This invention relates to a method of making a coated article to be used in a window unit or any other suitable application. For example, in certain embodiments this invention relates to a method of making a window unit (e.g., vehicle window such as vehicle windshield, backlite, sunroof, or sidelite, or IG window unit) including a step of heat treating a glass substrate coated with at least a layer comprising diamond-like carbon (DLC).
Vehicle windows (e.g., windshields, backlites, sunroofs, and sidelites) are known in the art. For purposes of example, vehicle windshields typically include a pair of bent glass substrates laminated together via a polymer interlayer such as polyvinyl butyral (PVB). It is known that one of the two glass substrates may have a coating (e.g., low-E coating) thereon for solar control purposes such as reflecting IR and/or UV radiation, so that the vehicle interior can be more comfortable in certain weather conditions. Conventional vehicle windshields are made as follows. First and second flat glass substrates are provided, one of them optionally having a low-E coating sputtered thereon. The pair of glass substrates are washed and booked together (i.e., stacked on one another), and then while booked are heat bent together into the desired windshield shape at a high temperature(s) (e.g., 8 minutes at about 600-625 degrees C.). The two bent glass substrates are then laminated together via the polymer interlayer to form the vehicle windshield.
Insulating glass (IG) window units are also known in the art. Conventional IG window units include at least first and second glass substrates (one of which may have a solar control coating on an interior surface thereof) that are coupled to one another via at least one seal(s) or spacer(s). The resulting space or gap between the glass substrates may or may not be filled with gas and/or evacuated to a low pressure in different instances. However, many IG units are required to be tempered. Thermal tempering of the glass substrates for such IG units typically requires heating the glass substrates to temperature(s) of at least about 600 degrees C. for a sufficient period of time to enable thermal tempering.
Other types of coated articles also require heat treatment (HT) (e.g., tempering, heat bending, and/or heat strengthening) in certain applications. For example and without limitation, glass shower doors, glass table tops, and the like require HT in certain instances.
Diamond-like carbon (DLC) is sometimes known for its scratch resistant properties. For example, different types of DLC are discussed in the following U.S. Pat. Nos. 6,303,226; 6,303,225; 6,261,693; 6,338,901; 6,312,808; 6,280,834; 6,284,377; 6,335,086; 5,858,477; 5,635,245; 5,888,593; 5,135,808; 5,900,342; and 5,470,661, all of which are hereby incorporated herein by reference.
It would sometimes be desirable to provide a window unit with a protective coating including DLC in order to protect the window from scratches and the like. Unfortunately, DLC tends to burn off at temperatures of from approximately 380 to 400 degrees C., as the heat treatment is typically conducted in an atmosphere including oxygen. Thus, it will be appreciated that DLC as a protective overcoat cannot withstand the heat treatments (HT) at the extremely high temperatures described above which are often required in the manufacture of vehicle windows, IG window units, and/or the like.
Accordingly, those skilled in the art will appreciate that a need in the art exists for a method of providing heat treated (HT) windows with a protective coating (one or more layers) comprising DLC. A need for corresponding windows also exists.
An object of this invention is to provide a method of making a coated article (e.g., window unit), including heat treatment (HT), wherein the coated article includes a coating (one or more layers) comprising diamond-like carbon (DLC).
Another object of certain example embodiments of this invention is to provide a method of making a coated article by (a) coating a glass substrate with a layer comprising DLC, then (b) forming a protective layer on the glass substrate over the DLC, and (c) heat treating the coated article with the DLC and the protective layer thereon with the protective layer preventing the DLC from burning off (in part or entirely) during the heat treatment. The resulting coated article may be used in the context of, for example and without limitation, vehicle windows, architectural windows, insulating glass (IG) window units, shower doors, glass table tops, and/or the like.
Another object of certain example embodiments of this invention is to provide a coated article (e.g., window unit) made in accordance with the above technique.
Another object of certain example embodiments of this invention is to fulfill one or more of the above-listed objects and/or needs.
In certain example embodiments of this invention, one or more of the above-listed objects and/or needs is/are fulfilled by providing a method of making an insulating glass (IG) window unit, the method comprising: providing a glass substrate; forming a layer comprising diamond-like carbon (DLC) on the glass substrate; forming a protective layer on the glass substrate over the layer comprising DLC; heat treating the glass substrate with the layer comprising DLC and the protective layer thereon so that during the heat treating the protective layer prevents significant burnoff of the layer comprising DLC, wherein the heat treating comprises heating the glass substrate to temperature(s) sufficient for thermal tempering; and after the heat treating, coupling the glass substrate with at least the layer comprising DLC thereon to another substrate in making the IG window unit.
In certain other example embodiments of this invention, one or more of the above-listed objects and/or needs is/are fulfilled by providing a method of making a vehicle windshield, the method comprising: providing a glass substrate; forming a layer comprising diamond-like carbon (DLC) on the glass substrate; forming a protective layer on the glass substrate over the layer comprising DLC; heat treating the glass substrate with the layer comprising DLC and the protective layer thereon, wherein the heat treating comprises heating the glass substrate to temperature(s) sufficient for bending the glass substrate; and after the heat treating, laminating the glass substrate with at least the layer comprising DLC thereon to another substrate via at least a polymer inclusive interlayer in making the vehicle windshield.
