This invention relates to a diamond-like carbon (DLC) coating provided on (directly or indirectly) a glass or other substrate. More particularly, in certain preferred embodiments, this invention relates to a highly tetrahedral amorphous diamond like carbon coating on a soda inclusive glass substrate (e.g. on a soda lime silica glass substrate) for purposes of repelling water and/or reducing corrosion on the coated article. Ion beam and filtered carbon cathodic arc deposition are preferred methods of deposition for the coating.
Soda inclusive glasses are known in the art. For example, see U.S. Pat. No. 5,214,008, which is hereby incorporated herein by reference.
Soda lime silica glass, for example, is used for architectural glass, automotive windshields, and the like. The aforesaid '008 patent discloses one type of soda lime silica glass known in the art.
Unfortunately, conventional soda inclusive glasses are susceptible to environmental corrosion which occurs when sodium (Na) diffuses from or leaves the glass interior. This sodium, upon reaching the surface of the glass, may react with water to produce visible stains or smears (e.g. stains of sodium hydroxide) on the glass surface. Such glasses are also susceptible to retaining water on their surfaces in many different environments, including when used as automotive windows (e.g. backlites, side windows, and/or windshields). These glasses are also susceptible to fogging up on the interior surface thereof in automotive and other environments.
In view of the above, it is apparent that there exists a need in the art to prevent and/or minimize visible stains/corrosion on soda inclusive coated glass surfaces. There also exists a need in the art to provide a strong protective coating on window substrates. Other needs in the art include the need for a coating on glass that reduces the coated article's susceptibility to fogging up in automotive and other environments, and the need for a coated glass article that can repel water and/or dirt.
It is known to provide diamond like carbon (DLC) coatings on glass. U.S. Pat. No. 5,637,353, for example, states that DLC may be applied on glass. The '353 patent teaches that because there is a bonding problem between glass and that type of DLC, an intermediate layer is provided therebetween. Moreover, the '353 patent does not disclose or mention the highly tetrahedral amorphous type of DLC used in many embodiments set forth below. The DLC of the '353 patent would not be an efficient corrosion minimizer on glass in many instances due to its low density (likely less than 2.0 gm/cm3). Still further, the DLC of the '353 patent is deposited in a less than efficient manner for certain embodiments of this invention.
It is known that many glass substrates have small cracks defined in their surface. The stress needed to crack glass typically decreases with increasing exposure to water. When water enters such a crack, it causes interatomic bonds at the tip of the crack to rupture. This weakens glass. Water can accelerate the rate of crack growth more than a thousand times by attacking the structure of the glass at the root or tip of the crack. Strength of glass is in part controlled by the growth of cracks that penetrate the glass. Water, in these cracks, reacts with glass and causes it to crack more easily as described in “The Fracturing of Glass,” by T. A. Michalske and Bruce C. Bunker, hereby incorporated herein by reference. Water molecules cause a concerted chemical reaction in which a silicon-oxygen bond (of the glass) at the crack tip and on oxygen-hydrogen bond in the water molecule are both cleaved, producing two silanol groups. The length of the crack thus increases by one bond rupture, thereby weakening the glass. Reaction with water lowers the energy needed to break the silicon-oxygen bonds by a factor of about 20, and so the bond-rupture allows glass cracks to grow faster.
Thus, there also exists a need in the art for preventing water from reaching silicon-oxygen bonds at tips of cracks in a glass substrate, so as to strengthen the glass.
It is a purpose of different embodiments of this invention to fulfill any or all of the above described needs in the art, and/or other needs which will become apparent to the skilled artisan once given the following disclosure.
An object of this invention is to provide a coated article that can shed water (e.g. automotive windshield, automotive backlite, automotive side window, architectural window, etc.).
Another object of this invention is to provide a system or means for reducing or minimizing corrosion on soda inclusive coated glass articles.
Another object of this invention is to provide a coated glass article wherein a DLC coating protects the glass from acids such as HF, nitric, and sodium hydroxide (the coating may be chemically inert).
Another object of this invention is to provide a coated glass article that is not readily susceptible to fogging up.
Another object is to provide a barrier layer with no pin holes on a glass substrate.
Another object of this invention is to provide a coated glass article that is abrasion resistant, and/or can repel dirt and the like.
