1. Field of the Invention
The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly, to a semiconductor device having a semiconductor layer used for adjusting the depth of a well, and the method of fabricating the same.
2. Description of the Prior Art
Electrically erasable programmable read only memory (EEPROM) is a kind of non-volatile memory. EEPROM can retain data even when the electricity supply is removed as well as having a re-record function. With the trend towards scaling down the size and increasing the integration of semiconductor devices, electronic products usually include a various internal semiconductor devices for meeting the requirements of low power consumption, fast response and low cost. Furthermore, each semiconductor device has its own performance and particular manufacturing process demands.
EEPROM may include metal-oxide-semiconductor transistors (MOS) and Schottky diodes. A Schottky diode is constructed by a metal-to-semiconductor interface where this interface is known to have rectifying characteristics. Moreover, a Schottky diode provides rectification as a result of unipolar current transport across the metal-semiconductor contact. For example, a Schottky diode's voltage drop at a forward bias of about 1 mA is in the rage of 0.15 V to 0.45 V, while the conventional silicon diode is about 0.6 V. Accordingly, the Schottky diode has the advantages of low threshold voltage and fast response speed when switching between forward and reverse bias voltage in comparison with the PN-junction diode, and is therefore widely used for reducing power consumption and improving switching speed.
As the size of MOS is gradually minimized, how to improve the carrier mobility so as to elevate the response speed of the MOS has become a major topic for study in the semiconductor field.
How to integrate processes of different semiconductor devices such as MOS and Schottky diode to facilitate the functions of electronic products and save on manufacturing costs is another important issue in the field.
It is therefore one of the objectives of the present invention to provide a semiconductor device and a method of fabricating the same to integrate processes of different semiconductor devices for saving on manufacturing costs, by utilizing a semiconductor layer for adjusting the depth of a well.
An exemplary embodiment of the present invention provides a semiconductor device. The semiconductor device includes a semiconductor substrate, and a first well having a first conductive type is disposed in the semiconductor substrate. Furthermore, a first electrode and a second electrode are disposed on the first well, and a semiconductor layer is also disposed on the first well and located between the first electrode and the second electrode. A second well having a second conductive type is disposed in the first well underneath the semiconductor layer. Additionally, a heavily doped region having a first conductive type is disposed in the first well underneath the second electrode.
An exemplary embodiment of the present invention provides a method for forming a semiconductor device including the following steps. First, a semiconductor substrate having a first region, a second region and a third region defined thereon is provided. Then, a first ion implantation process is performed for respectively forming a first well having a first conductive type in the semiconductor substrate of the first region and in the semiconductor substrate of the second region. Subsequently, a semiconductor layer partially overlapping the first well of the second region is formed. A second ion implantation process is performed for respectively forming a second well having a second conductive type in the semiconductor substrate of the third region and in the first well of the second region, where the second well of the second region is disposed underneath the semiconductor layer.
The present invention provides a semiconductor device having the semiconductor layer disposed on the formed well and a method of fabricating the same. The semiconductor layer may serve as a mask during the ion implantation process for adjusting a depth of the later-formed well to enhance the insulation effect. Furthermore, resistance can be increased by the depletion effect at the edge of the well and the extending pathway of signals due to the disposition of the well; accordingly, the punch through current caused by the high voltage signal can be prevented from damaging the semiconductor device, and the reliability of the semiconductor device performance may thereby be facilitated. Additionally, the present invention also includes the integration of different semiconductor device processes such as MOS process and Schottky diode process for saving on costs and shortening the manufacturing period.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
To provide a better understanding of the present invention, preferred exemplary embodiments will be described in detail. The preferred exemplary embodiments of the present invention are illustrated in the accompanying drawings with numbered elements.
Please refer to
The first electrode 16 is disposed on the first well 14, and a Schottky contact 26 is further included between the first well 14 and the first electrode 16. The heavily doped region 20 having a first conductive type is disposed in the first well 14 by performing an ion implantation process with the dopants having the first conductive type. The first well 14 and the heavily doped region 20 have the same conductive type, and a dopant concentration of the heavily doped region 20 is substantially higher than that of the first well 14. In this exemplary embodiment, the heavily doped region 20 is preferably an n-type well, but not limited thereto. The second electrode 18 is disposed on the first well 14, and the heavily doped region 20 is disposed in the first well 14 underneath the second electrode 18. An ohmic contact 28 is further included between the heavily doped region 20 and the second electrode 18. The semiconductor layer 22 may include, for example, a polysilicon layer, but is not limited thereto. The semiconductor layer 22 disposed on the first well 14 is located between the first electrode 16 and the second electrode 18. The semiconductor layer 22 may further include a spacer 25, and the material of the spacer 25 could be high temperature oxide (HTO), silicon nitride, silicon oxide, or HCD-SiN formed by hexachlorodisilane (Si2Cl6). Moreover, the second well 24 having a second conductive type is disposed in the first well 14 underneath the semiconductor layer 22 by performing an ion implantation process with the dopants having the second conductive type, and the second well 24 may contact the semiconductor layer 22. The second conductive type includes p-type or n-type. In this exemplary embodiment, the second well 24 is preferably a p-type well, but not limited thereto.