In still further example embodiments of this invention, one or more of the above-listed objects and/or needs may be fulfilled by providing method of making a coated article, the method comprising: providing a glass substrate; forming a layer comprising diamond-like carbon (DLC) on the glass substrate; forming a protective layer on the glass substrate over the layer comprising DLC; heat treating the glass substrate with the layer comprising DLC and the protective layer thereon, and wherein the heat treating comprises heating the glass substrate using at least temperature(s) of at least 580 degrees C. for at least one of bending and thermally tempering the glass substrate.
In yet other example embodiments of this invention, one or more of the above-listed objects and/or needs may be fulfilled by providing a coated article comprising: a glass substrate that is thermally tempered and/or bent; a layer comprising diamond-like carbon (DLC) supported by the glass substrate; and a protective layer comprising a carbide provided on the glass substrate over the layer comprising DLC. In certain example instances, the carbide may comprise at least one of: boron carbide, titanium carbide, hafnium carbide, titanium hafnium carbide, tantalum carbide, and zirconium carbide.
a)-3(d) illustrate steps taken according to an example embodiment of this invention in making either of the window units of
Referring now more particularly to the accompanying drawings in which like reference numerals indicate like parts throughout the several views.
Certain example embodiments of this invention relate to methods of making coated articles that require heat treatment (HT), so as to include a protective coating (one or more layers) including diamond-like carbon (DLC). In certain instances, the HT may require heating a supporting glass substrate, with the DLC thereon, to temperature(s) of from 550 to 800 degrees C., more preferably from 580 to 800 degrees C. (which is well above the burn-off temperature of DLC). In particular, certain example embodiments of this invention relate to a technique for enabling the DLC to withstand such HT without significantly burning off during the same. In certain embodiments, a protective layer is formed on the glass substrate over the DLC so as to reduce the likelihood of the DLC burning off during HT. Thus, much if not all of the DLC remains on the glass substrate, and does not burn off, during the HT. Following HT, the protective layer may or may not be removed (e.g., via etching or any other suitable technique) in different embodiments of this invention.
Still referring to
The IG window unit of
DLC inclusive layer 11 may be from about 5 to 1,000 angstroms (Å) thick in certain example embodiments of this invention, more preferably from 10-300 Å thick. In certain example embodiments of this invention, layer 11 including DLC may have an average hardness of at least about 10 GPa, more preferably at least about 20 GPa, and most preferably from about 20-90 GPa. Such hardness renders layer (s) 11 resistant to scratching, certain solvents, and/or the like. Layer 11 may, in certain example embodiments, be of or include a special type of DLC known as highly tetrahedral amorphous carbon (t-aC), and may be hydrogenated (t-aC:H) in certain embodiments. This type of DLC includes more sp3 carbon-carbon (C—C) bonds than sp2 carbon-carbon (C—C) bonds. In certain example embodiments, at least about 50% of the carbon-carbon bonds in the layer 11 may be sp3 carbon-carbon (C—C) bonds, more preferably at least about 60% of the carbon-carbon bonds in the layer 11 may be sp3 carbon-carbon (C—C) bonds, and most preferably at least about 70% of the carbon-carbon bonds in the layer 11 may be sp3 carbon-carbon (C—C) bonds. In certain example embodiments of this invention, the DLC may have a density of at least about 2.4 gm/cm3, more preferably of at least about 2.7 gm/cm3. Example linear ion beam sources that may be used to deposit DLC inclusive layer 11 on substrate 1 include any of those in any of U.S. Pat. No. 6,261,693, 6,002,208, 6,335,086, or 6,303,225 (all incorporated herein by reference). When using an ion beam source to deposit layer(s) 11, hydrocarbon feedstock gas(es) (e.g., C2H2), HMDSO, or any other suitable gas, may be used in the ion beam source in order to cause the source to emit an ion beam toward substrate 1 for forming layer(s) 11. It is noted that the hardness and/or density of layer(s) 11 may be adjusted by varying the ion energy of the depositing apparatus.