Another object of this invention is to provide a glass substrate with a DLC coating inclusive of a highly tetrahedral dense amorphous carbon layer, either in direct or indirect contact with the substrate.
Another object of this invention is to provide a DLC coating on a substrate, wherein the coating includes different portions or layers with different densities and different sp3 carbon-carbon bond percentages. The ratio of sp3 to sp2 carbon-carbon bonds may be different in different layers or portions of the coating. Such a coating with varying compositions therein may be continuously formed by varying the ion energy used in the deposition process so that stresses in the coating are reduced in the interfacial portion/layer of the DLC coating immediately adjacent the underlying substrate. Thus, a DLC coating may have therein an interfacial layer with a given density and sp3 carbon-carbon bond percentage, and another layer with a higher density and higher sp3 carbon-carbon bond percentage.
Generally speaking, this invention fulfills certain of the above described needs/objects in the art by providing a coated glass comprising:
a glass substrate including at least about 5% by weight soda/Na2O;
an amorphous carbon layer provided on the glass substrate in order to reduce corrosion or stains on the coated glass, wherein said amorphous carbon layer includes sp2 and sp3 carbon-carbon bonds; and
wherein the amorphous carbon layer has more sp3 carbon-carbon bonds than sp2 carbon-carbon bonds.
In other embodiments, this invention fulfills certain of the above described needs in the art by providing a coated glass comprising:
a soda inclusive glass substrate comprising, on a weight basis, from about 60-80% SiO2, from about 10-20% Na2O, from about 0-16% CaO, from about 0-10% K2O, from about 0-10% MgO, and from about 0-5% Al2O3; and
a non-crystalline diamond-like carbon (DLC) coating is provided on the glass substrate, wherein the DLC coating includes at least one highly tetrahedral amorphous carbon layer having at least about 35% sp3 carbon-carbon bonds.
In certain embodiments, the glass substrate is a soda lime silica float glass substrate.
In preferred embodiments, the entire DLC coating or alternatively only a layer within the DLC coating, has a density of from about 2.4 to 3.4 gm/cm3, most preferably from about 2.7 to 3.0 gm/cm3.
In certain embodiments, the tetrahedral amorphous carbon layer has the aforesaid density range and includes at least about 70% sp3 carbon-carbon bonds, and most preferably at least about 80% sp3 carbon-carbon bonds.
In certain embodiments, the DLC coating includes a top layer (e.g. from about 2 to 8 atomic layers, or less than about 20 Å) that is less dense than other portions of the DLC coating, thereby providing a solid lubricant portion at the top surface of the DLC coating. Layered graphene connected carbon atoms are provided in this thin layer portion. The coefficient of friction is less than about 0.1 for this thin layer portion.
Another advantage of this invention is that the temperature of the glass substrate is less than about 200° C., preferably less than about 150° C., most preferably from about 60-80° C., during the deposition of DLC material. This is to minimize graphitization during the deposition process.
This invention further fulfills the above described needs in the art by providing a window having a substrate and a highly tetrahedral amorphous carbon layer thereon, wherein the substrate is or includes at least one of borosilicate glass, soda lime silica glass, and plastic.
This invention will now be described with respect to certain embodiments thereof, along with reference to the accompanying illustrations.
Referring now more particularly to the accompanying drawings in which like reference numerals indicate like elements throughout the accompanying views.
In the
Exemplar coatings (in full or any portion of these coatings) that may be used as low-E or other coating(s) 5, either on top of or below DLC coating 3, are shown and/or described in any of U.S. Pat. Nos. 5,837,108, 5,800,933, 5,770,321, 5,557,462, 5,514,476, 5,425,861, 5,344,718, 5,376,455, 5,298,048, 5,242,560, 5,229,194, 5,188,887 and 4,960,645, which are all hereby incorporated herein by reference. Simple silicon oxide and/or silicon nitride coating(s) may also be used as coating(s) 5.
As will be discussed in more detail below, highly tetrahedral amorphous carbon (ta-C) layer(s) 7 is a special form of diamond-like carbon (DLC), and includes at least about 35% sp3 carbon-carbon bonds (i.e. it is highly tetrahedral). In certain embodiments of this invention, ta-C layer(s) 7 has at least about 35% sp3 carbon-carbon bonds of the total sp bonds in the layer, more preferably at least about 70%, and most preferably at least about 80% sp3 carbon-carbon bonds so as to increase the density of layer 7 and its bonding strength. The amounts of sp3 bonds may be measured using Raman finger-printing and/or electron energy loss spectroscopy. The high amount of sp3 bonds increases the density of layer thereby allowing it to prevent soda diffusion to the surface of the coated article.
