1. Field of the Invention
The present invention relates to a heat conducting structure, and more particularly to a heat conducting structure having a heat pipe, and a manufacturing method of the heat conducting structure.
2. Description of Prior Art
In general, an electronic component generates heat during its operation. As science and technology advance, the functions and performance of electronic products are enhanced, and the heat generated by the electronic products becomes increasingly larger, so that most electronic components need a heat dissipating device for controlling a working temperature to maintain normal operations of electronic components. For example, a heat pipe filled with a working fluid for conducting heat is one of the common heat conducting devices.
With reference to
In the aforementioned structure, the heat pipes 20a are embedded into the heat conducting base 10a to facilitate attaching the heat pipes 20a and combining the heat generating electronic component. However, the heat conducting base 20a not just increases the overall weight of the heat sink 1a only, but also extends the heat conduction path and retards the heat dissipation rate. Furthermore, the installation of the heat conducting base 20a also incurs a higher manufacturing cost of the heat sink 1a.
In view of the aforementioned shortcomings of the prior art, the inventor of the present invention based on years of experience in the related industry to conduct extensive researches and experiments, and finally provided a feasible solution in accordance with the present invention to overcome the shortcomings of the prior art.
Therefore, it is a primary objective of the present invention to provide a heat conducting structure with a coplanar heated portion capable of reducing its overall weight and heat conduction path to lower the manufacturing cost of a heat sink and enhance the heat dissipating efficiency of the heat sink.
To achieve the foregoing objective, the present invention provides a manufacturing method of a heat conducting structure with a coplanar heated portion, and the manufacturing method comprises the steps of: a) providing a plurality of heat pipes, each having an evaporating section, a first mold having different concave cambers, and a second mold having a planar surface; b) using the concave cambers of the first mold to progressively compress the evaporating section of each heat pipe to form two adjacent cambers; c) using the planar surface of the second mold to compress the two cambers of the heat pipe to form a contact plane and an attaching plane perpendicular to each other; d) coating an adhesive onto the contact plane of any two adjacent heat pipes; and e) putting the contact planes of the heat pipes into a tool to connect with each other and form a coplanar heated portion at the attaching plane of the heat pipes.
To achieve the foregoing objective, the present invention provides a heat conducting structure with a coplanar heated portion, comprising a plurality of heat pipes and an adhesive, wherein each heat pipe includes an evaporating section, a contact plane formed at the evaporating section, and an attaching plane formed adjacent to the contact plane, and the heat pipes are arranged adjacent with each other in a row by the contact plane, and the adhesive is coated onto and combined with the contact plane of any two adjacent heat pipes, and a flush and co-planar heated portion is formed at each attaching plane of the heat pipes.
To achieve the foregoing objective, the present invention provides a heat sink with a heat conducting structure, comprising an adhesive, a plurality of heat pipes and a plurality of fins, wherein each heat pipe includes an evaporating section and a condensing section, and a contact plane and an attaching plane adjacent to the contact plane are formed on the evaporating section, and the heat pipes are arranged in parallel with each other and disposed adjacent to the contact plane, and the adhesive is coated and coupled to the contact plane of any two adjacent heat pipes, and each attaching plane of the heat pipes has a flush and co-planar heated portion, and a plurality of fins are arranged parallel to each other in a row and passed through the condensing section of the heat pipes.
Compared with the prior art, the present invention has the evaporating section formed and coupled onto the heat pipe and the contact surface coated with the adhesive, such that after the adhesive is combined with the evaporating section of the heat pipe, the heat conducting structure with a flush and co-planar heated portion is formed. Unlike the prior art that embeds the heat pipe into the heat sink of the heat conducting base, the heat conduction of the heat sink in accordance with the invention no longer requires any heat conducting base, and thus the invention can reduce the heat conduction path and improve the heat conduction rate. In addition, no heat conducting base is required, and thus the overall weight and manufacturing cost of the heat sink can be reduced significantly to improve the practicability and cost-effectiveness of the present invention.
The technical characteristics, features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments with reference to the accompanying drawings. The drawings are provided for reference and illustration only, but not intended for limiting the present invention.
With reference to
With reference to
With reference to
After the evaporating section 11 of the heat pipe 10 is compressed by the first mold 20 and the second mold 30, the required shape is achieved after the following connection. The remaining heat pipes 10 go through the same process as described above to produce a heat conducting structure with a predetermined quantity of connected heat pipes 10.
With reference to
Each contact plane 112′, 114′ of the heat pipes 10 is put into a tool 40 having a plurality of through holes 400, and the evaporating section 11′ of the heat pipe 10 is disposed on a base 401 of the tool 40, and the contact planes 112′, 114′ are preliminarily coupled by the adhesive 50, and then a press board 41 and a clamp board 42 having a compression plane 411 and a clamping plane 421 are provided for compressing and positioning the evaporating section 11′ of the heat pipe 10 (Step 500), and then a C-shaped clamp 43 is used for fixing the press board 41. After the adhesive 50 is solidified to combine the evaporating section 11′ of the heat pipe 10, the heat pipes 10 can be removed from the tool 40.
With reference to
With reference to
The present invention is illustrated with reference to the preferred embodiment and not intended to limit the patent scope of the present invention. Various substitutions and modifications have suggested in the foregoing description, and other will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1891785 | Siebert et al. | Dec 1932 | A |
2205893 | Unger | Jun 1940 | A |
4527411 | Shinosaki et al. | Jul 1985 | A |
4930331 | Manning | Jun 1990 | A |
5040399 | Knapper et al. | Aug 1991 | A |
5855137 | Weber et al. | Jan 1999 | A |
6530255 | Usui et al. | Mar 2003 | B1 |
20060144571 | Lin et al. | Jul 2006 | A1 |
20070261244 | Cheng et al. | Nov 2007 | A1 |
20070267177 | Lin et al. | Nov 2007 | A1 |
20070267181 | Lin et al. | Nov 2007 | A1 |
20080216990 | Min et al. | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
03285713 | Dec 1991 | JP |
2006269629 | Oct 2006 | JP |
458501 | Apr 2013 | TW |
Entry |
---|
European research report dated Feb. 26, 2010. |
Taiwan Official Action issued on Mar. 15, 2013. |
Number | Date | Country | |
---|---|---|---|
20110067846 A1 | Mar 2011 | US |