1. Field of the Invention
This invention relates to implantable medical devices, such as stents. In particular, the invention relates to polymeric stents with radiopaque markers.
2. Description of the State of the Art
This invention relates to radially expandable endoprostheses, which are adapted to be implanted in a bodily lumen. An “endoprosthesis” corresponds to an artificial device that is placed inside the body. A “lumen” refers to a cavity of a tubular organ such as a blood vessel. A stent is an example of such an endoprosthesis. Stents are generally cylindrically shaped devices, which function to hold open and sometimes expand a segment of a blood vessel or other anatomical lumen such as urinary tracts and bile ducts. Stents are often used in the treatment of atherosclerotic stenosis in blood vessels. “Stenosis” refers to a narrowing or constriction of the diameter of a bodily passage or orifice. In such treatments, stents reinforce body vessels and prevent restenosis following angioplasty in the vascular system. “Restenosis” refers to the reoccurrence of stenosis in a blood vessel or heart valve after it has been treated (as by balloon angioplasty, stenting, or valvuloplasty) with apparent success.
The structure of stents is typically composed of scaffolding that includes a pattern or network of interconnecting structural elements or struts. The scaffolding can be formed from wires, tubes, or sheets of material rolled into a cylindrical shape. In addition, a medicated stent may be fabricated by coating the surface of either a metallic or polymeric scaffolding with a polymeric carrier. The polymeric scaffolding may also serve as a carrier of an active agent or drug.
The first step in treatment of a diseased site with a stent is locating a region that may require treatment such as a suspected lesion in a vessel, typically by obtaining an x-ray image of the vessel. To obtain an image, a contrast agent, which contains a radiopaque substance such as iodine is injected into a vessel. “Radiopaque” refers to the ability of a substance to absorb x-rays. The x-ray image depicts the lumen of the vessel from which a physician can identify a potential treatment region. The treatment then involves both delivery and deployment of the stent. “Delivery” refers to introducing and transporting the stent through a bodily lumen to a region in a vessel that requires treatment. “Deployment” corresponds to the expanding of the stent within the lumen at the treatment region. Delivery and deployment of a stent are accomplished by positioning the stent about one end of a catheter, inserting the end of the catheter through the skin into a bodily lumen, advancing the catheter in the bodily lumen to a desired treatment location, expanding the stent at the treatment location, and removing the catheter from the lumen. In the case of a balloon expandable stent, the stent is mounted about a balloon disposed on the catheter. Mounting the stent typically involves compressing or crimping the stent onto the balloon. The stent is then expanded by inflating the balloon. The balloon may then be deflated and the catheter withdrawn. In the case of a self-expanding stent, the stent may be secured to the catheter via a retractable sheath or a sock. When the stent is in a desired bodily location, the sheath may be withdrawn allowing the stent to self-expand.
The stent must be able to simultaneously satisfy a number of mechanical requirements. First, the stent must be capable of withstanding the structural loads, namely radial compressive forces, imposed on the stent as it supports the walls of a vessel lumen. In addition to having adequate radial strength or more accurately, hoop strength, the stent should be longitudinally flexible to allow it to be maneuvered through a tortuous vascular path and to enable it to conform to a deployment site that may not be linear or may be subject to flexure. The material from which the stent is constructed must allow the stent to undergo expansion, which typically requires substantial deformation of localized portions of the stent's structure. Once expanded, the stent must maintain its size and shape throughout its service life despite the various forces that may come to bear thereon, including the cyclic loading induced by the beating heart. Finally, the stent must be biocompatible so as not to trigger any adverse vascular responses.
In addition to meeting the mechanical requirements described above, it is desirable for a stent to be radiopaque, or fluoroscopically visible under x-rays. Accurate stent placement is facilitated by real time visualization of the delivery of a stent. A cardiologist or interventional radiologist can track the delivery catheter through the patient's vasculature and precisely place the stent at the site of a lesion. This is typically accomplished by fluoroscopy or similar x-ray visualization procedures. For a stent to be fluoroscopically visible it must be more absorptive of x-rays than the surrounding tissue. Radiopaque materials in a stent may allow for its direct visualization.
In many treatment applications, the presence of a stent in a body may be necessary for a limited period of time until its intended function of, for example, maintaining vascular patency and/or drug delivery is accomplished. Therefore, stents fabricated from biodegradable, bioabsorbable, and/or bioerodable materials may be configured to meet this additional clinical requirement since they may be designed to completely erode after the clinical need for them has ended. Stents fabricated from biodegradable polymers are particularly promising, in part because they may be designed to completely erode within a desired time frame.
However, a significant shortcoming of biodegradable polymers (and polymers generally composed of carbon, hydrogen, oxygen, and nitrogen) is that they are radiolucent with no radiopacity. Biodegradable polymers tend to have x-ray absorption similar to body tissue.
One way of addressing this problem is to attach or couple radiopaque markers to a stent. The radiopaque markers allow the position of the stent to be monitored since the markers are can be imaged by X-ray imaging techniques. The ability to monitor or detect a stent visually is limited by the visibility of the markers.
Various embodiments of the present invention include a stent comprising radiopaque markers disposed on or within the stent, wherein the radiopaque markers are arranged longitudinally along an axis of the stent.
Further embodiments of the present invention include a stent comprising radiopaque markers disposed on or within the stent, wherein the radiopaque markers are arranged in a pattern along the circumference of the stent.
Additional embodiments of the present invention include a stent comprising a plurality of radiopaque markers disposed on or within on the stent, wherein the plurality of radiopaque markers are selectively arranged in a region of the stent to enhance the visibility of the stent with an imaging technique.
The present invention may be applied to stents and, more generally, implantable medical devices such as, but not limited to, self-expandable stents, balloon-expandable stents, stent-grafts, vascular grafts, cerebrospinal fluid shunts, pacemaker leads, closure devices for patent foramen ovale, and synthetic heart valves.
A stent can have virtually any structural pattern that is compatible with a bodily lumen in which it is implanted. Typically, a stent is composed of a pattern or network of circumferential and longitudinally extending interconnecting structural elements or struts. In general, the struts are arranged in patterns, which are designed to contact the lumen walls of a vessel and to maintain vascular patency. A myriad of strut patterns are known in the art for achieving particular design goals. A few of the more important design characteristics of stents are radial or hoop strength, expansion ratio or coverage area, and longitudinal flexibility. The present invention is applicable to virtually any stent design and is, therefore, not limited to any particular stent design or pattern. One embodiment of a stent pattern may include cylindrical rings composed of struts. The cylindrical rings may be connected by connecting struts.