Ta-C layer 7 forms the entirety of DLC coating 3 in the
At least some carbon atoms of DLC coating 3, and/or some sp2 and/or sp3 carbon-carbon bonds, are provided in fissures or cracks in a surface (e.g. top surface) of the glass substrate, or may penetrate the glass surface of substrate 1 itself or the surface of growing DLC, so as to strongly bond coating 3 to substrate 1. Subimplantation of carbon atoms into the surface of substrate 1 enables coating 3 to be strongly bonded to substrate 1.
For purposes of simplicity,
The provision of dense (density of at least about 2.4 gm/cm3) ta-C layer 7 on soda inclusive glass substrate 1 reduces the amount of soda which can exit the substrate or reach the surface of the substrate or coated article (i.e. ta-C limits sodium diffusion from the substrate). Thus, less soda is allowed to react with water or other material(s) on the surface of the article. The end result is that the provision of ta-C layer 7 on the substrate reduces stains and/or corrosion on the glass article which can form over time. The large number of sp3 carbon-carbon bonds increases the density of layer 7 and allows the layer to repel water and minimize soda diffusion from soda inclusive glass.
Coating(s) 3, and layer(s) 7, 8, also strengthen the glass article, reduce stress at the bonding surfaces between coating 3 and substrate 1, and provide a solid lubricant surface on the article when coating 3 is located at a surface of the article. Coating(s) 3 and/or layer 7 may includes a top layer portion (e.g. the top 3 to 15 Å) that is less dense than central areas of coating 3, thereby providing a solid lubricant at the top surface of coating 3 furthest from the substrate so that the article is resistant to scratching. Ta-C layer 7 also provides resistance to water/moisture entering or coming into substrate 1. Coating 3, and thus ta-C layer 7, are preferably formed/deposited continuously across glass substrate 1, absent any pinholes or apertures.
In certain embodiments, layer 7 and/or 8 adjacent the glass substrate is deposited at an ion energy that allows significant numbers of carbon atoms to penetrate cracks in the glass surface as shown in
Advantages associated with certain embodiments of this invention include: (i) coated window articles that can shed water in different environments (e.g. automotive windows such as backlites and windshields, or commercial and residential windows); (ii) anti-fog coated articles that are resistant to fogging up; (iii) strengthened coated windows; (iv) abrasion resistant coated windows; (v) coated articles that can repel dirt; and (vi) coated glass articles less susceptible to visible corrosion on surfaces thereof. For example, in automotive window embodiments, the outer surface of substrate 1 exposed to the environment is coated with coating 3 in accordance with any of the
In certain embodiments, coating 3 is at least about 70% transparent to or transmissive of visible light rays, preferably at least about 80%, and most preferably at least about 90% transparent to visible light rays.
In certain embodiments, DLC coating 3 (and thus layer 7 in the
Substrate 1 includes soda or Na2O in certain embodiments of this invention. Thus, ta-C layer(s) 7 minimize the amount of soda that can reach the surface of the coated article and cause stains/corrosion. In certain embodiments, substrate 1 includes, on a weight basis, from about 60-80% SiO2, from about 10-20% Na2O, from about 0-16% CaO, from about 0-10% K2O, from about 0-10% MgO, and from about 0-5% Al2O3. In certain other embodiments, substrate 1 may be soda lime silica glass including, on a weight basis, from about 66-75% SiO2, from about 10-20% Na2O, from about 5-15% CaO, from about 0-5% MgO, from about 0-5% Al2O3, and from about 0-5% K2O. Most preferably, substrate 1 is soda lime silica glass including, by weight, from about 70-74% SiO2, from about 12-16% Na2O, from about 7-12% CaO, from about 3.5 to 4.5% MgO, from about 0 to 2.0% Al2O3, from about 0-5% K2O, and from about 0.08 to 0.15% iron oxide. Soda lime silica glass according to any of the above embodiments may have a density of from about 150 to 160 pounds per cubic foot (preferably about 156), an average short term bending strength of from about 6,500 to 7,500 psi (preferably about 7,000 psi), a specific heat (0-100 degrees C.) of about 0.20 Btu/lbF, a softening point of from about 1330 to 1345 degrees F. a thermal conductivity of from about 0.52 to 0.57 Btu/hrftF, and a coefficient of linear expansion (room temperature to 350 degrees C.) of from about 4.7 to 5.0×10−6 degrees F. In certain embodiments, any glass disclosed in U.S. Pat. Nos. 5,214,008 or 5,877,103, each incorporated herein by reference, may be used as substrate 1. Also, soda lime silica float glass available from Guardian Industries Corp., Auburn Hills, Mich., may be used as substrate 1.
