This invention relates to a method of making a coated article including a layer comprising zinc oxide under an infrared (IR) reflecting layer. In certain example embodiments, layer comprising zinc oxide may be formed by sputtering a cast target comprising zinc and optionally other material(s) such as aluminum. Surprisingly, it has been found that the use of a cast target in sputtering the zinc oxide inclusive layer (as opposed to a target formed by plasma spraying or the like) permits a coated article with a lower emissivity and thus a lower sheet resistance (Rs) to be made.
Coated articles are known in the art for use in window applications such as insulating glass (IG) window units, vehicle windows, monolithic windows, and/or the like. It is known that in certain instances, it is desirable to heat treat (e.g., thermally temper, heat bend and/or heat strengthen) such coated articles for purposes of tempering, bending, or the like.
In certain example instances, designers of coated articles often strive for a combination of high visible transmission, substantially neutral color, low emissivity (or emittance), and low sheet resistance (Rs). High visible transmission and substantially neutral color may permit coated articles to be used in applications where these characteristics are desired such as in architectural or vehicle window applications, whereas low-emissivity (low-E) and low sheet resistance characteristics permit such coated articles to block significant amounts of IR radiation so as to reduce for example undesirable heating of vehicle or building interiors. In certain example instances, low U-values are also desired.
It is known to use a layer comprising zinc oxide as a contact layer under and contacting an IR reflecting layer of silver or the like, in a coated article. For example, see U.S. 2004/0121165, 2004/0005467, and 2003/0150711, the disclosures of which are all hereby incorporated herein by reference. Each of these references discloses the use of a zinc oxide inclusive contact layer under a silver based IR reflecting layer.
It will be appreciated that low emissivity values and low sheet resistance values are desirable. The general rule is that the lower the emissivity (or emittance), and thus the lower the sheet resistance, the better the IR blocking functionality of the coating. In other words, the lower the emissivity (or emittance) of the coating, the more IR radiation which can be blocked by the coating.
In view of the above, it will be apparent to those skilled in the art that there exists a need for coated articles which have low emissivity (or low emittance) and/or low sheet resistance values. It is a purpose of certain example embodiments of this invention to provide a method which can reduce the emissivity and/or sheet resistance of a coated article.
In certain example embodiments of this invention, a layer comprising zinc oxide is provided as a contact layer under and directly contacting an infrared (IR) reflecting layer of a material such as silver. Surprisingly, it has been found that the emissivity (or emittance) of the coated article can be reduced by sputtering a cast target(s) to form the contact layer comprising zinc oxide—as opposed to sputtering a target formed by plasma spraying or the like. Thus, it has unexpectedly been found that the emissivity and/or resistivity of an IR reflecting layer can be improved (i.e., lowered) by using a cast target to sputter-form the contact layer located immediately under the IR reflecting layer.
In certain example embodiments of this invention, this layer stack portion may be used in the context of a single silver layer stack, although this invention is not so limited. For instance, the instant invention is also applicable to low-E coatings including multiple silver based IR reflecting layers (e.g., double silver stacks).
In certain example embodiments, there is provided a method of making a coated article including a coating supported by a glass substrate, the method comprising: forming a dielectric layer on the glass substrate; forming a layer comprising zinc oxide on the glass substrate over at least the dielectric layer by sputtering at least one cast target comprising zinc; forming an infrared (IR) reflecting layer comprising silver on the glass substrate over and contacting the layer comprising zinc oxide; and forming another dielectric layer on the glass substrate over at least the IR reflecting layer.
In other example embodiments of this invention, there is provided a method of making a coated article including a coating supported by a glass substrate, the method comprising: forming a contact layer on the glass substrate by sputtering at least one cast target; forming an infrared (IR) reflecting layer on the glass substrate over and contacting the contact layer formed using the at least one cast target; and forming a dielectric layer on the glass substrate over at least the IR reflecting layer.
Coated articles herein may be used in applications such as monolithic windows, IG window units, vehicle windows, and/or any other suitable application that includes single or multiple glass substrates.