In some embodiments, a stent of the present invention may be formed from a tube by laser cutting the pattern of struts in the tube. The stent may also be formed by laser cutting a polymeric sheet, rolling the pattern into the shape of the cylindrical stent, and providing a longitudinal weld to form the stent. Other methods of forming stents are well known and include chemically etching a polymeric sheet and rolling and then welding it to form the stent. A polymeric wire may also be coiled to form the stent. The stent may be formed by injection molding of a thermoplastic or reaction injection molding of a thermoset polymeric material. Filaments of the compounded polymer may be extruded or melt spun. These filaments can then be cut, formed into ring elements, welded closed, corrugated to form crowns, and then the crowns welded together by heat or solvent to form the stent. Lastly, hoops or rings may be cut from tubing stock, the tube elements stamped to form crowns, and the crowns connected by welding or laser fusion to form the stent.
A stent can be made of a biostable and/or biodegradable polymer. As indicated above, a stent made from a biodegradable polymer is intended to remain in the body for a duration of time until its intended function of, for example, maintaining vascular patency and/or drug delivery is accomplished. After the process of degradation, erosion, absorption, and/or resorption has been completed, no portion of the biodegradable stent, or a biodegradable portion of the stent will remain. In some embodiments, very negligible traces or residue may be left behind. The duration can be in a range from about a month to a few years. However, the duration is typically in a range from about one month to twelve months, or in some embodiments, six to twelve months. It is important for the stent to provide mechanical support to a vessel for at least a portion of the duration. Many biodegradable polymers have erosion rates that make them suitable for treatments that require the presence of a device in a vessel for the above-mentioned time-frames.
As indicated above, it is desirable to have the capability of obtaining images of polymeric stents with x-ray fluoroscopy during and after implantation. Various embodiments of the present invention include stents with markers arranged in patterns or selectively arranged on the stent in a manner that facilitates visualization of the stent.
Various types of markers can be used in embodiments of the present invention. Representative types of markers include constructs made of a radiopaque material that is disposed within depots or holes in a stent. The construct can be, but is not limited to a pellet, bead, or slug. The depot or hole can be made to accommodate the shape of the marker. In an embodiment, the depot may be formed in a structural element by laser machining. The depot may extend partially or completely through the portion of the stent. For example, an opening of a depot may be on an abluminal or luminal surface and extend partially through the stent or completely through to an opposing surface. The markers may be sufficiently radiopaque for imaging the stent. In addition, embodiments of the stents with markers should be biocompatible and should not interfere with treatment.
The markers and manner of positioning on the stent are merely representative. Embodiments of the present invention are not limited to the type of marker or the manner of attachment or coupling to the stent. The present invention applies to markers that can be attached or coupled in, on, or around a stent at a specific locations or positions on the stent structure or geometry.
In general, increasing the size of a marker enhances the visibility of a stent. However, increasing the size of a marker can have disadvantages. For example, a larger marker can result in an undesirably large profile of the stent which can interfere with the flow of blood in a vessel. Complications such as thrombosis can result from the disturbed blood flow. Additionally, a larger marker disposed in a structural element can negatively affect its structural integrity.
Embodiments of the present invention are directed to positioning or arranging markers on a stent to facilitate detection or monitoring the position of the stent. In certain embodiments, the markers can be arranged in a geometrical pattern that facilitates visualization of the stent.
Stent pattern 180 includes cylindrically aligned rings 185 and linking structural elements 190. Structural elements at a proximal end 205 and distal end 210 of stent pattern 180 include depots with pairs of radiopaque markers 195 and 200, respectively, disposed within the depots. As shown
A physician can monitor the position of the stent due to the presence of the radiopaque markers which are visible using X-ray imaging. Since markers are located at the distal and proximal ends of the stent, the positions of the markers allow the physician to locate the ends of the stent. However, the small size of the markers can make it difficult to visually detect the individual markers. As indicated above, the size of markers is limited by a desired profile of the stent and structural integrity of structural elements. Since the markers are separated by the length of the stent, locating the ends of the stent can be difficult.
Various embodiments of the present invention include a stent having radiopaque markers arranged in patterns or selectively arranged in a region in a manner that enhances or facilitates visualization of the stent. Radiopaque markers arranged in patterns or selectively arranged in particular region(s) have greater visibility than one or two localized markers and can substantially enhance the visibility of a stent.
The longitudinal pattern of markers 225 extends from a proximal end 230 to a distal end 235 of stent pattern 220. In some embodiments, the pattern does not extend all the way between the proximal end and distal end. A portion between the proximal and distal ends can be devoid of markers.
In other embodiments, the visibility of the stent can be further enhanced by including additional marker patterns. For example,
Further embodiments can include marker patterns along at least a portion of the circumference. Such marker patterns can include, but are not limited to, a circular pattern, diagonal pattern, or a spiral pattern.
Each of the circumferential patterns extends all the way around the circumference of a stent made from stent pattern 280 and is positioned at a single axial position. Alternatively, the circumferential patterns can extend partially around the circumference. Circumferential patterns can also extend diagonally around the circumference so that the marker pattern is not a single axial position. For example,
In some embodiments, a stent can include both longitudinal and circumferential marker patters.
In certain embodiments, a plurality of radiopaque markers can be selectively arranged in a region of the stent to enhance the visibility of the stent with an imaging technique. For example, the markers can be selectively arranged at a proximal region, distal region, or both.
As indicated above, a stent may have regions with a lower strain than other higher strain regions when the stent is placed under an applied stress during use. A depot for a radiopaque marker may be selectively positioned in a region of lower strain. The selected region of the structural element may be modified to have a higher mass or thickness than a region of lower strain without a marker so as to maintain the load-bearing capability of the region and to inhibit decoupling of the marker from the stent.
Furthermore, the markers may be coupled to any desired location on a stent. In some embodiments, it may be advantageous to limit the placement of a marker to particular locations or portions of surfaces of a stent. For example, it may be desirable to couple a marker at a sidewall face of a structural element to reduce or eliminate interference with a lumen wall or interference with blood flow, respectively. To delineate just the margins of the stent so that the physician may see its full length, markers can be placed only at the distal and proximal ends of the stent.