Any such aforesaid glass substrate 1 may be, for example, green, blue or grey in color when appropriate colorant(s) are provided in the glass.
In certain other embodiments of this invention, substrate 1 may be of borosilicate glass, or of substantially transparent plastic. In certain borosilicate embodiments, the substrate 1 may include from about 75-85% SiO2, from about 0-5% Na2O, from about 0 to 4% Al2O3, from about 0-5% K2O, from about 8-15% B2O3, and from about 0-5% Li2C.
In still further embodiments, an automotive window (e.g. windshield or side window) including any of the above glass substrates laminated to a plastic substrate may combine to make up substrate 1, with the coating 3 of any of the
In certain embodiments, coating 3 and/or ta-C layer 7 may have an average hardness of from about 30-80 GPa (most preferably from about 40-75 GPa), and a bandgap of from about 1.8 to 2.2 eV. It is noted that the hardness and density of coating 3 and/or layers 7, 8 thereof may be adjusted by varying the ion energy of the depositing apparatus or process described below.
When substrate 1 of any of the aforesaid materials is coated with at least DLC coating 3 according to any of the
Diamond-like carbon (DLC) and the special tetrahedral amorphous carbon (ta-C) form 7 of DLC utilized in certain embodiments herein will now be described in detail. All DLC 3 shown in drawings herein is amorphous. Ta-C 7 is amorphous and yet has substantial C—C tetrahedral (sp3-type) bonding and hence is termed tetrahedral amorphous carbon (ta-C) [or highly ta-C] as it has at least 35% sp3 C—C bonds, preferably at least about 70% and most preferably at least about 80% sp3 C—C bonds. Diamond-like bonding gives this ta-C material gross physical properties approaching those of diamond such as high hardness, high density and chemical inertness. However, ta-C also includes sp2 C—C trigonal bonding and its optical and electronic properties are largely determined by this bonding component. The fraction of sp2 bonding, and thus the density, in a ta-C layer depends for example on the carbon ion energy used during deposition of coating 3 and/or layers 7 and 8. Properties of a given DLC coating are a function of the fraction of sp3 to sp2 bonding throughout the coating and thus throughout layers 7 and 8.
It is noted that the sp3 bonds discussed herein are sp3 carbon-carbon bonds which result in a high density coating 3 and/or 7 and are not sp3 carbon-hydrogen bonds which do not provide as high of density.
Depending on the technique of deposition, many ta-C layers 7 herein contain amounts of H (up to about 4%) which either include the C atom to take either a tetrahedral configuration or an sp2 planar configuration or to be sp-hybridised within a linear polymeric-like form. In other words C—C, C—H and H—H correlations all contribute to the average structure of layers 7 in some embodiments.
In the case of ta-C which is fully or at least about 90% hydrogen-free, C—C bonding describes the local structure. Ta-C films also have some fraction of sp2 or graphic bonding. The spatial distribution of trigonal (sp2) and tetrahedral carbon atoms may determine the bonding strength of layer(s) 3 to glass, as well as the layer's density, strength, stress, etc. Tetrahedral amorphous carbon (ta-C) and its hydrogenated form ta-C:H (which contains no more than about 10 at % or so H) have the highest percentage of carbon-carbon (C—C) sp3 bonding, and are used as layer 7 in the
Ta-C 7 has high density (at least about 2.4 grams per cubic centimeter), hardness, Young's modulus (700-800), as well as a low coefficient of friction (see Table 1 below).
Methods of depositing coating 3 on substrate 1 are described below for certain embodiments of this invention.
