Method of making chip-type electronic device provided with two-layered electrode

Information

  • Patent Grant
  • 6806167
  • Patent Number
    6,806,167
  • Date Filed
    Thursday, October 17, 2002
    22 years ago
  • Date Issued
    Tuesday, October 19, 2004
    20 years ago
Abstract
A method of making a chip-type electronic device includes a first through a third process steps. In the first step, a first electrode is formed on an insulating aggregate board. In the second step, a second electrode overlapping the first electrode is formed on the aggregate board. In the third step, the aggregate board is cut along a predetermined cutting line. The first electrode is formed as spaced from the cutting line, whereas the second electrode extends over the cutting line.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a method of making a chip-type electronic component for surface-mounting on a printed wiring board. The present invention also relates to a chip-type electronic component obtained by such a method.




2. Description of the Related Art





FIG. 13

illustrates an example of prior art chip-type resistor. The illustrated resistor


21


includes a substrate


22


formed of alumina ceramic material. The substrate


22


has an upper surface


22




a


formed with a pair of first upper electrodes


23


. Further, the substrate


22


has side surfaces


22




b


formed with side electrodes


24


and a lower surface


22




c


formed with lower electrodes


25


. The upper surface


22




a


of the substrate


22


is provided with a resistor element


26


connecting the first upper electrodes


23


to each other. The resistor element


26


is covered with a first overcoat layer


27


. The first overcoat layer


27


is covered with a second overcoat layer


29


. On each of the first upper electrodes


23


A is formed a second upper electrode


28


.




The chip-type resistor


21


is manufactured by the process steps (T1-T12) shown in FIG.


14


. First, an aggregate board


11


formed of alumina ceramic material as shown in

FIG. 15

is prepared. The aggregate board


11


includes a plurality of rectangular regions


12


defined therein. Each of the regions


12


corresponds to the substrate


22


of one resistor


21


shown in FIG.


13


. Reference signs


13


and


14


in

FIG. 15

indicate portions (cut regions) to be removed in later cutting the aggregate board


11


.




After the aggregate board


11


is prepared, lower electrodes


25


and first upper electrodes


23


made of gold or silver are provided (T1, T2). As shown in

FIG. 16

, each of the first upper electrodes


23


extends across a cut region


13


. Subsequently, as shown in

FIG. 17

, resistor elements


26


are formed by printing and baking a resistor paste (T3). After each of the resistor elements


26


is covered with an overcoat layer


27


(T4), the resistance is adjusted. Specifically, as shown in

FIG. 18

, a groove


31


for adjusting the resistance is formed in the resistor element


26


by laser trimming (T5). Cuttings generated by the trimming are removed by washing (T6). Then, as shown in

FIG. 19

, second overcoat layers


29


are formed on the first overcoat layers


27


(T7). The second overcoat layers


27


partially cover the first upper electrodes


23


. Subsequently, as shown in

FIG. 20

, second upper electrodes


28


are formed to cover the exposed portions of the first upper electrodes


23


(T8). The second upper electrodes


28


, which are provided as auxiliary electrodes of the first upper electrodes


23


, are formed of a resin material containing silver particles. The second upper electrodes


28


are less malleable than the first upper electrodes


23


. Then, in a first dicing step T9, the aggregate board


11


is cut along cutting lines L


1


shown in

FIG. 21

into intermediate substrates (not shown) in the form of a thin strip. Thereafter, side electrodes


24


are formed on the cut surfaces of the intermediate substrates (T10). The intermediate substrates are cut along cutting lines L


2


(See

FIG. 21

) in a second dicing step T11. Finally, nickel-plating (or solder-plating) is applied to each of the exposed electrodes


24


,


25


,


28


(T12), thereby providing chip resistors


21


(

FIG. 13

) as products.




Although the above-described manufacturing method has good manufacturing efficiency because a plurality of chip resistors can be obtained from a single aggregate board, it has the following problems.