Coated articles according to certain example embodiments of this invention typically include a coating that is supported by a substrate such as a glass substrate. The coating may include one or more IR reflecting layers of a material such as silver or the like. In certain example embodiments of this invention, a layer(s) comprising zinc oxide is provided as a contact layer under and directly contacting an IR reflecting layer(s). Surprisingly, it has been found that the emissivity (or emittance) of the coated article can be reduced by sputtering a cast target(s) to form the contact layer of or including zinc oxide—as opposed to sputtering a target formed by plasma spraying or the like. Thus, it has unexpectedly been found that the emissivity and/or resistivity of an IR reflecting layer can be improved (i.e., lowered) by using a cast target to sputter-form the contact layer located immediately under the IR reflecting layer.
In certain example embodiments, each of the layers 3, 7, 9, 11, 13 and 15 shown in
In monolithic instances, the coated article includes only one glass substrate 1 as illustrated in
In certain example IG unit embodiments of this invention, the coating is designed such that the resulting IG unit (e.g., with, for reference purposes, a pair of 4 mm clear glass substrates spaced apart by 16 mm with Ar gas in the gap) has a U-value of no greater than 1.25 W/(m 2K), more preferably no greater than 1.20 W/(m2K), even more preferably no greater than 1.15 W/(m2K), and most preferably no greater than 1.10 W/(m2K).
The bottom dielectric layer 3 may be of or include titanium oxide in certain example embodiments of this invention. The titanium oxide of layer 3 may in certain example instances be represented by TiOx, where x is from 1.5 to 2.5, most preferably about 2.0. The titanium oxide may be deposited via sputtering or the like in different embodiments. In certain example instances, dielectric layer 3 may have an index of refraction (n), at 550 nm, of at least 2.0, more preferably of at least 2.1, and possibly from about 2.3 to 2.6 when the layer is of titanium oxide. In certain embodiments of this invention, the thickness of titanium oxide inclusive layer 3 is controlled so as to allow a* and/or b* color values (e.g., transmissive, film side reflective, and/or glass side reflective) to be fairly neutral (i.e., close to zero) and/or desirable. Other materials may be used in addition to or instead of titanium oxide in certain example instances.
Lower contact layer 7, located directly under and contacting IR reflecting layer 9, in certain example embodiments of this invention is of or includes zinc oxide (e.g., ZnO). The zinc oxide of layer 7 may contain other materials as well such as Al (e.g., to form ZnAlOx) and/or stainless steel. For example, in certain example embodiments of this invention, zinc oxide layer 7 may be doped with from about 1 to 10% Al, more preferably from about 1 to 5% Al, and most preferably about 2 to 4% Al. The use of zinc oxide under the silver 9 allows for a good quality of silver to be achieved.
Infrared (IR) reflecting layer 9 is preferably substantially or entirely metallic and/or conductive, and may comprise or consist essentially of silver (Ag), gold, or any other suitable IR reflecting material. IR reflecting layer 9 help allow the coating to have low-E and/or good solar control characteristics. The IR reflecting layer may, however, be slightly oxidized in certain embodiments of this invention.
The upper contact layer 11 may be of or include nickel (Ni) oxide, chromium/chrome (Cr) oxide, or a nickel alloy oxide such as nickel chrome oxide (NiCrOx), or other suitable material(s), in certain example embodiments of this invention. The use of, for example, NiCrOx in this layer 11 allows durability to be improved. The NiCrOx layer 11 may be fully oxidized in certain embodiments of this invention (i.e., fully stoichiometric), or alternatively may only be partially oxidized. In certain instances, the NiCrOx layer 11 may be at least about 50% oxidized. Contact layer 11 (e.g., of or including an oxide of Ni and/or Cr) may or may not be oxidation graded in different embodiments of this invention. Oxidation grading means that the degree of oxidation in the layer changes throughout the thickness of the layer so that for example a contact layer may be graded so as to be less oxidized at the contact interface with the immediately adjacent IR reflecting layer than at a portion of the contact layer(s) further or more/most distant from the immediately adjacent IR reflecting layer. Descriptions of various types of oxidation graded contact layers are set forth in U.S. Pat. No. 6,686,050, the disclosure of which is hereby incorporated herein by reference. Contact layer 11 (e.g., of or including an oxide of Ni and/or Cr) may or may not be continuous in different embodiments of this invention across the entire IR reflecting layer 9.