Prior to coating 3 being formed on the glass substrate, the top surface of substrate 1 is preferably cleaned by way of an ion beam utilizing oxygen gas in each of the
In plasma ion beam embodiments for depositing coatings 3, 7 and/or 8, carbon ions may be energized to form a stream from plasma toward substrate 1 so that carbon from the ions is deposited on substrate 1. An ion beam from gas phase produces a beam of C+, CH+, C2H, and/or C2H2+ ions (i.e. carbon or carbon based radicals). Preferably, acetylene feedstock gas (C2H2) is used to prevent or minimize polymerization and to obtain an appropriate energy to allow the ions to penetrate the substrate 1 surface and subimplant therein, thereby causing coating 3 atoms to intermix with the surface of substrate 1 a few atom layers thereinto. Impact energy of ions for the bulk of coating 3 (e.g. layer 7 in the
Thus, the C—C sp3 bonding is preferably formed by having a predetermined range of ion energy prior to reaching substrate 1, or prior to reaching ta-C growing on the substrate. The optimal ion energy window for ta-C layer 7 formation in the
However, compressive stresses can develop in ta-C when being deposited at 100-150 eV. Such stress can reach as high as 10 Gpa and can potentially cause delamination from many substrates. It has been found that these stresses can be controlled and decreased by increasing the ion energy the deposition process to a range of from about 200-1,000 eV. The plasma ion beam source enables ion energy to be controlled within different ranges in an industrial process for large area deposition utilized herein. The compressive stress in amorphous carbon is thus decreased significantly at this higher ion energy range of 200-1,000 eV.
High stress is undesirable in the thin interfacing portion 8 of coating 3 that directly contacts the surface of a glass substrate 1. Thus, for example, the first 1-40% thickness (preferably the first 1-20% and most preferably the first 5-10% thickness) 8 of coating 3 is deposited on substrate 1 using high anti-stress energy levels of from about 200-1,000 eV, preferably from about 400-500 eV. Then, after this initial interfacing portion 8 of coating 3 has been grown, the ion energy in the ion deposition process is decreased (either quickly or gradually while deposition continues) to about 100-200 eV, preferably from about 100-150 eV, to grow the remainder ta-C layer 7 of coating 3.
For example, assume for exemplary purposes only with reference to
Thus, in certain embodiments, because of the adjustment in ion energy during the deposition process, ta-C coating 3 in
In certain embodiments, CH4 may be used as a feedstock gas during the deposition process instead of or in combination with the aforesaid C2H2 gas.
Referring to
Carbon is now described generally, in many of its forms, to aid in the understanding of this invention.
Carbon has the ability to form structures based on directed covalent bonds in all three spatial dimensions. Two out of the six electrons of a carbon atom lie in the 1s core and hence do not participate in bonding, while the four remaining 2s and 2p electrons take part in chemical bonding to neighboring atoms. The carbon atom's one 2s and three 2p electron orbitals can hybridise in three different ways. This enables carbon to exist as several allotropes. In nature, three allotropic crystalline phase exists, namely diamond, graphite and the fullerenes and a plethora of non-crystalline forms.
For the diamond crystalline allotrope, in tetrahedral or sp3 bonding all the four bonding electrons form σ bonds. The space lattice in diamond is shown in
The properties of graphite are governed by its trigonal bonding. The outer 2s, 2px and 2py orbitals hybridise in a manner to give three co-planar sp2 orbitals which form a bonds and a p-type π orbital 2pz perpendicular to the sp2 orbital plane, as shown in
As for fullerenes, it is known that C60 and C70 are the most accessible members of the family of closed-cage molecules called fullerenes, formed entirely of carbon in the sp2 hybridised state. Each fullerenes Cn consists of 12 pentagonal rings and m hexagonal rings such that m=(n−20)/2 (satisfying Euler's Theorem). The σ bonds are wrapped such that the fullerene has a highly strained structure and the molecule is rigid.
As for amorphous carbon, there exists a class of carbon in the metastable state without any long range order. Material properties change when using different deposition techniques or even by varying the deposition parameters within a single technique. In this category of materials on one extreme we have ta-C (e.g. layer 7) which is the most diamond-like with up to 90% C—C sp3 bonding in certain preferred embodiments and on the other a-C (amorphous carbon), produced by thermal evaporation of carbon, in which more than 95% graphitic bonds are prevalent. In this respect, these two materials reflect the intrinsic diversity of non-crystalline forms of carbon.