As described above, the first dicing of the aggregate board


11


is performed in the process step T9. At that time, the first upper electrodes


23


which is relatively malleable may be stretched upward due to their contact with a dicing blade. In such a case, as shown in

FIG. 22

, the second upper electrodes


28


formed on the first upper electrodes


23


project upward beyond the upper surface of the second overcoat layer


29


. Such rising of the electrodes is undesirable because it causes various disadvantages. For example, in packaging the resistor


21


, the projecting portion of the second upper electrode


28


may come into contact with a taping apparatus, causing loss of the plating layer formed on the projecting portion. Further, due to the upward projecting of the second upper electrode


28


, the electrode


28


may not be properly connected to the side electrode


24


.




SUMMARY OF THE INVENTION




An object of the present invention, which is conceived under the circumstances described above, is to provide a method of making a chip-type electronic device without rising an electrode.




According to a first aspect of the present invention, there is provided a method of making a chip-type electronic device. Firstly, in this method, a first electrode is formed on an aggregate board. Then, a second electrode overlapping the first electrode is formed. Finally, the aggregate board is cut along a predetermined cutting line. The first electrode is formed as spaced from the cutting line.




Preferably, the aggregate board includes a cut region to be removed in the cutting step, and the second electrode extends over the cut region.




Preferably, the method of the present invention further includes the step of forming a conductive element for connection to the first electrode on the aggregate board. The second electrode is so formed as to overlap both the first electrode and the conductive element.




Preferably, the second electrode is less malleable than the first electrode.




Preferably, the conductive element is a resistor layer. In this case, the method of the present invention further includes the step of adjusting resistance by forming a trimming groove in the resistor layer, and the resistance adjusting step is performed after the second electrode forming step.




According to a second aspect of the present invention, there is provided a chip-type electronic device. The electronic device is manufactured by the above-described manufacturing method.




Other objects, features and advantages of the present invention will become clearer from the description of the preferred embodiment given below.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a sectional view illustrating the structure of a chip-type resistor manufactured by a method according to the present invention.





FIG. 2

illustrates the process steps in the manufacturing method of the present invention.





FIG. 3A

shows a first upper electrode forming step of the manufacturing method of the present invention, while

FIG. 3B

is a sectional view taken along lines III—III in FIG.


3


A.





FIG. 4A

shows a resistor element forming step of the manufacturing method of the present invention, while

FIG. 4B

is a sectional view taken along, lines IV—IV in FIG.


4


A.





FIG. 5A

shows a second upper electrode forming step of the manufacturing method of the present invention, while

FIG. 5B

is a sectional view taken along lines V—V in FIG.


5


A.





FIG. 6

shows a trimming step of the manufacturing method of the present invention.





FIG. 7

shows an overcoat layer forming step of the manufacturing method of the present invention.





FIG. 8

show a first board cutting step of the manufacturing method of the present invention.





FIG. 9

shows an intermediate product obtained by the first board cutting step.





FIG. 10

shows how the board cutting is performed with the use of a circular cutting blade.





FIG. 11

shows the cutting blade penetrating the board.





FIG. 12

illustrates a modification of the structure shown in FIG.


1


.





FIG. 13

is a sectional view illustrating the structure of a prior-art chip resistor.





FIG. 14

illustrates the manufacturing process steps of the chip resistor shown in FIG.


13


.





FIG. 15

shows an aggregate board used for making the prior-art chip resistors.





FIG. 16

shows first upper electrodes formed on the aggregate board.





FIG. 17

shows resistor elements formed between the first upper electrodes.





FIG. 18

shows trimming grooves formed in the resistor elements.





FIG. 19

shows overcoat layers which partially cover the first upper electrodes.





FIG. 20

shows second upper electrodes formed to cover the exposed portions of the first upper electrodes.





FIG. 21

shows cutting lines along which the aggregate board is cut.





FIG. 22

illustrates problems of the prior-art chip resistor.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.





FIG. 1

illustrates the basic structure of a chip-type resistor provided by a manufacturing method according to the present invention. The chip-type resistor


1


includes a substrate


2


formed of alumina ceramic material and a pair of first upper electrodes


3


formed on the upper surface


2




a


of the substrate


2


. The first upper electrodes


3


may be made of gold or silver, for example, and have a thickness of about 7-15 μm. The substrate


2


has opposite side surfaces


2




b


formed with side electrodes


4


made of gold or silver. The substrate


2


has a lower surface


2




c


formed with lower electrodes


5


connected to the side electrodes


4


.




