Conventional surface mount resistors have wrap-around terminals on the ends of the resistor. When such surface mount resistors are soldered to a printed circuit board, solder covers entire surface of the terminals forming a fillets, resulting in occupation of an additional area for mounting. One example of such a conventional surface mount resistor is found in EPO 0810614A1 to Hashimoto et al. A flip chip resistor is a resistor that has no side electrodes and is soldered with its printed side towards the printed circuit board. With this configuration, the solder fillets are not formed thus decreasing the amount of circuit board space required and increasing the mounting density particularly in the case of small chip sizes.
Two examples of prior art flip chip resistors are shown in
A second prior art attempt at a flip chip resistor is shown in
Both of these prior art flip chip resistors have problems. In particular, the area of conductive layers disposed under the joint of a protective overcoat layer and plated Nickel barrier disposed over a Silver electrode is subjected to destructive influence of environmental conditions more than other inner parts of the flip chip resistor because this joint is usually not sufficiently hermetic. This results in reduced reliability, especially in cases of face down mounting when residual flux cannot be reliably removed from the overcoat surface. Therefore, these flip chip resistors require expensive conductive materials based on noble metals (i.e. Pd, Au, Pt) for the top conductive layers in order to prevent erosion of the conductive layers.
A further problem with these configurations is that the pads provided are too small for reliable soldering. This problem becomes even more important in the case of small chip sizes. The pad areas in these prior art designs can only be enlarged when the resistance layer size is changed. Such a change interferes with requirements for laser trimming. Therefore, problems in the art remain.
Thus, it is a primary object of the present invention to improve upon the state of the art.
Another object of the present invention is to provide a flip chip resistor with high reliability.
Yet another object of the present invention is to provide a flip chip resistor that can be manufactured at a low cost.
As a further object of the present invention to provide a flip chip resistor that can be manufactured in small chip sizes.
A further object of the present invention is to provide a flip chip resistor that allows for sufficiently large pads for reliable soldering even when the flip chip resistor is of small size.
These and other objects, features and advantages of the present invention will become apparent from the description and claims that follow.
The present invention relates to a flip chip resistor.
According to one aspect of the invention, the flip chip resistor includes a substrate having opposite ends, a pair of electrodes, formed from a first electrode layer disposed on the opposite ends of the substrate, a resistance layer electrically connecting the pair of electrodes, a protective layer overlaying the resistance layer, and a second electrode layer overlaying the first electrode layer and at least a portion of the protective layer and optionally a portion of the resistance layer. A plating layer can then be overlayed on the second electrode layer to provide for solder attachment to a printed circuit board. This allows the flip chip resistor to be surface mounted with the resistance layer positioned towards the printed circuit board and results in high reliability.
According to another aspect of the present invention, a method of manufacturing flip chip resistors is provided. The method includes applying a first electrode layer to a substrate to create pairs of opposite electrodes, applying a resistance layer between each pair of opposite electrodes, applying a first protective layer at least partially overlaying the resistance layer, applying a second protective layer at least partially overlaying at least a portion of the resistance layer, and applying a second electrode layer overlaying the first electrode layer and at least a portion of the second protective layer. The substrate can then be divided to form individual flip chip resistors.
The present invention provides for an array of resistors to be manufactured using the above method. In a resistor chip array, multiple flip chip resistors are disposed on the same substrate.
The configuration of the present invention increases reliability of flip chip resistors, does not require expensive conductive materials for the electrode layers, and is especially advantageous in the case of small chip sizes as pad areas or electrode areas are large enough to promote reliable soldering.
The present invention provides for a flip chip resistor.
The present invention contemplates numerous variations in the materials and/or processes used. For example, the flip chip resistor of the present invention can be a thick film resistor or a thin film resistor. The substrate may be of various types, including being of various ceramic materials. The protective layer or layers of the present invention can be of various materials including, but not limited to resin materials. Similarly, the second conductive layers can be made of various materials, including but not limited to electroconductive polymers or electroconductive resin materials. The plating 26 can also be of various conductive materials, including but not limited to Nickel, Nickel alloys, and other metals and/or alloys. These and other variations are fully contemplated by the present invention.
The present invention also provides for a method of manufacturing a flip chip resistor. The present invention contemplates that such a method can be used to manufacture arrays of flip chip resistors. According to one embodiment of such a method, a first electrode layer is formed on a substrate to create a pair of opposite electrodes. A resistance layer is then applied between each layer of opposite electrodes, the resistance layer electrically connecting each pair of opposite electrodes. A first protective layer is applied at least partially covers the resistive layer. The resistance layer can be trimmed to an ordered value or otherwise desirable value by forming grooves in the resistance layer. A second protective layer is then applied that at least partially overlays a portion of the resistance layer. Then, a second electrode layer is applied that overlays the first electrode layer at least a portion of the second protective layer.
The substrate used can be a sheet-shaped substrate that is either prescored or unscored. Where a sheet-shaped substrate is used, the substrate can then be divided into individual flip chip resistors. Where an unscored sheet-shape substrate is used, the substrate can be divided into individual chips by dicing. Then, the second electrode layer of each flip chip resistor is plated.
Thus, in this manner, the present invention provides for a method of manufacturing a flip chip resistor. In particular, the method of manufacture of the flip chip resistor can be used to manufacture arrays of flip chip resistors. The present invention contemplates variations in the manner in which the various layers are applied, the types of materials, and other variations.
This application is a divisional of U.S. Ser. No. 10/233,184 filed Sep. 3, 2002 now U.S. Pat. No. 6,727,798.
Number | Name | Date | Kind |
---|---|---|---|
5450055 | Doi | Sep 1995 | A |
5815065 | Hanamura | Sep 1998 | A |
6023217 | Yamada et al. | Feb 2000 | A |
6153256 | Kambara et al. | Nov 2000 | A |
6238992 | Yamada | May 2001 | B1 |
6314637 | Kimura et al. | Nov 2001 | B1 |
6492896 | Yoneda | Dec 2002 | B1 |
6609292 | Kurita | Aug 2003 | B1 |
6727798 | Akhtman et al. | Apr 2004 | B1 |
20020148106 | Tsukada et al. | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
31 22612 | Dec 1982 | DE |
0 810 614 | Dec 1997 | EP |
0810614 | Dec 1997 | EP |
1 018 750 | Jul 2000 | EP |
06275401 | Sep 1994 | JP |
08031603 | Feb 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20040041278 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10233184 | Sep 2002 | US |
Child | 10440941 | US |