Amorphous materials, such as layer(s) 3, 7 and 8, are metastable solids. In an amorphous solid there exists a set of equilibrium positions about which atoms oscillate. The atoms in an amorphous material are often extended into a three dimensional network with the absence of order beyond the second nearest neighbor distance.
Referring again to ta-C layer 7, the sp3/sp2 C—C bonded fraction or percentage (%), e.g. in a vacuum arc deposition technique or techniques used in the '477 patent or deposition techniques discussed above, can be controlled by changing the energy of the incident C+ ions. The films deposited being metastable in nature are under high compressive stress. The sp2 hybridised carbon atoms are clustered and embedded within a sp3 matrix. The extent of the latter bonding confers onto ta-C its diamond-like physical properties. The fraction of the sp2 hybridised atoms determines the extent of clustering. The degree of clustering, which is seen as a strain relief mechanism, implies that the π and π* states become delocalised to such an extent that they control the electronic and optical properties of the films. At high density of states, the n bands merge with the σ states to form the conduction and valence mobility band-edges. Their lower density tail states are localised giving a pseudo-gap. The term “tetrahedral amorphous carbon (ta-C)” is thus used to distinguish this highly tetrahedral material from other “diamond-like carbon” which have C—C correlations mostly of the sp2 type.
The sp3 bonding in coatings 3 is believed to arise from a densification process under energetic ion bombardment conditions. Hybridisation of the carbon atom is expected to adjust to the local density, becoming more sp3 if the density is high and more sp2 if low. This can occur if an incident ion penetrates the first atomic layer and then enters an interstitial subsurface position. The local bonding then reforms around this atom and its neighbours to adopt the most appropriate hybridisation. High energy ions in principle can penetrate the surface layer of the substrate or growing DLC, increase the density of deeper layers which then forces sp3 bonding. Ions of lower energy than the penetration threshold only append to the surface forming sp2 bonded a-C.
Coated articles according to any of the aforesaid embodiments may be used, for example, in the context of automotive windshields, automotive back windows, automotive side windows, architectural glass, IG glass units, residential or commercial windows, and the like.
In any of the aforesaid embodiments, a layer of non-porous tungsten disulfide (WS2) 12 may be provided on top of layer 7 to prevent the DLC from burning off upon exposure to air if taken to high temperatures after the coating deposition. Layer 12 (e.g. see
Once given the above disclosure, many other features, modifications, and improvements will become apparent to the skilled artisan. Such other features, modifications, and improvements are, therefore, considered to be a part of this invention, the scope of which is to be determined by the following claims.