As indicated above, a stent may include a biostable and/or a biodegradable polymer. The biodegradable polymer may be a pure or substantially pure biodegradable polymer. Alternatively, the biodegradable polymer may be a mixture of at least two types of biodegradable polymers. The stent may be configured to completely erode away once its function is fulfilled.
In certain embodiments, the marker may be biodegradable. It may be desirable for the marker to degrade at the same or substantially the same rate as the stent. For instance, the marker may be configured to completely or almost completely erode at the same time or approximately the same time as the stent. In other embodiments, the marker may degrade at a faster rate than the stent. In this case, the marker may completely or almost completely erode before the body of the stent is completely eroded.
Furthermore, a radiopaque marker may be composed of a biodegradable and/or biostable metal. Biodegradable or bioerodable metals tend to erode or corrode relatively rapidly when exposed to bodily fluids. Biostable metals refer to metals that are not biodegradable or bioerodable or have negligible erosion or corrosion rates when exposed to bodily fluids. Additionally, it is desirable to use a biocompatible biodegradable metal for a marker. A biocompatible biodegradable metal forms erosion products that do not negatively impact bodily functions.
In one embodiment, a radiopaque marker may be composed of a pure or substantially pure biodegradable metal. Alternatively, the marker may be a mixture or alloy of at least two types of metals. Representative examples of biodegradable metals for use in a marker may include, but are not limited to, magnesium, zinc, tungsten, and iron. Representative mixtures or alloys may include magnesium/zinc, magnesium/iron, zinc/iron, and magnesium/zinc/iron. Radiopaque compounds such as iodine salts, bismuth salts, or barium salts may be compounded into the metallic biodegradable marker to further enhance the radiopacity. Representative examples of biostable metals can include, but are not limited to, platinum and gold.
In some embodiments, the composition of the marker may be modified or tuned to obtain a desired erosion rate and/or degree of radiopacity. For example, the erosion rate of the marker may be increased by increasing the fraction of a faster eroding component in an alloy. Similarly, the degree of radiopacity may be increased by increasing the fraction of a more radiopaque metal, such as iron, in an alloy. In one embodiment, a biodegradable marker may be completely eroded when exposed to bodily fluids, such as blood, between about a week and about three months, or more narrowly, between about one month and about two months.
In other embodiments, a radiopaque marker may be a mixture of a biodegradable polymer and a radiopaque material. A radiopaque material may be biodegradable and/or bioabsorbable. Representative radiopaque materials may include, but are not limited to, biodegradable metallic particles and particles of biodegradable metallic compounds such as biodegradable metallic oxides, biocompatible metallic salts, gadolinium salts, and iodinated contrast agents.
In some embodiments, the radiopacity of the marker may be increased by increasing the composition of the radiopaque material in the marker. In one embodiment, the radiopaque material may be between 10% and 80%; 20% and 70%; 30% and 60%; or 40% and 50% by volume of the marker.
The biodegradable polymer in the marker may be a pure or substantially pure biodegradable polymer. Alternatively, the biodegradable polymer may be a mixture of at least two types of biodegradable polymers. In one embodiment, the composition of the biodegradable polymer may be modified to alter the erosion rate of the marker since different biodegradable polymers have different erosion rates.
A biocompatible metallic salt refers to a salt that may be safely absorbed by a body. Representative biocompatible metallic salts that may used in a marker include, but are not limited to, ferrous sulfate, ferrous gluconate, ferrous carbonate, ferrous chloride, ferrous fumarate, ferrous iodide, ferrous lactate, ferrous succinate, barium sulfate, bismuth subcarbonate, bismuth potassium tartrate, bismuth sodium iodide, bismuth sodium tartrate, bismuth sodium triglycollamate, bismuth subsalicylate, zinc acetate, zinc carbonate, zinc citrate, zinc iodate, zinc iodide, zinc lactate, zinc phosphate, zinc salicylate, zinc stearate, zinc sulfate, and combinations thereof. The concentration of the metallic salt in the marker may be between 10% and 80%; 20% and 70%; 30% and 60%; or 40% and 50% by volume of the marker.
In addition, representative iodinated contrast agents may include, but are not limited to acetriozate, diatriozate, iodimide, ioglicate, iothalamate, ioxithalamate, selectan, uroselectan, diodone, metrizoate, metrizamide, iohexol, ioxaglate, iodixanol, lipidial, ethiodol, and combinations thereof. The concentration of an iodinated contrast agent in the marker may be between 5% and 80%; 20% and 70%; 30% and 60%; or 40% and 50% by volume of the marker.
The composition of metallic particles may include at least those biodegradable metals discussed above as well as metallic compounds such as oxides. The concentration of metallic particles in the marker may be between 10% and 80%; 20% and 70%; 30% and 60%; or 40% and 50% by volume of the marker. Additionally, individual metallic particles may be a pure or substantially pure metal or a metal compound. Alternatively, individual metallic particles may be a mixture of at least two types of metals or metallic compounds. Individual metallic particles may also be a mixture or an alloy composed of at least two types of metals.
In certain embodiments, the metallic particles may be metallic nanoparticles. A “nanoparticle” refers to a particle with a dimension in the range of about 1 nm to about 100 nm. A significant advantage of nanoparticles over larger particles is that nanoparticles may disperse more uniformly in a polymeric matrix, which results in more uniform properties such as radiopacity and erosion rate. Additionally, nanoparticles may be more easily absorbed by bodily fluids such as blood without negative impact to bodily functions. Representative examples of metallic particles may include, but are not limited to, iron, magnesium, zinc, platinum, gold, tungsten, and oxides of such metals.
In one embodiment, the composition of different types of metallic particles in the mixture as well as the composition of individual particles may be modified to alter erosion rates and/or radiopacity of the marker. In addition, the ratio of polymer to metallic particles may be modified to alter both the erosion rate, and radiopacity.
A marker may be fabricated by methods including, but not limited to, molding, machining, assembly, or a combination thereof. All or part of a metallic or polymeric marker may be fabricated in a mold or machined by a method such as laser machining.
In general, polymers can be biostable, bioabsorbable, biodegradable, or bioerodable. Biostable refers to polymers that are not biodegradable. The terms biodegradable, bioabsorbable, and bioerodable, as well as degraded, eroded, and absorbed, are used interchangeably and refer to polymers that are capable of being completely eroded or absorbed when exposed to bodily fluids such as blood and can be gradually resorbed, absorbed and/or eliminated by the body.
