1. Field of the Invention
The present invention relates to a metal-oxide-semiconductor (MOS) transistor, especially referred to an n-type metal-oxide-semiconductor (NMOS) transistor and the manufacturing method thereof.
2. Description of the Prior Art
MOS transistors are among most commonly used semiconductor components. MOS transistors include vertical double-diffused MOS (VDMOS) and laterally-diffused MOS (LDMOS). Because LDNMOS transistors have higher operation bandwidth, higher operation efficiency, and a flat structure that can be easily integrated with other integrated circuits, LDNMOS transistors are widely used in high voltage environment, such as in a CPU power supply, power management system, AC/DC converter and high power or high frequency power amplifier. The operation characteristics of LDNMOS transistors are similar to those of NMOS transistors. The difference between them is that the N-drift region of an NMOS transistor is highly doped while the N-drift region of an LDNMOS transistor is lowly doped. This makes the N-drift region of the LDNMOS bear most voltage drop between the drain and gate, reducing the high electric field between the drain and gate, and resulting in a high breakdown voltage of the LDNMOS transistor.
Please refer to
The ESD clamp 12 is usually made of NMOS transistors. The low trigger voltage of the NMOS transistor allows the NMOS transistor to discharge more quickly thereby demonstrating a high performance of the ESD clamp 12 to protect the open drain element 11. A typical approach to further improve the performance of the ESD clamp 12 is to reduce the channel length of the NMOS transistor so as to reduce the breakdown voltage of the NMOS transistor. However, reducing the channel length of the NMOS transistor will cause the NMOS transistor to leak current, reducing the reliability of the NMOS transistor.
An embodiment of the present invention provides a method for forming an NMOS (n-type metal-oxide-semiconductor) comprising forming a P-substrate; forming an N-well on the P-substrate; forming an N-drift region on the N-well; forming an n+ drain on the N-drift region; forming a plurality of first contacts on the n+ drain along a longitudinal direction; forming a P-body on the N-well; forming a source on the P-body, the source comprising a plurality of n+ doped regions and at least one p+ doped region arranged along the longitudinal direction; forming a plurality of second contacts on the plurality of n+ doped regions and the at least one p+ doped region; forming a polygate on the P-body; and forming a gate oxide between the polygate and the source.
Another embodiment of the present invention provides an NMOS (n-type metal-oxide-semiconductor) comprising a P-substrate; an N-well on the P-substrate; an N-drift region on the N-well; an n+ drain on the N-drift region; a plurality of first contacts on the n+ drain arranged along a longitudinal direction; a P-body on the N-well; a source on the P-body, the source comprising a plurality of n+ doped regions and at least one p+ doped region arranged along the longitudinal direction; a plurality of second contacts on the plurality of n+ doped regions and the at least one p+ doped region; a polygate on the P-body; and a gate oxide between the polygate and the source.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
The n+ doped regions 28 of the source 23 and the first p+ doped region 26 are arranged along a longitudinal direction as depicted along the y-axis in
Please refer to
Please refer to
Please refer to
In view of above, the n+ doped regions 28 and the at least one first p+ doped region 26 of the source 23 are arranged along a longitudinal direction, thus the space between the contacts 204 of the source 23 can be increased, thereby reducing the trigger voltage of the NMOS transistor 200 without changing the breakdown voltage. Thus a high performance ESD clamp can be obtained to protect circuit elements.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5637900 | Ker | Jun 1997 | A |
5959820 | Ker | Sep 1999 | A |
6724677 | Su | Apr 2004 | B1 |
6909149 | Russ | Jun 2005 | B2 |
7009252 | Lin | Mar 2006 | B2 |
7027276 | Chen | Apr 2006 | B2 |
7205612 | Cai | Apr 2007 | B2 |
7368761 | Lai | May 2008 | B1 |
7635614 | Kuznetsov | Dec 2009 | B1 |
7672100 | Van Camp | Mar 2010 | B2 |
7838937 | Walker | Nov 2010 | B1 |
20030076636 | Ker | Apr 2003 | A1 |
20060267102 | Cheng | Nov 2006 | A1 |
20070278568 | Williams et al. | Dec 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20130093009 A1 | Apr 2013 | US |