Dielectric layer 13 may be of or include a metal oxide such as tin oxide (e.g., SnO2) in certain example embodiments of this invention. Other materials such as other metal oxides may instead be used in layer 13 in alternative embodiments. Dielectric layer 15, which may be an overcoat in certain example instances, may be of or include silicon nitride (e.g., Si3N4) or any other suitable material in certain example embodiments of this invention. Optionally, other layers may be provided above layer 15. Layer 15 is provided for durability purposes, and to protect the underlying layers during heat treatment and/or environmental use. In certain example embodiments, layer 15 may have an index of refraction (n) of from about 1.9 to 2.2, more preferably from about 1.95 to 2.05, as may layer 13.
Other layer(s) below or above the illustrated coating may also be provided. Thus, while the layer system or coating is “on” or “supported by” substrate 1 (directly or indirectly), other layer(s) may be provided therebetween. Thus, for example, the coating of
As mentioned above, it has unexpectedly been found that the emissivity (or emittance) of the coated article can be reduced by sputtering a cast target(s) to form the contact layer 7 of or including zinc oxide—as opposed to sputtering a target formed by plasma spraying or the like. Thus, it has unexpectedly been found that the emissivity and/or resistivity of an IR reflecting layer 9 can be improved (i.e., lowered) by using a cast target to sputter-form the contact layer 7 located immediately under the IR reflecting layer 9. The cast target used to form lower contact layer 7 may be of pure Zn in certain example embodiments, but is more preferably of Zn that is doped with another material such as Al (e.g., from 1-10%, more preferably from 1-5% Al).
In certain example embodiments of this invention, the use of a cast target(s) (compared to a target formed by plasma spraying) to form contact layer 7 causes the coating to realize a normal emissivity which is at least about 2% lower, more preferably at least about 3% lower, and sometimes at least about 4% lower.
One example technique for forming a “cast” sputtering target is where the metal or metals of which the target is to be made is/are melted and poured into a mold or the like so as to cast the target. Another example for making a cast target is where a target tube is produced from metal by casting a solid bar, and forging the bar into a cylindrical billet and subsequently producing a tube or other suitable shape by machining. Continuous casting techniques, and/or centrifugal casting techniques, may also be used in forming cast targets. A cast target may be cast into any suitable shape, including but not limited to a cylindrical tube target, a planar target, or the like. In certain example cylindrical tube cast targets, the material to be sputtered may be cast as an outer layer onto another inner supporting layer which may or may not be cast. Example techniques for forming cast targets are discussed in U.S. Pat. No. 6,793,784, U.S. Pat. No. 6,719,034, DE 2427098, DE 3532131 Al, DE 4,216870, the disclosures of which are hereby incorporated herein by reference. Generally, such cast targets have at least a portion thereof formed by molding of a molten or semi-molten material (preferably at least a portion including material to be sputtered).
In certain example embodiments, a cast target supplied by Heraus may be used to sputter-deposit the zinc oxide layer 7. This cast target has been found to improve the process stability which in turn reduces production losses caused by sudden power jumps (arcs). It has also been found as mentioned above that the use of this cast ZnAl target leads to a final product with lower resistivity (e.g., see Examples below).
While various thicknesses may be used in different embodiments of this invention, example thicknesses and materials for the respective layers on the glass substrate 1 in the
In certain example embodiments of this invention, coated articles herein may have the following low-E (low emissivity) and/or solar characteristics set forth in Table 2 when measured monolithically before any possible HT.
Moreover, coated articles including coatings according to certain example embodiments of this invention have the following optical characteristics when used in the context of an IG window unit. For purposes of reference only and without limitation, data may be in the context of an IG window unit with a pair of 4 mm thick clear glass substrates spaced 16 mm apart via a gap filled with Ar gas. It is noted that U-value is measured in the context of an IG Unit, as is Tvis-IG.
The following examples are provided for purposes of example only, and are not intended to be limiting. All examples were made so as to have the layer stack shown in
In the first set of examples, ten coated articles were formed using a cast target of ZnAl (Zn doped with about 2-4% Al) to sputter-deposit the ZnAlOx contact layer 7. However, in the second set (or Comparative Set) of examples where six coated articles were formed, the ZnAl target (Zn doped with about 2-4% Al) used to sputter-deposit the ZnAlOx contact layer 7 was formed by a plasma-spraying technique. Otherwise, the examples were the same.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.