Biodegradation refers generally to changes in physical and chemical properties that occur in a polymer upon exposure to bodily fluids as in a vascular environment. The changes in properties may include a decrease in molecular weight, deterioration of mechanical properties, and decrease in mass due to erosion or absorption. Mechanical properties may correspond to strength and modulus of the polymer. Deterioration of the mechanical properties of the polymer decreases the ability of a stent, for example, to provide mechanical support in a vessel. The decrease in molecular weight may be caused by, for example, hydrolysis, oxidation, enzymolysis, and/or metabolic processes.
Representative examples of polymers that may be used to fabricate embodiments of stents, or more generally, implantable medical devices include, but are not limited to, poly(N-acetylglucosamine) (Chitin), Chitosan, poly(3-hydroxyvalerate), poly(lactide-co-glycolide), poly(3-hydroxybutyrate), poly(4-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolide), poly(L-lactic acid), poly(L-lactide), poly(D,L-lactic acid), poly(D,L-lactide), poly(L-lactide-co-D,L-lactide), poly(caprolactone), poly(L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone), poly(glycolide-co-caprolactone), poly(trimethylene carbonate), polyester amide, poly(glycolic acid-co-trimethylene carbonate), co-poly(ether-esters) (e.g. PEO/PLA), polyphosphazenes, biomolecules (such as fibrin, fibrinogen, cellulose, starch, collagen, and hyaluronic acid), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene halides (such as polyvinylidene chloride), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), acrylonitrile-styrene copolymers, ABS resins, polyamides (such as Nylon 66 and polycaprolactam), polycarbonates, polyoxymethylenes, polyimides, polyethers, polyurethanes, rayon, rayon-triacetate, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose. Additional representative examples of polymers that may be especially well suited for use in fabricating embodiments of implantable medical devices disclosed herein include ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), poly(butyl methacrylate), poly(vinylidene fluoride-co-hexafluoropropene) (e.g., SOLEF 21508, available from Solvay Solexis PVDF, Thorofare, N.J.), polyvinylidene fluoride (otherwise known as KYNAR, available from ATOFINA Chemicals, Philadelphia, Pa.), ethylene-vinyl acetate copolymers, poly(vinyl acetate), styrene-isobutylene-styrene triblock copolymers, and polyethylene glycol.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
This is a continuation of application Ser. No. 11/796,226, filed on Apr. 26, 2007 which is still pending and in turned claims benefit of provisional application No. 60/809,088, filed on May 26, 2006, both of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2697863 | Moser | Dec 1954 | A |
3476463 | Kreuzer | Nov 1969 | A |
3687135 | Stroganov et al. | Aug 1972 | A |
3839743 | Schwarcz | Oct 1974 | A |
3900632 | Robinson | Aug 1975 | A |
4104410 | Malecki | Aug 1978 | A |
4110497 | Hoel | Aug 1978 | A |
4321711 | Mano | Mar 1982 | A |
4346028 | Griffith | Aug 1982 | A |
4596574 | Urist | Jun 1986 | A |
4599085 | Riess et al. | Jul 1986 | A |
4612009 | Drobnik et al. | Sep 1986 | A |
4633873 | Dumican et al. | Jan 1987 | A |
4656083 | Hoffman et al. | Apr 1987 | A |
4718907 | Karwoski et al. | Jan 1988 | A |
4722335 | Vilasi | Feb 1988 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4732152 | Wallstén et al. | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4740207 | Kreamer | Apr 1988 | A |
4743252 | Martin, Jr. et al. | May 1988 | A |
4768507 | Fischell et al. | Sep 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4800882 | Gianturco | Jan 1989 | A |
4816339 | Tu et al. | Mar 1989 | A |
4818559 | Hama et al. | Apr 1989 | A |
4850999 | Planck | Jul 1989 | A |
4877030 | Beck et al. | Oct 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4879135 | Greco et al. | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4886870 | D'Amore et al. | Dec 1989 | A |
4902289 | Yannas | Feb 1990 | A |
4977901 | Ofstead | Dec 1990 | A |
4994298 | Yasuda | Feb 1991 | A |
5019090 | Pinchuk | May 1991 | A |
5028597 | Kodama et al. | Jul 1991 | A |
5059211 | Stack et al. | Oct 1991 | A |
5061281 | Mares et al. | Oct 1991 | A |
5062829 | Pryor et al. | Nov 1991 | A |
5084065 | Weldon et al. | Jan 1992 | A |
5085629 | Goldberg et al. | Feb 1992 | A |
5100429 | Sinofsky et al. | Mar 1992 | A |
5104410 | Chowdhary | Apr 1992 | A |
5108417 | Sawyer | Apr 1992 | A |
5108755 | Daniels et al. | Apr 1992 | A |
5112457 | Marchant | May 1992 | A |
5123917 | Lee | Jun 1992 | A |
5156623 | Hakamatsuka et al. | Oct 1992 | A |