Coating 11 enables the IG unit of
In certain example embodiments of this invention, the IG window unit of
Referring to
Initially, glass substrate 1 is provided. Optionally, one or both surfaces of the glass substrate 1 may be ion beam milled to remove at least 2 Å of glass thickness therefrom. Optionally, a multi-layer solar control coating 9 may be deposited (e.g., via sputtering) on one side of the substrate 1. As shown in
Then, as shown in
When protective layer 17 includes a carbide, it may be formed in one of many different ways. For example and without limitation, carbide layers 17 herein may be formed by depositing a carbide directly on the DLC inclusive layer 11. Alternatively, carbide layers 17 may be formed by depositing the metal (e.g, B, Ti, Hf, Ta, and/or Zr) via sputtering directly onto DLC inclusive layer 11 and then heating the same to form the carbide. The heating used in forming the carbide may be part of the heat treating for tempering, bending, or the like (i.e., during the ramp-up phase of HT when the temperature of the coated substrate is rising to tempering/bending levels); or alternatively the heating used to form the carbide may be a separate and distinct HT performed prior to the HT for tempering or the like. Thus, protective layer 17 may be formed before and/or during the HT for tempering or the like in different embodiments of this invention. The carbides may also be formed by any other suitable technique. Other suitable materials may also be used for layer 17 in different embodiments of this invention. In certain embodiments of this invention, protective layer 17 may be from about 5 to 500 Å thick, more preferably from about 5 to 100 Å thick, even more preferably from about 5 to 50 Å thick, and most preferably from about 5 to 20 Å thick. Layer 17 is preferably continuous, but need not be.
As shown in
In certain embodiments, following the HT, the protective layer 17 may be removed (e.g., via known etching techniques and/or via ion beam milling using an ion beam source using a gas such as Ar) as shown in
The scratch resistant heat treated glass substrate 1 (e.g., tempered and/or bent), with DLC inclusive layer 11 and optionally layer(s) 9 and/or 17 thereon, in accordance with the
As can be seen from the above, the instant inventions enables DLC to withstand HT, thereby enabling it to be used in HT applications where it previously could not be used.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
This application is a continuation of application Ser. No. 10/091,589 filed Mar. 7, 2002 (now U.S. Pat. No. 6,827,977), the entire content of which is hereby incorporated herein by reference in this application.
Number | Name | Date | Kind |
---|---|---|---|
4898790 | Finley | Feb 1990 | A |
4919778 | Dietrich et al. | Apr 1990 | A |
5135808 | Kimock et al. | Aug 1992 | A |
5470661 | Bailey et al. | Nov 1995 | A |
5514476 | Hartig et al. | May 1996 | A |
5557462 | Hartig et al. | Sep 1996 | A |
5635245 | Kimock et al. | Jun 1997 | A |
5688585 | Lingle et al. | Nov 1997 | A |
5858477 | Veerasamy et al. | Jan 1999 | A |
5888593 | Petrmichl et al. | Mar 1999 | A |
5900342 | Visser et al. | May 1999 | A |
5965246 | Guiselin et al. | Oct 1999 | A |
6133119 | Yamazaki | Oct 2000 | A |
6261672 | de Paoli | Jul 2001 | B1 |
6261693 | Veerasamy | Jul 2001 | B1 |
6277480 | Veerasamy et al. | Aug 2001 | B1 |
6280834 | Veerasamy et al. | Aug 2001 | B1 |
6280847 | Corkhill et al. | Aug 2001 | B1 |
6284377 | Veerasamy | Sep 2001 | B1 |
6303225 | Veerasamy | Oct 2001 | B1 |
6303226 | Veerasamy | Oct 2001 | B2 |
6312808 | Veerasamy et al. | Nov 2001 | B1 |
6335086 | Veerasamy | Jan 2002 | B1 |
6338901 | Veerasamy | Jan 2002 | B1 |
6395333 | Veerasamy | May 2002 | B2 |
6451434 | Ebisawa et al. | Sep 2002 | B1 |
6475573 | Veerasamy et al. | Nov 2002 | B1 |
6491987 | Veerasamy | Dec 2002 | B2 |
6602371 | Veerasamy | Aug 2003 | B2 |
6663753 | Veerasamy et al. | Dec 2003 | B2 |
6740211 | Thomsen et al. | May 2004 | B2 |
6764579 | Veerasamy et al. | Jul 2004 | B2 |
6808606 | Thomsen et al. | Oct 2004 | B2 |
6827977 | Veerasamy | Dec 2004 | B2 |
6878404 | Veerasamy et al. | Apr 2005 | B2 |
7060322 | Veerasamy | Jun 2006 | B2 |
7067175 | Veerasamy | Jun 2006 | B2 |
7150849 | Veerasamy | Dec 2006 | B2 |
7229533 | Veerasamy | Jun 2007 | B2 |
7449218 | Veerasamy | Nov 2008 | B2 |
7501148 | Veerasamy | Mar 2009 | B2 |
7507442 | Veerasamy | Mar 2009 | B2 |
7537801 | Veerasamy et al. | May 2009 | B2 |
20030064198 | Thomsen et al. | Apr 2003 | A1 |
20030113551 | Thomsen et al. | Jun 2003 | A1 |
20070188871 | Fleury et al. | Aug 2007 | A1 |
20070254164 | Veerasamy et al. | Nov 2007 | A1 |
20080020211 | Petrmichl et al. | Jan 2008 | A1 |
20090142603 | Veerasamy | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
0 605 814 | Jul 1994 | EP |
07239444 | Jul 1996 | EP |
WO 0066506 | Nov 2000 | WO |
WO 0238515 | May 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040258926 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10091589 | Mar 2002 | US |
Child | 10891187 | US |