The upper surface


2




a


of the substrate


2


is formed with a resistor element


6


extending to bridge the paired first upper electrodes


3


. Though not illustrated, the resistor element


6


includes a groove formed by laser trimming to realize a predetermined resistance.




The resistor element


6


has an upper surface formed with a first overcoat layer


7


. The first overcoat layer


7


, which may be made of glass for example, is provided to protect the obverse surface of the resistor element


6


in the above-described trimming.




The first upper electrodes


3


have upper surfaces formed with second upper electrodes


8


. The second upper electrodes


8


, which are formed of a conductive resin material containing silver particles, function as auxiliary electrodes for the first upper electrodes


3


. The second upper electrodes


8


are electrically connected to the side electrodes


4


. Though not illustrated, exposed portions of the electrodes


4


,


5


,


8


are formed with nickel-plating layers (or solder-plating layers).




The first overcoat layer


7


has an upper surface on which a second overcoat layer


9


is formed to partially cover the second upper electrodes


8


. The second overcoat layer


9


, which may be made of glass for example, is provided to protect the first overcoat layer


9


after the above-described trimming.




The chip-type resistor


1


is manufactured by the process steps (S1-S12) shown in FIG.


2


. In the manufacturing process, use is made of an aggregate board similar to the prior art one (aggregate board


11


shown in FIG.


15


). The aggregate board


11


is formed of alumina ceramic material, for example, and includes a plurality of rectangular regions


12


defined therein. Each of the regions


12


is used to make one chip-type resistor (FIG.


1


).




First upper electrodes


3


and lower electrodes


5


are formed on the upper surface and lower surface of the aggregate board


11


, respectively (S1, S2). The electrodes


3


and


5


may be formed by screen-printing, for example. Specifically, a conductive paste (obtained by dispersing minute gold or silver particles and glass particles in an organic solvent) is printed at predetermined portions. The printed paste is then dried and baked.




As shown in

FIGS. 3A and 3B

, the first upper electrodes


3


are formed adjacent the opposite ends of each rectangular region


12


. Unlike the prior art manufacturing method, the first upper electrodes


3


do not extend across the cut regions


13


but spaced from the cut regions


13


by a predetermined distance D.




Subsequently, as shown in

FIGS. 4A and 4B

, a resistor element


6


is formed in each of the rectangular regions


12


to bridge the paired first upper electrodes


3


(S3). The resistor element


6


may be formed by printing a paste consisting of a conductive substance and glass frit at predetermined portions followed by baking the paste.




Then, a first overcoat layer (not shown) is formed to cover the upper surface of each resistor element


6


(S4). The first overcoat layer


7


is formed by printing and baking an insulating paste containing glass component to have a size generally equal to that of the resistor element


6


.




Subsequently, as shown in

FIGS. 5A and 5B

, a second upper electrode


8


is formed between two adjacent resistor elements


6


(S5). As will be understood from

FIG. 5B

, the second upper electrode


8


is so formed as to bridge two first upper electrodes


3


formed in adjacent regions


12


. (Therefore, the second upper electrode


8


extends across the cut region


13


.) The second upper electrode


8


may also be formed by screen-printing using a conductive silver paste.




After the second upper electrode


8


is formed, trimming for resistance adjustment is performed with respect to each of the resistor elements


6


(S6). As is well known, in the trimming step, a groove is formed while monitoring the change of the resistance in the resistor element


6


using a pair of measurement probes (not shown). In the example shown in

FIG. 6

, an, L-shaped groove


15


is formed in each of the resistor elements


6


. The groove is formed by laser beam machining. At that time, a similar trimming groove is formed also in the first overcoat layer covering the resistor element


6


. In this embodiment, the measurement probes are brought into contact with the second upper electrodes


8


. As described above, the second upper electrodes


8


extend not only over the first upper electrodes


3


but also over the cut regions


3


, so that the measurement probes can easily be brought into contact.