5163951 | Pinchuk et al. | Nov 1992 | A |
5163952 | Froix | Nov 1992 | A |
5163958 | Pinchuk | Nov 1992 | A |
5167614 | Tessmann et al. | Dec 1992 | A |
5192311 | King et al. | Mar 1993 | A |
5197977 | Hoffman, Jr. et al. | Mar 1993 | A |
5234456 | Silvestrini | Aug 1993 | A |
5234457 | Andersen | Aug 1993 | A |
5236447 | Kubo et al. | Aug 1993 | A |
5279594 | Jackson | Jan 1994 | A |
5282860 | Matsuno et al. | Feb 1994 | A |
5289831 | Bosley | Mar 1994 | A |
5290271 | Jernberg | Mar 1994 | A |
5306286 | Stack et al. | Apr 1994 | A |
5306294 | Winston et al. | Apr 1994 | A |
5328471 | Slepian | Jul 1994 | A |
5330500 | Song | Jul 1994 | A |
5342348 | Kaplan | Aug 1994 | A |
5342395 | Jarrett et al. | Aug 1994 | A |
5342621 | Eury | Aug 1994 | A |
5356433 | Rowland et al. | Oct 1994 | A |
5380976 | Couch | Jan 1995 | A |
5383925 | Schmitt | Jan 1995 | A |
5385580 | Schmitt | Jan 1995 | A |
5389106 | Tower | Feb 1995 | A |
5399666 | Ford | Mar 1995 | A |
5423885 | Williams | Jun 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5443458 | Eury | Aug 1995 | A |
5443500 | Sigwart | Aug 1995 | A |
5455040 | Marchant | Oct 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5486546 | Mathiesen et al. | Jan 1996 | A |
5500013 | Buscemi et al. | Mar 1996 | A |
5502158 | Sinclair et al. | Mar 1996 | A |
5507799 | Sumiya | Apr 1996 | A |
5514379 | Weissleder et al. | May 1996 | A |
5525646 | Lundgren et al. | Jun 1996 | A |
5527337 | Stack et al. | Jun 1996 | A |
5545408 | Trigg et al. | Aug 1996 | A |
5554120 | Chen et al. | Sep 1996 | A |
5556413 | Lam | Sep 1996 | A |
5565215 | Gref et al. | Oct 1996 | A |
5578046 | Liu et al. | Nov 1996 | A |
5578073 | Haimovich et al. | Nov 1996 | A |
5591199 | Porter et al. | Jan 1997 | A |
5591607 | Gryaznov et al. | Jan 1997 | A |
5593403 | Buscemi | Jan 1997 | A |
5593434 | Williams | Jan 1997 | A |
5599301 | Jacobs et al. | Feb 1997 | A |
5599922 | Gryaznov et al. | Feb 1997 | A |
5603722 | Phan et al. | Feb 1997 | A |
5605696 | Eury et al. | Feb 1997 | A |
5607442 | Fischell et al. | Mar 1997 | A |
5607467 | Froix | Mar 1997 | A |
5618299 | Khosravi et al. | Apr 1997 | A |
5629077 | Turnlund et al. | May 1997 | A |
5631135 | Gryaznov et al. | May 1997 | A |
5632771 | Boatman et al. | May 1997 | A |
5632840 | Campbell | May 1997 | A |
5637113 | Tartaglia et al. | Jun 1997 | A |
5649977 | Campbell | Jul 1997 | A |
5656186 | Mourou et al. | Aug 1997 | A |
5667767 | Greff et al. | Sep 1997 | A |
5667796 | Otten | Sep 1997 | A |
5670161 | Healy et al. | Sep 1997 | A |
5670558 | Onishi et al. | Sep 1997 | A |
5686540 | Kakizawa | Nov 1997 | A |
5693085 | Buirge et al. | Dec 1997 | A |
5700286 | Tartaglia et al. | Dec 1997 | A |
5700901 | Hurst et al. | Dec 1997 | A |
5704082 | Smith | Jan 1998 | A |
5707385 | Williams | Jan 1998 | A |
5711763 | Nonami et al. | Jan 1998 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5725549 | Lam | Mar 1998 | A |
5725572 | Lam et al. | Mar 1998 | A |
5726297 | Gryaznov et al. | Mar 1998 | A |
5728751 | Patnaik | Mar 1998 | A |
5733326 | Tomonto et al. | Mar 1998 | A |
5733330 | Cox | Mar 1998 | A |
5733564 | Lehtinen | Mar 1998 | A |
5733925 | Kunz et al. | Mar 1998 | A |
5741327 | Frantzen | Apr 1998 | A |
5741881 | Patnaik | Apr 1998 | A |
5756457 | Wang et al. | May 1998 | A |
5756476 | Epstein et al. | May 1998 | A |
5765682 | Bley et al. | Jun 1998 | A |
5766204 | Porter et al. | Jun 1998 | A |
5766239 | Cox | Jun 1998 | A |
5766710 | Turnlund et al. | Jun 1998 | A |
5769883 | Buscemi et al. | Jun 1998 | A |
5770609 | Grainger et al. | Jun 1998 | A |
5780807 | Saunders | Jul 1998 | A |
5800516 | Fine et al. | Sep 1998 | A |
5811447 | Kunz et al. | Sep 1998 | A |
5824042 | Lombardi et al. | Oct 1998 | A |
5824049 | Ragheb et al. | Oct 1998 | A |
5830178 | Jones et al. | Nov 1998 | A |
5830461 | Billiar | Nov 1998 | A |
5830879 | Isner | Nov 1998 | A |
5833651 | Donovan et al. | Nov 1998 | A |
5834582 | Sinclair et al. | Nov 1998 | A |
5836962 | Gianotti | Nov 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5837835 | Gryaznov et al. | Nov 1998 | A |
5840083 | Braach-Maksvytis | Nov 1998 | A |
5851508 | Greff et al. | Dec 1998 | A |
5853408 | Muni | Dec 1998 | A |
5854207 | Lee et al. | Dec 1998 | A |
5855612 | Ohthuki et al. | Jan 1999 | A |
5855618 | Patnaik et al. | Jan 1999 | A |
5858746 | Hubbell et al. | Jan 1999 | A |
5865814 | Tuch | Feb 1999 | A |
5868781 | Killion | Feb 1999 | A |
5873904 | Ragheb et al. | Feb 1999 | A |
5874101 | Zhong et al. | Feb 1999 | A |
5874109 | Ducheyne et al. | Feb 1999 | A |
5874165 | Drumheller | Feb 1999 | A |
5876743 | Ibsen et al. | Mar 1999 | A |
5877263 | Patnaik et al. | Mar 1999 | A |
