon et al. | Jan 1992 | A |
5082786 | Nakamoto | Jan 1992 | A |
5089112 | Skotheim et al. | Feb 1992 | A |
5095904 | Seligman et al. | Mar 1992 | A |
5101814 | Palti | Apr 1992 | A |
5108564 | Szuminsky et al. | Apr 1992 | A |
5109850 | Blanco et al. | May 1992 | A |
5120420 | Nankai et al. | Jun 1992 | A |
5126034 | Carter et al. | Jun 1992 | A |
5133856 | Yamaguchi et al. | Jul 1992 | A |
5135003 | Souma | Aug 1992 | A |
5141868 | Shanks et al. | Aug 1992 | A |
5161532 | Joseph | Nov 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5174291 | Schoonen et al. | Dec 1992 | A |
5190041 | Palti | Mar 1993 | A |
5192416 | Wang et al. | Mar 1993 | A |
5198367 | Aizawa et al. | Mar 1993 | A |
5202261 | Musho et al. | Apr 1993 | A |
5205920 | Oyama et al. | Apr 1993 | A |
5208154 | Weaver et al. | May 1993 | A |
5209229 | Gilli | May 1993 | A |
5217595 | Smith et al. | Jun 1993 | A |
5229282 | Yoshioka et al. | Jul 1993 | A |
5250439 | Musho et al. | Oct 1993 | A |
5262035 | Gregg et al. | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264103 | Yoshioka et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264106 | McAleer et al. | Nov 1993 | A |
5271815 | Wong | Dec 1993 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5286362 | Hoenes et al. | Feb 1994 | A |
5286364 | Yacynych et al. | Feb 1994 | A |
5288636 | Pollmann et al. | Feb 1994 | A |
5293546 | Tadros et al. | Mar 1994 | A |
5320098 | Davidson | Jun 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5337747 | Neftel | Aug 1994 | A |
5352348 | Young et al. | Oct 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5368028 | Palti | Nov 1994 | A |
5372133 | Hogen Esch | Dec 1994 | A |
5376251 | Kaneko et al. | Dec 1994 | A |
5378628 | Grātzel et al. | Jan 1995 | A |
5387327 | Khan | Feb 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney et al. | Feb 1995 | A |
5395504 | Saurer et al. | Mar 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5437999 | Diebold et al. | Aug 1995 | A |
5469846 | Khan | Nov 1995 | A |
5494562 | Maley et al. | Feb 1996 | A |
5496453 | Uenoyama et al. | Mar 1996 | A |
5497772 | Schulman et al. | Mar 1996 | A |
5531878 | Vadgama et al. | Jul 1996 | A |
5545191 | Mann et al. | Aug 1996 | A |
5560357 | Faupel et al. | Oct 1996 | A |
5565085 | Ikeda et al. | Oct 1996 | A |
5567302 | Song et al. | Oct 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5582184 | Erickson et al. | Dec 1996 | A |
5582697 | Ikeda et al. | Dec 1996 | A |
5582698 | Flaherty et al. | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5589326 | Deng et al. | Dec 1996 | A |
5593852 | Heller et al. | Jan 1997 | A |
5596150 | Arndt et al. | Jan 1997 | A |
5617851 | Lipkovker | Apr 1997 | A |
5628890 | Carter et al. | May 1997 | A |
5651869 | Yoshioka et al. | Jul 1997 | A |
5660163 | Schulman et al. | Aug 1997 | A |
5670031 | Hintsche et al. | Sep 1997 | A |
5680858 | Hansen et al. | Oct 1997 | A |
5682233 | Brinda | Oct 1997 | A |
5695623 | Michel et al. | Dec 1997 | A |
5708247 | McAleer et al. | Jan 1998 | A |
5711861 | Ward et al. | Jan 1998 | A |
5711862 | Sakoda et al. | Jan 1998 | A |