As a salicide layer process is performed to dispose a salicide layer 23 between the first well 14 and the first electrode 16/the second electrode 18, the semiconductor layer 22 may provide a self-alignment function, i.e. the semiconductor layer 22 defines non-salicide regions. In other words, only a portion of the silicon substrate of the first well 14 uncovered by the semiconductor layer 22 can be reacted with metal to form the salicide layer 23. Accordingly, the semiconductor layer 22 may be used to divide the predetermined location of the first electrode 16 from that of the second electrode 18. The semiconductor layer 22 neighbors and defines the location of Schottky contact 26 and the location of ohmic contact 28. In this exemplary embodiment, the semiconductor layer 22 covers the second well 24 to serve as a mask during the ion implantation process of forming the second well 24 and defines the location of the second well 24. The second well 24 underneath the semiconductor layer 22 is located between the Schottky contact 26 and the ohmic contact 28. The second well 24 may surround the Schottky contact 26 without direct contact and adjust a depth d2 of the second well 24 to be smaller than a depth d1 of the first well 14 for enhancing the insulation effect of the second well 24.
As a forward bias is provided to the semiconductor device 10, the signal is delivered from the heavily doped region 20, through the first well 14, and to the Schottky contact 26. The disposition of the second well 24 may increase the resistance due to the depletion effect between the first well 14 and the second well 24 having the different conductive types, and the extending pathway. The higher resistance could prevent the punch through current caused by the high voltage signal from damaging the semiconductor device; consequently, the reverse voltage and the performance reliability of the semiconductor device 10 may be facilitated.
Please refer to
Please refer to
Subsequently, as shown in
As shown in
An ion implantation process is performed for respectively forming a second well 50 having a second conductive type in the semiconductor substrate 40 of the third region 43 and in the first well 46 of the second region 42. Furthermore, the second well 50 of the second region 42 is disposed underneath the semiconductor layer 48. It should be appreciated that the disposition of the semiconductor layer 48 can adjust the depth of the well formed by the ion implantation process. Even if the energy and the dopant concentration of the ion implantation process performed in the second region 42 are the same as that in the third region 43, a depth d5 of the second well 50 in the second region 42 is smaller than a depth d6 of the second well 50 in the third region 43. The second conductive type includes p-type or n-type. In this exemplary embodiment, the second well 50 is preferably a p-type well, but not limited thereto. The order of patterning the semiconductor layer and forming the second well could be modified according to the process demands.
As shown in
Please refer to
Please refer to
As shown in
In conclusion, the present invention provides a semiconductor device having a semiconductor layer disposed on a formed well and a method of fabricating the same. The semiconductor layer may serve as a mask during an ion implantation process for adjusting a depth of the later-formed well to enhance the insulation effect. Resistance can be increased by the depletion effect at the edge of the well and the extending pathway of signals due to the disposition of the well; accordingly, the punch through current caused by the high voltage signal can be prevented from damaging the semiconductor device, and the reliability of the semiconductor device performance may thereby be facilitated. The present invention also includes the integration of different semiconductor device processes: for example, the processes of Schottky diode and the BJT are integrated into the process of EEPROM as illustrated in the previous exemplary embodiment, in order to save on costs and shorten the manufacturing period.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