5879713 | Roth et al. | Mar 1999 | A |
5888533 | Dunn | Mar 1999 | A |
5891192 | Murayama et al. | Apr 1999 | A |
5897955 | Drumheller | Apr 1999 | A |
5906759 | Richter | May 1999 | A |
5914182 | Drumheller | Jun 1999 | A |
5916870 | Lee et al. | Jun 1999 | A |
5922005 | Richter et al. | Jul 1999 | A |
5942209 | Leavitt et al. | Aug 1999 | A |
5948428 | Lee et al. | Sep 1999 | A |
5954744 | Phan et al. | Sep 1999 | A |
5957975 | Lafont et al. | Sep 1999 | A |
5965720 | Gryaznov et al. | Oct 1999 | A |
5971954 | Conway et al. | Oct 1999 | A |
5976182 | Cox | Nov 1999 | A |
5980564 | Stinson | Nov 1999 | A |
5980928 | Terry | Nov 1999 | A |
5980972 | Ding | Nov 1999 | A |
5981568 | Kunz et al. | Nov 1999 | A |
5986169 | Gjunter | Nov 1999 | A |
5997468 | Wolff et al. | Dec 1999 | A |
6007845 | Domb et al. | Dec 1999 | A |
6010445 | Armini et al. | Jan 2000 | A |
6015541 | Greff et al. | Jan 2000 | A |
6022374 | Imran | Feb 2000 | A |
6042606 | Frantzen | Mar 2000 | A |
6042875 | Ding et al. | Mar 2000 | A |
6048964 | Lee et al. | Apr 2000 | A |
6051648 | Rhee et al. | Apr 2000 | A |
6056993 | Leidner et al. | May 2000 | A |
6060451 | DiMaio et al. | May 2000 | A |
6066156 | Yan | May 2000 | A |
6071266 | Kelley | Jun 2000 | A |
6074659 | Kunz et al. | Jun 2000 | A |
6080177 | Igaki et al. | Jun 2000 | A |
6080488 | Hostettler et al. | Jun 2000 | A |
6083258 | Yadav | Jul 2000 | A |
6093463 | Thakrar | Jul 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6096525 | Patnaik | Aug 2000 | A |
6099562 | Ding et al. | Aug 2000 | A |
6103230 | Billiar et al. | Aug 2000 | A |
6107416 | Patnaik et al. | Aug 2000 | A |
6110188 | Narciso, Jr. | Aug 2000 | A |
6110483 | Whitbourne | Aug 2000 | A |
6113629 | Ken | Sep 2000 | A |
6117979 | Hendriks et al. | Sep 2000 | A |
6120536 | Ding et al. | Sep 2000 | A |
6120904 | Hostettler et al. | Sep 2000 | A |
6121027 | Clapper et al. | Sep 2000 | A |
6125523 | Brown et al. | Oct 2000 | A |
6127173 | Eckstein et al. | Oct 2000 | A |
6129761 | Hubbell | Oct 2000 | A |
6129928 | Sarangapani et al. | Oct 2000 | A |
6131266 | Saunders | Oct 2000 | A |
6150630 | Perry et al. | Nov 2000 | A |
6153252 | Hossainy et al. | Nov 2000 | A |
4776337 | Palmaz | Dec 2000 | B1 |
6156062 | McGuinness | Dec 2000 | A |
6159951 | Karpeisky et al. | Dec 2000 | A |
6160084 | Langer et al. | Dec 2000 | A |
6160240 | Momma et al. | Dec 2000 | A |
6165212 | Dereume et al. | Dec 2000 | A |
6166130 | Rhee et al. | Dec 2000 | A |
6169170 | Gryaznov et al. | Jan 2001 | B1 |
6171609 | Kunz | Jan 2001 | B1 |
6174329 | Callol et al. | Jan 2001 | B1 |
6174330 | Stinson | Jan 2001 | B1 |
6177523 | Reich et al. | Jan 2001 | B1 |
6183505 | Mohn, Jr. et al. | Feb 2001 | B1 |
6187045 | Fehring et al. | Feb 2001 | B1 |
6210715 | Starling et al. | Apr 2001 | B1 |
6224626 | Steinke | May 2001 | B1 |
6228845 | Donovan et al. | May 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6245076 | Yan | Jun 2001 | B1 |
6245103 | Stinson | Jun 2001 | B1 |
6248344 | Ylanen et al. | Jun 2001 | B1 |
6251135 | Stinson et al. | Jun 2001 | B1 |
6251142 | Bernacca et al. | Jun 2001 | B1 |
6254632 | Wu et al. | Jul 2001 | B1 |
6260976 | Endou et al. | Jul 2001 | B1 |
6273913 | Wright et al. | Aug 2001 | B1 |
6281262 | Shikinami | Aug 2001 | B1 |
6283234 | Torbet | Sep 2001 | B1 |
6284333 | Wang et al. | Sep 2001 | B1 |
6287332 | Bolz et al. | Sep 2001 | B1 |
6290721 | Heath | Sep 2001 | B1 |
6293966 | Frantzen | Sep 2001 | B1 |
6295168 | Hoffnagle et al. | Sep 2001 | B1 |
6303901 | Perry et al. | Oct 2001 | B1 |
6312459 | Huang et al. | Nov 2001 | B1 |
6327772 | Zadno-Azizi et al. | Dec 2001 | B1 |
4733665 | Palmaz | Jan 2002 | C2 |
6334871 | Dor et al. | Jan 2002 | B1 |
6355058 | Pacetti et al. | Mar 2002 | B1 |
6361557 | Gittings et al. | Mar 2002 | B1 |
6375826 | Wang et al. | Apr 2002 | B1 |
6379381 | Hossainy et al. | Apr 2002 | B1 |
6387121 | Alt | May 2002 | B1 |
6388043 | Langer et al. | May 2002 | B1 |
6395326 | Castro et al. | May 2002 | B1 |
6409752 | Boatman et al. | Jun 2002 | B1 |
6409761 | Jang | Jun 2002 | B1 |
6423092 | Datta et al. | Jul 2002 | B2 |
6461632 | Gogolewski | Oct 2002 | B1 |
6464720 | Boatman et al. | Oct 2002 | B2 |
6471721 | Dang | Oct 2002 | B1 |
6475779 | Mathiowitz et al. | Nov 2002 | B2 |
6479565 | Stanley | Nov 2002 | B1 |
6485512 | Cheng | Nov 2002 | B1 |
6492615 | Flanagan | Dec 2002 | B1 |
6494908 | Huxel et al. | Dec 2002 | B1 |
6495156 | Wenz et al. | Dec 2002 | B2 |
6506437 | Harish et al. | Jan 2003 | B1 |
6511748 | Barrows | Jan 2003 | B1 |
6517888 | Weber | Feb 2003 | B1 |
6521865 | Jones et al. | Feb 2003 | B1 |
6527801 | Dutta | Mar 2003 | B1 |
6537589 | Chae et al. | Mar 2003 | B1 |