This application is a continuation of Ser. No. 11/387,722 filed Mar. 24, 2006(now U.S. Pat. No. 7,632,538), which is a continuation of Ser. No. 10/682,823, filed Oct. 10, 2003, (now U.S. Pat. No. 7,067,175), which is a division of Ser. No. 09/915,552, filed Jul. 27, 2001 (now U.S. Pat. No. 6,713,178), which is a division of Ser. No. 09/808,345, filed Mar. 15, 2001 (now U.S. Pat. No. 6,303,226), which is a division of Ser. No. 09/303,548, filed May 3, 1999 (now U.S. Pat. No. 6,261,693), the entire disclosures of which are all hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3959577 | Frink | May 1976 | A |
4060660 | Carlson et al. | Nov 1977 | A |
4273797 | Akashi et al. | Jun 1981 | A |
4400410 | Green et al. | Aug 1983 | A |
4728529 | Etzkorn et al. | Mar 1988 | A |
4746538 | Mackowski | May 1988 | A |
4777090 | Ovshinsky et al. | Oct 1988 | A |
4816291 | Desphandey et al. | Mar 1989 | A |
4877677 | Hirochi et al. | Oct 1989 | A |
4935303 | Ikoma et al. | Jun 1990 | A |
5087608 | Chan et al. | Feb 1992 | A |
5122249 | Niemann et al. | Jun 1992 | A |
5135808 | Kimock et al. | Aug 1992 | A |
5188887 | Linge et al. | Feb 1993 | A |
5190807 | Kimock et al. | Mar 1993 | A |
5214008 | Beckwith et al. | May 1993 | A |
5229194 | Lingle et al. | Jul 1993 | A |
5240741 | Edwards et al. | Aug 1993 | A |
5240886 | Gulotta et al. | Aug 1993 | A |
5242560 | Lingle et al. | Sep 1993 | A |
5268217 | Kimock et al. | Dec 1993 | A |
5298048 | Lingle et al. | Mar 1994 | A |
5344718 | Hartig et al. | Sep 1994 | A |
5376455 | Hartig et al. | Dec 1994 | A |
5378527 | Nakanishi et al. | Jan 1995 | A |
5385872 | Gulotta et al. | Jan 1995 | A |
5387433 | Balian et al. | Feb 1995 | A |
5391510 | Hsu et al. | Feb 1995 | A |
5415927 | Hirayama et al. | May 1995 | A |
5425861 | Hartig et al. | Jun 1995 | A |
5425983 | Propst et al. | Jun 1995 | A |
5435900 | Gorokhovsky | Jul 1995 | A |
5455081 | Okada et al. | Oct 1995 | A |
5470661 | Bailey et al. | Nov 1995 | A |
5474816 | Falabella | Dec 1995 | A |
5506038 | Knapp et al. | Apr 1996 | A |
5507987 | Windischmann | Apr 1996 | A |
5508092 | Kimock et al. | Apr 1996 | A |
5508368 | Knapp et al. | Apr 1996 | A |
5510186 | Sulzbach | Apr 1996 | A |
5514476 | Hartig et al. | May 1996 | A |
5518780 | Tamor et al. | May 1996 | A |
5527559 | Simpson | Jun 1996 | A |
5527596 | Kimock et al. | Jun 1996 | A |
5547714 | Huck et al. | Aug 1996 | A |
5557462 | Hartig et al. | Sep 1996 | A |
5612262 | Kloss et al. | Mar 1997 | A |
5616179 | Baldwin et al. | Apr 1997 | A |
5620745 | Simpson | Apr 1997 | A |
5624718 | Dearnaley | Apr 1997 | A |
5629532 | Myrick | May 1997 | A |
5635245 | Kimock et al. | Jun 1997 | A |
5635258 | Chen et al. | Jun 1997 | A |
5637353 | Kimock et al. | Jun 1997 | A |
5643423 | Kimock et al. | Jul 1997 | A |
5653812 | Petrmichl et al. | Aug 1997 | A |
5679269 | Cohen et al. | Oct 1997 | A |
5679446 | Windischmann | Oct 1997 | A |
5688585 | Lingle et al. | Nov 1997 | A |
5736476 | Watzke et al. | Apr 1998 | A |
5747118 | Bunshah et al. | May 1998 | A |
5762715 | Patten, Jr. et al. | Jun 1998 | A |
5770321 | Hartig et al. | Jun 1998 | A |
5776553 | Jaffe et al. | Jul 1998 | A |
5776600 | Katayama et al. | Jul 1998 | A |
5776612 | Fisher | Jul 1998 | A |
5776845 | Boulos et al. | Jul 1998 | A |
5776846 | Sakaguchi et al. | Jul 1998 | A |
5783309 | Faure et al. | Jul 1998 | A |
5792254 | Windischmann | Aug 1998 | A |
5795648 | Goel et al. | Aug 1998 | A |
5798139 | Nagashima et al. | Aug 1998 | A |
5800933 | Hartig et al. | Sep 1998 | A |
5821001 | Arbab et al. | Oct 1998 | A |
5824374 | Bradley, Jr. et al. | Oct 1998 | A |
5830332 | Babich et al. | Nov 1998 | A |
5830812 | Shelestak et al. | Nov 1998 | A |