5741211 | Renirie et al. | Apr 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5840020 | Heinonen et al. | Nov 1998 | A |
Number | Date | Country |
---|---|---|
29 03 216 | Aug 1979 | DE |
227 029 | Sep 1985 | DE |
37 40 149 | Jun 1989 | DE |
3934299 | Oct 1990 | DE |
0 010 375 | Apr 1980 | EP |
0 026 995 | Apr 1981 | EP |
0 048 090 | Mar 1982 | EP |
0 078 636 | May 1983 | EP |
0 096 288 | Dec 1983 | EP |
0 125 139 | Nov 1984 | EP |
0 127 958 | Dec 1984 | EP |
0 136 362 | Apr 1985 | EP |
0 170 375 | Feb 1986 | EP |
0 177 743 | Apr 1986 | EP |
0 080 304 | May 1986 | EP |
0 184 909 | Jun 1986 | EP |
0 193 676 | Sep 1986 | EP |
0 206 218 | Dec 1986 | EP |
0 230 472 | Aug 1987 | EP |
0 241 309 | Oct 1987 | EP |
0 245 073 | Nov 1987 | EP |
0 278 647 | Aug 1988 | EP |
0 359 831 | Mar 1990 | EP |
0 368 209 | May 1990 | EP |
0 390 390 | Oct 1990 | EP |
0 400 918 | Dec 1990 | EP |
0 453 283 | Oct 1991 | EP |
0 470 290 | Feb 1992 | EP |
0 127 958 | Mar 1992 | EP |
0 255 291 | Jun 1992 | EP |
1394171 | May 1975 | GB |
1599241 | Sep 1981 | GB |
2 073 891 | Oct 1981 | GB |
2 154 003 | Feb 1988 | GB |
2 204 408 | Nov 1988 | GB |
2 254 436 | Oct 1992 | GB |
2 287 472 | Sep 1995 | GB |
54-41191 | Apr 1979 | JP |
55-10581 | Jan 1980 | JP |
55-10583 | Jan 1980 | JP |
55-10584 | Jan 1980 | JP |
55-12406 | Jan 1980 | JP |
56-163447 | Dec 1981 | JP |
57-70448 | Apr 1982 | JP |
60-173457 | Sep 1985 | JP |
60-173458 | Sep 1985 | JP |
60-173459 | Sep 1985 | JP |
61-90050 | May 1986 | JP |
62-85855 | Apr 1987 | JP |
62-114747 | May 1987 | JP |
63-58149 | Mar 1988 | JP |
63-128252 | May 1988 | JP |
63-139246 | Jun 1988 | JP |
63-294799 | Dec 1988 | JP |
63-317757 | Dec 1988 | JP |
63-317758 | Dec 1988 | JP |
1-114746 | May 1989 | JP |
1-114747 | May 1989 | JP |
1-124060 | May 1989 | JP |
1-134244 | May 1989 | JP |
1-156658 | Jun 1989 | JP |
2-62958 | Mar 1990 | JP |
2-120655 | May 1990 | JP |
2-287145 | Nov 1990 | JP |
2-310457 | Dec 1990 | JP |
3-26956 | Feb 1991 | JP |
3-28752 | Feb 1991 | JP |
3-202764 | Sep 1991 | JP |
5-72171 | Mar 1993 | JP |
5-196595 | Aug 1993 | JP |
6-190050 | Jul 1994 | JP |
7-55757 | Mar 1995 | JP |
7-72585 | Mar 1995 | JP |
07286987 | Oct 1995 | JP |
8-285814 | Nov 1996 | JP |
8-285815 | Nov 1996 | JP |
9-21778 | Jan 1997 | JP |
9-101280 | Apr 1997 | JP |
9-285459 | Nov 1997 | JP |
10-170471 | Jun 1998 | JP |
1281988 | Jan 1987 | SU |
WO 8505119 | Nov 1985 | WO |
WO 8908713 | Sep 1989 | WO |
WO 9005300 | May 1990 | WO |
WO 9005910 | May 1990 | WO |
WO 9101680 | Feb 1991 | WO |
WO 9104704 | Apr 1991 | WO |
WO 9115993 | Oct 1991 | WO |
WO 9213271 | Aug 1992 | WO |
WO 9420602 | Sep 1994 | WO |
WO 9427140 | Nov 1994 | WO |
WO 9630431 | Oct 1996 | WO |
WO 9702847 | Jan 1997 | WO |
WO 9719344 | May 1997 | WO |
WO 9742882 | Nov 1997 | WO |
WO 9742883 | Nov 1997 | WO |
WO 9742886 | Nov 1997 | WO |
WO 9742888 | Nov 1997 | WO |
WO 9743962 | Nov 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20030188427 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09598776 | Jun 2000 | US |
Child | 10405765 | US | |
Parent | 09034422 | Mar 1998 | US |
Child | 09598776 | US |