6539607 | Fehring et al. | Apr 2003 | B1 |
6540777 | Stenzel | Apr 2003 | B2 |
6554854 | Flanagan | Apr 2003 | B1 |
6563080 | Shapovalov et al. | May 2003 | B2 |
6563998 | Farah et al. | May 2003 | B1 |
6565599 | Hong et al. | May 2003 | B1 |
6569191 | Hogan | May 2003 | B1 |
6569193 | Cox et al. | May 2003 | B1 |
6572672 | Yadav et al. | Jun 2003 | B2 |
6574851 | Mirizzi | Jun 2003 | B1 |
6582472 | Hart | Jun 2003 | B2 |
6585755 | Jackson et al. | Jul 2003 | B2 |
6589227 | Sønderskov Klint | Jul 2003 | B2 |
6592614 | Lenker et al. | Jul 2003 | B2 |
6592617 | Thompson | Jul 2003 | B2 |
6613072 | Lau et al. | Sep 2003 | B2 |
6620194 | Ding et al. | Sep 2003 | B2 |
6626936 | Stinson | Sep 2003 | B2 |
6626939 | Burnside et al. | Sep 2003 | B1 |
6635269 | Jennissen | Oct 2003 | B1 |
6645243 | Vallana et al. | Nov 2003 | B2 |
6652579 | Cox et al. | Nov 2003 | B1 |
6656162 | Santini, Jr. et al. | Dec 2003 | B2 |
6664335 | Krishnan | Dec 2003 | B2 |
6666214 | Canham | Dec 2003 | B2 |
6667049 | Janas et al. | Dec 2003 | B2 |
6669722 | Chen et al. | Dec 2003 | B2 |
6669723 | Killion et al. | Dec 2003 | B2 |
6676697 | Richter | Jan 2004 | B1 |
6679980 | Andreacchi | Jan 2004 | B1 |
6689375 | Wahlig et al. | Feb 2004 | B1 |
6695920 | Pacetti et al. | Feb 2004 | B1 |
6696667 | Flanagan | Feb 2004 | B1 |
6699278 | Fischell et al. | Mar 2004 | B2 |
6706273 | Roessler | Mar 2004 | B1 |
6709379 | Brandau et al. | Mar 2004 | B1 |
6719934 | Stinson | Apr 2004 | B2 |
6719989 | Matsushima et al. | Apr 2004 | B1 |
6720402 | Langer et al. | Apr 2004 | B2 |
6746773 | Llanos et al. | Jun 2004 | B2 |
6752826 | Holloway et al. | Jun 2004 | B2 |
6753007 | Haggard et al. | Jun 2004 | B2 |
6764505 | Hossainy et al. | Jul 2004 | B1 |
6780261 | Trozera | Aug 2004 | B2 |
6801368 | Coufal et al. | Oct 2004 | B2 |
6805898 | Wu et al. | Oct 2004 | B1 |
6818063 | Kerrigan | Nov 2004 | B1 |
6822186 | Strassl et al. | Nov 2004 | B2 |
6846323 | Yip et al. | Jan 2005 | B2 |
6852946 | Groen et al. | Feb 2005 | B2 |
6858680 | Gunatillake et al. | Feb 2005 | B2 |
6863685 | Davila et al. | Mar 2005 | B2 |
6867389 | Shapovalov et al. | Mar 2005 | B2 |
6878758 | Martin et al. | Apr 2005 | B2 |
6891126 | Matile | May 2005 | B2 |
6899729 | Cox et al. | May 2005 | B1 |
6911041 | Zscheeg | Jun 2005 | B1 |
6913762 | Caplice et al. | Jul 2005 | B2 |
6918928 | Wolinsky et al. | Jul 2005 | B2 |
6926733 | Stinson | Aug 2005 | B2 |
6943964 | Zhang et al. | Sep 2005 | B1 |
6981982 | Armstrong et al. | Jan 2006 | B2 |
6981987 | Huxel et al. | Jan 2006 | B2 |
7022132 | Kocur | Apr 2006 | B2 |
7128737 | Goder et al. | Oct 2006 | B1 |
7163555 | Dinh | Jan 2007 | B2 |
7166099 | Devens, Jr. | Jan 2007 | B2 |
7226475 | Lenz et al. | Jun 2007 | B2 |
7243408 | Vietmeier | Jul 2007 | B2 |
7326245 | Rosenthal et al. | Feb 2008 | B2 |
7331986 | Brown et al. | Feb 2008 | B2 |
7500988 | Butaric et al. | Mar 2009 | B1 |
7776926 | Hossainy et al. | Aug 2010 | B1 |
20010001317 | Duerig et al. | May 2001 | A1 |
20010021871 | Stinson | Sep 2001 | A1 |
20010021873 | Stinson | Sep 2001 | A1 |
20010027339 | Boatman et al. | Oct 2001 | A1 |
20010029398 | Jadhav | Oct 2001 | A1 |
20010044652 | Moore | Nov 2001 | A1 |
20020002399 | Huxel et al. | Jan 2002 | A1 |
20020004060 | Heublein et al. | Jan 2002 | A1 |
20020004101 | Ding et al. | Jan 2002 | A1 |
20020032486 | Lazarovitz et al. | Mar 2002 | A1 |
20020062148 | Hart | May 2002 | A1 |
20020065553 | Weber | May 2002 | A1 |
20020103528 | Schaldach et al. | Aug 2002 | A1 |
20020111590 | Davila et al. | Aug 2002 | A1 |
20020116050 | Kocur | Aug 2002 | A1 |
20020138133 | Lenz et al. | Sep 2002 | A1 |
20020143386 | Davila et al. | Oct 2002 | A1 |
20020161114 | Gunatillake et al. | Oct 2002 | A1 |
20020190038 | Lawson | Dec 2002 | A1 |
20020193862 | Mitelberg et al. | Dec 2002 | A1 |
20030004563 | Jackson et al. | Jan 2003 | A1 |
20030028241 | Stinson | Feb 2003 | A1 |
20030028245 | Barclay et al. | Feb 2003 | A1 |
20030033001 | Igaki | Feb 2003 | A1 |
20030039689 | Chen et al. | Feb 2003 | A1 |
20030050688 | Fischell et al. | Mar 2003 | A1 |
20030060872 | Gomringer et al. | Mar 2003 | A1 |
20030065355 | Weber | Apr 2003 | A1 |
20030069630 | Burgermeister et al. | Apr 2003 | A1 |
20030093107 | Parsonage et al. | May 2003 | A1 |
20030100865 | Santini, Jr. et al. | May 2003 | A1 |
20030105518 | Dutta | Jun 2003 | A1 |
20030105530 | Pirhonen et al. | Jun 2003 | A1 |
20030108588 | Chen | Jun 2003 | A1 |
20030121148 | DiCaprio | Jul 2003 | A1 |
20030153971 | Chandrasekaran | Aug 2003 | A1 |
20030155328 | Huth | Aug 2003 | A1 |
20030171053 | Sanders | Sep 2003 | A1 |
20030187495 | Cully et al. | Oct 2003 | A1 |
20030208259 | Penhasi | Nov 2003 | A1 |
20030209835 | Chun et al. | Nov 2003 | A1 |