5837108 | Lingle et al. | Nov 1998 | A |
5837357 | Matsuo et al. | Nov 1998 | A |
5844225 | Kimock et al. | Dec 1998 | A |
5846613 | Neuville | Dec 1998 | A |
5846649 | Knapp et al. | Dec 1998 | A |
5849228 | Patton, Jr. et al. | Dec 1998 | A |
5849413 | Zhu et al. | Dec 1998 | A |
5851940 | Boulos et al. | Dec 1998 | A |
5855641 | Taniguchi | Jan 1999 | A |
5858477 | Veerasamy | Jan 1999 | A |
5858894 | Nagashima et al. | Jan 1999 | A |
5858896 | Nagashima et al. | Jan 1999 | A |
5863605 | Bak-Boychuk et al. | Jan 1999 | A |
5873921 | Hirota et al. | Feb 1999 | A |
5877103 | Dupont et al. | Mar 1999 | A |
5879775 | Walter et al. | Mar 1999 | A |
5880552 | McGill et al. | Mar 1999 | A |
5888593 | Petrmichl et al. | Mar 1999 | A |
5939149 | Jang et al. | Aug 1999 | A |
5939201 | Boire et al. | Aug 1999 | A |
5965216 | Neuberger et al. | Oct 1999 | A |
5989693 | Yamasaki et al. | Nov 1999 | A |
5997943 | Azzopardi et al. | Dec 1999 | A |
6001431 | Itoh et al. | Dec 1999 | A |
6002208 | Maishev et al. | Dec 1999 | A |
6030904 | Grill et al. | Feb 2000 | A |
6046758 | Brown et al. | Apr 2000 | A |
6060178 | Krisko | May 2000 | A |
6194048 | Hatakeyama et al. | Feb 2001 | B1 |
6261693 | Veerasamy | Jul 2001 | B1 |
6277480 | Veerasamy et al. | Aug 2001 | B1 |
6280834 | Veerasamy et al. | Aug 2001 | B1 |
6284377 | Veerasamy | Sep 2001 | B1 |
6303225 | Veerasamy | Oct 2001 | B1 |
6303226 | Veerasamy | Oct 2001 | B2 |
6312808 | Veerasamy et al. | Nov 2001 | B1 |
6335086 | Veerasamy | Jan 2002 | B1 |
6338901 | Veerasamy | Jan 2002 | B1 |
6395333 | Veerasamy | May 2002 | B2 |
6416816 | Veerasamy et al. | Jul 2002 | B2 |
6472017 | Veerasamy et al. | Oct 2002 | B2 |
6475573 | Veerasamy et al. | Nov 2002 | B1 |
6531182 | Veerasamy et al. | Mar 2003 | B2 |
6621535 | Fukada | Sep 2003 | B1 |
6638570 | Veerasamy | Oct 2003 | B2 |
6663752 | Santilli | Dec 2003 | B2 |
6663753 | Veerasamy et al. | Dec 2003 | B2 |
6682773 | Medwick et al. | Jan 2004 | B2 |
6713178 | Veerasamy | Mar 2004 | B2 |
6764579 | Veerasamy et al. | Jul 2004 | B2 |
6827977 | Veerasamy | Dec 2004 | B2 |
6849328 | Medwick et al. | Feb 2005 | B1 |
6878403 | Veerasamy et al. | Apr 2005 | B2 |
6878404 | Veerasamy | Apr 2005 | B2 |
6878405 | Bienkiewicz et al. | Apr 2005 | B2 |
6887575 | Neuman et al. | May 2005 | B2 |
6919536 | Veerasamy et al. | Jul 2005 | B2 |
6936347 | Laird et al. | Aug 2005 | B2 |
6942923 | Stachowiak | Sep 2005 | B2 |
7033649 | Veerasamy | Apr 2006 | B2 |
7067175 | Veerasamy | Jun 2006 | B2 |
7632538 | Veerasamy | Dec 2009 | B2 |
20030064198 | Thomsen et al. | Apr 2003 | A1 |
20030113551 | Thomsen et al. | Jun 2003 | A1 |
20030155065 | Thomsen et al. | Aug 2003 | A1 |
20050153126 | Finley et al. | Jul 2005 | A1 |
Number | Date | Country |
---|---|---|
06 28642 | Dec 1994 | EP |
0 838 698 | Apr 1998 | EP |
8800607 | Oct 1989 | NL |
WO 9412680 | Jun 1994 | WO |
WO 9826926 | Jun 1998 | WO |
WO 9845847 | Oct 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20100047464 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09915552 | Jul 2001 | US |
Child | 10682823 | US | |
Parent | 09808345 | Mar 2001 | US |
Child | 09915552 | US | |
Parent | 09303548 | May 1999 | US |
Child | 09808345 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11387722 | Mar 2006 | US |
Child | 12588869 | US | |
Parent | 10682823 | Oct 2003 | US |
Child | 11387722 | US |