After the trimming, the aggregate board


11


is entirely washed to remove cuttings generated by the trimming (S7). Then, as shown in

FIG. 7

, a plurality of second overcoat layers


9


are formed (S8). Each of the second overcoat layers


9


is elongate in the direction D


1


of the aggregate board


11


to cover the upper surfaces of the first overcoat layers


7


aligned in the D


1


direction and portions of the second upper electrodes


8


. The second overcoat layer


9


may be formed by printing an insulating paste by screen-printing followed by baking (or solidifying) the paste.




Subsequently, the aggregate board


11


is cut along cutting lines L


1


shown in

FIG. 8

(first dicing step S9). As a result, an intermediate product as shown in

FIG. 9

is obtained. The cutting is performed using a circular blade


17


which is driven for rotation (See FIGS.


10


and


11


). The blade


17


may be about 0.1 mm in width and about 50 mm in diameter, for example. As described above, the first electrodes


3


are spaced from the cut regions


13


by a predetermined distance D. Therefore, although the blade


17


comes into contact with the second upper electrodes


8


, it does not come into contact with the first upper electrodes


3


(FIG.


11


). With such a structure, it is possible to prevent the rising of the first upper electrodes, which has been a problem of the prior art manufacturing method. As described above, the second upper electrodes


8


of the present invention are formed of a resin material containing silver particles and therefore relatively less malleable. Therefore, the second upper electrodes


8


are not unduly stretched upward even in contacting the blade


17


.




Subsequent to the first dicing step, side electrodes


4


are formed on the cut surfaces of the intermediate product


16


(S10). As shown in

FIG. 12

, for electrically connecting the side electrodes


4


to the second upper electrodes


8


reliably, it is preferable that the side electrodes


4


are formed to entirely cover the edge surfaces of the second upper electrodes


8


.




Subsequently, the intermediate product


16


is cut along the cut lines L


2


shown in

FIG. 9

(S11). Finally, nickel-plating (or solder-plating) is applied to exposed portions of the second upper electrodes


8


, side electrodes


4


and lower electrodes


5


(S12).





FIG. 12

is a sectional view illustrating a modified chip-type resistor. In the figure, the elements which are identical or similar to the elements shown in

FIG. 1

are designated by the same reference signs. The structure shown in

FIG. 12

is basically similar to that shown in

FIG. 1

, but differs therefrom in the following point. That is, in the example shown in

FIG. 12

, the overcoat layer


9


has a length W which is shorter than the length of the resistor element


6


. (In the example shown in

FIG. 1

, these lengths are generally equal.) On the other hand, the second upper electrodes


8


contacting the second overcoat layer


9


are longer than in the example shown in FIG.


1


. With such a structure, it is possible to bring the measurement probes into contact with the second upper electrodes


8


more easily in adjusting the resistance of the resistor element


6


.




The present invention being thus described, it is apparent that the same may be varied in many ways. Such variations should not be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to those skilled in the art are intended to be included within the scope of the following claims.



Claims
  • 1. A method of making a chip-type electronic device comprising the steps of:forming a first electrode on an aggregate board; forming a second electrode overlapping the first electrode; and cutting the aggregate board along a predetermined cutting line; the first electrode being spaced from the cutting line; wherein the aggregate board includes a cut region to be removed in the cutting step, the second electrode extending over the cut region, and the second electrode is less malleable than the first electrode.
  • 2. The method according to claim 1, further comprising the step of forming a conductive element for connection to the first electrode on the aggregate board, the second electrode overlapping both the first electrode and the conductive element.
  • 3. The method according to claim 2, wherein the conductive element is a resistor layer.
  • 4. The method according to claim 3, further comprising the step of adjusting resistance by forming a trimming groove in the resistor layer, the resistance adjusting step being performed after the second electrode forming step.
  • 5. A chip-type electronic device manufactured by the method of claim 1.
Priority Claims (1)
Number Date Country Kind
2001-320648 Oct 2001 JP
US Referenced Citations (2)
Number Name Date Kind
6153256 Kambara et al. Nov 2000 A
6242999 Nakayama et al. Jun 2001 B1
Foreign Referenced Citations (1)
Number Date Country
10-321421 Dec 1998 JP