This application is a Divisional of application Ser. No. 13/215,194 filed Aug. 22, 2011, and included herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4344081 | Pao | Aug 1982 | A |
4396999 | Malaviya | Aug 1983 | A |
4811065 | Cogan | Mar 1989 | A |
4862244 | Yamagishi | Aug 1989 | A |
4893160 | Blanchard | Jan 1990 | A |
4918333 | Anderson | Apr 1990 | A |
4958089 | Fitzpatrick | Sep 1990 | A |
5040045 | McArthur | Aug 1991 | A |
5268589 | Dathe | Dec 1993 | A |
5296393 | Smayling | Mar 1994 | A |
5326711 | Malhi | Jul 1994 | A |
5346835 | Malhi | Sep 1994 | A |
5430316 | Contiero | Jul 1995 | A |
5436486 | Fujishima | Jul 1995 | A |
5534721 | Shibib | Jul 1996 | A |
5811850 | Smayling | Sep 1998 | A |
5950090 | Chen | Sep 1999 | A |
5998301 | Pham | Dec 1999 | A |
6066884 | Krutsick | May 2000 | A |
6144538 | Chao | Nov 2000 | A |
6165846 | Carns | Dec 2000 | A |
6245689 | Hao | Jun 2001 | B1 |
6277675 | Tung | Aug 2001 | B1 |
6277757 | Lin | Aug 2001 | B1 |
6297108 | Chu | Oct 2001 | B1 |
6306700 | Yang | Oct 2001 | B1 |
6326283 | Liang | Dec 2001 | B1 |
6353247 | Pan | Mar 2002 | B1 |
6388292 | Lin | May 2002 | B1 |
6400003 | Huang | Jun 2002 | B1 |
6424005 | Tsai | Jul 2002 | B1 |
6514830 | Fang | Feb 2003 | B1 |
6521538 | Soga | Feb 2003 | B2 |
6614089 | Nakamura | Sep 2003 | B2 |
6713794 | Suzuki | Mar 2004 | B2 |
6762098 | Hshieh | Jul 2004 | B2 |
6764890 | Xu | Jul 2004 | B1 |
6784060 | Ryoo | Aug 2004 | B2 |
6784490 | Inoue | Aug 2004 | B1 |
6819184 | Pengelly | Nov 2004 | B2 |
6822296 | Wang | Nov 2004 | B2 |
6825531 | Mallikarjunaswamy | Nov 2004 | B1 |
6846729 | Andoh | Jan 2005 | B2 |
6855581 | Roh | Feb 2005 | B2 |
6869848 | Kwak | Mar 2005 | B2 |
6894349 | Beasom | May 2005 | B2 |
6958515 | Hower | Oct 2005 | B2 |
7015116 | Lo | Mar 2006 | B1 |
7023050 | Salama | Apr 2006 | B2 |
7037788 | Ito | May 2006 | B2 |
7075575 | Hynecek | Jul 2006 | B2 |
7091079 | Chen | Aug 2006 | B2 |
7148540 | Shibib | Dec 2006 | B2 |
7214591 | Hsu | May 2007 | B2 |
7309636 | Chen | Dec 2007 | B2 |
7323740 | Park | Jan 2008 | B2 |
7358567 | Hsu | Apr 2008 | B2 |
7427552 | Jin | Sep 2008 | B2 |
8421181 | Anderson | Apr 2013 | B2 |
8552495 | Tsai | Oct 2013 | B2 |
20030022460 | Park | Jan 2003 | A1 |
20040018698 | Schmidt | Jan 2004 | A1 |
20040070050 | Chi | Apr 2004 | A1 |
20050227448 | Chen | Oct 2005 | A1 |
20050258496 | Tsuchiko | Nov 2005 | A1 |
20060035437 | Mitsuhira | Feb 2006 | A1 |
20060244050 | Sudou | Nov 2006 | A1 |
20060261407 | Blanchard | Nov 2006 | A1 |
20060270134 | Lee | Nov 2006 | A1 |
20060270171 | Chen | Nov 2006 | A1 |
20070041227 | Hall | Feb 2007 | A1 |
20070082440 | Shiratake | Apr 2007 | A1 |
20070132033 | Wu | Jun 2007 | A1 |
20070273001 | Chen | Nov 2007 | A1 |
20080006899 | Kim | Jan 2008 | A1 |
20080067623 | Coolbaugh | Mar 2008 | A1 |
20080092094 | Coolbaugh et al. | Apr 2008 | A1 |
20080160697 | Kao | Jul 2008 | A1 |
20080160706 | Jung | Jul 2008 | A1 |
20080185629 | Nakano | Aug 2008 | A1 |
20080296655 | Lin | Dec 2008 | A1 |
20090108348 | Yang | Apr 2009 | A1 |
20090111252 | Huang | Apr 2009 | A1 |
20090159966 | Huang | Jun 2009 | A1 |
20090243027 | Kato | Oct 2009 | A1 |
20090278208 | Chang | Nov 2009 | A1 |
20090294865 | Tang | Dec 2009 | A1 |
20100006937 | Lee | Jan 2010 | A1 |
20100032758 | Wang | Feb 2010 | A1 |
20100096702 | Chen | Apr 2010 | A1 |
20100148250 | Lin | Jun 2010 | A1 |
20100213517 | Sonsky | Aug 2010 | A1 |
20100289058 | Yang | Nov 2010 | A1 |
20110057263 | Tang | Mar 2011 | A1 |
20120068297 | Tsai | Mar 2012 | A1 |
20120187520 | Kato | Jul 2012 | A1 |
Entry |
---|
Tsai, Title of Invention: High Voltage Device Having Schottky Diode, U.S. Appl. No. 12/884,215, Filing Date: Sep. 17, 2010. |
Number | Date | Country | |
---|---|---|---|
20140206174 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13215194 | Aug 2011 | US |
Child | 14231659 | US |