20030226833 | Shapovalov et al. | Dec 2003 | A1 |
20030236563 | Fifer | Dec 2003 | A1 |
20040015228 | Lombardi et al. | Jan 2004 | A1 |
20040044399 | Ventura | Mar 2004 | A1 |
20040073291 | Brown et al. | Apr 2004 | A1 |
20040088039 | Lee et al. | May 2004 | A1 |
20040093077 | White et al. | May 2004 | A1 |
20040098090 | Williams et al. | May 2004 | A1 |
20040098095 | Burnside et al. | May 2004 | A1 |
20040106987 | Palasis et al. | Jun 2004 | A1 |
20040111149 | Stinson | Jun 2004 | A1 |
20040122509 | Brodeur | Jun 2004 | A1 |
20040126405 | Sahatjian | Jul 2004 | A1 |
20040127970 | Saunders et al. | Jul 2004 | A1 |
20040143180 | Zhong et al. | Jul 2004 | A1 |
20040143317 | Stinson et al. | Jul 2004 | A1 |
20040167610 | Fleming, III | Aug 2004 | A1 |
20040167619 | Case et al. | Aug 2004 | A1 |
20040181236 | Eidenschink et al. | Sep 2004 | A1 |
20040204750 | Dinh | Oct 2004 | A1 |
20040220662 | Dang et al. | Nov 2004 | A1 |
20040236428 | Burkinshaw et al. | Nov 2004 | A1 |
20050004653 | Gerberding et al. | Jan 2005 | A1 |
20050004663 | Llanos et al. | Jan 2005 | A1 |
20050015138 | Schuessler et al. | Jan 2005 | A1 |
20050021131 | Venkatraman et al. | Jan 2005 | A1 |
20050060025 | Mackiewicz et al. | Mar 2005 | A1 |
20050087520 | Wang et al. | Apr 2005 | A1 |
20050107865 | Clifford et al. | May 2005 | A1 |
20050111500 | Harter et al. | May 2005 | A1 |
20050147647 | Glauser et al. | Jul 2005 | A1 |
20050154450 | Larson et al. | Jul 2005 | A1 |
20050157382 | Kafka et al. | Jul 2005 | A1 |
20050172471 | Vietmeier | Aug 2005 | A1 |
20050211680 | Li et al. | Sep 2005 | A1 |
20050283226 | Haverkost | Dec 2005 | A1 |
20050283228 | Stanford | Dec 2005 | A1 |
20060025847 | Parker | Feb 2006 | A1 |
20060033240 | Weber et al. | Feb 2006 | A1 |
20060120418 | Harter et al. | Jun 2006 | A1 |
20060173528 | Feld et al. | Aug 2006 | A1 |
20060241741 | Lootz | Oct 2006 | A1 |
20070156230 | Dugan et al. | Jul 2007 | A1 |
20070266542 | Melsheimer | Nov 2007 | A1 |
20080009938 | Huang et al. | Jan 2008 | A1 |
20080015684 | Wu | Jan 2008 | A1 |
20080033532 | Dave | Feb 2008 | A1 |
20080188924 | Prabhu | Aug 2008 | A1 |
20090076594 | Sabaria | Mar 2009 | A1 |
20090204203 | Allen et al. | Aug 2009 | A1 |
20130150943 | Zheng et al. | Jun 2013 | A1 |
20130325104 | Wu | Dec 2013 | A1 |
20130325105 | Wu | Dec 2013 | A1 |
20130325107 | Wu | Dec 2013 | A1 |
20130331926 | Wu | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
1241442 | Jan 2000 | CN |
29724852 | Feb 2005 | DE |
103 61942 | Jul 2005 | DE |
10 2004 045994 | Mar 2006 | DE |
0583170 | Feb 1994 | EP |
0714641 | Jun 1996 | EP |
0842729 | May 1998 | EP |
1210 922 | Jun 2002 | EP |
1 591 079 | Nov 2005 | EP |
1 656 905 | May 2006 | EP |
4-33791 | Feb 1992 | JP |
7-124766 | May 1995 | JP |
10-166156 | Jun 1998 | JP |
2003-53577 | Feb 2003 | JP |
WO 9527587 | Oct 1995 | WO |
WO 9920429 | Apr 1999 | WO |
WO 0226162 | Apr 2002 | WO |
WO 0238325 | May 2002 | WO |
WO 03015978 | Feb 2003 | WO |
WO 03057075 | Jul 2003 | WO |
WO 2004019820 | Mar 2004 | WO |
WO 2004062533 | Jul 2004 | WO |
WO 2004112863 | Dec 2004 | WO |
WO 2005023480 | Mar 2005 | WO |
WO 2007081551 | Jul 2007 | WO |
Entry |
---|
Eidelman et al., Characterization of Combinatorial Polymer Blend Composition Gradients by FTIR Microspectroscopy, J. Res. Natl. Inst. Standards and Technol., vol. 109, No. 2, pp. 219-231 (2004). |
Fan et al., Plasma Absorption of Femtosecond Laser Pulses in Dielectrics, J. of Heat Transfer, vol. 124, pp. 275-283 (2002). |
Feng-Chun et al., Assessment of Tissue Blood Flow Following Small Artery Welding with an Intraluminal Dissolvable Stent, Microsurgery, vol. 19(3), pp. 148-152 (1999). |
Hoffnagle et al., Design and performance of a refractive optical system that converts a Gaussian to a flattop beam, Applied Optics, vol. 39, No. 30 pp. 5488-5499 (2000). |
International Search Rep. for PCT/US2007/015561 filed Jul. 6, 2007, mailed Dec. 4, 2007, 7 pgs. |
International Search Report for PCT/US2006/049269, filed Dec. 21, 2006, mailed Jun. 15, 2007, 19 pgs. |
Sun et al., “Inert gas beam delivery for ultrafast laser micromachining at ambient pressure”, Am. Inst. Of Physics, 6 pgs. |
Zhang et al., “Single-element laser beam shaper for uniform flat-top profiles” Optics Express, vol. 11, No. 16, pp. 1942-1948 (2003). |
U.S. Appl. No. 11/009,977, Pacetti, filed Dec. 9, 2004. |
U.S. Appl. No. 11/325,974, Dugan et al., filed Jan. 4, 2006. |
U.S. Appl. No. 12/172,020, Wang, filed Jul. 11, 2008. |
Number | Date | Country | |
---|---|---|---|
20130319603 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
60809088 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11796226 | Apr 2007 | US |
Child | 13964006 | US |