Field of the Invention
The present invention relates to a method of manufacturing a rectangular tube having a stepped portion for connection formed at an end thereof.
Description of the Background Art
The rectangular construction tubes used for fences or barriers have been generally assembled in such a fashion that a plurality of rectangular tube members each having a predetermined length are formed, and thereafter, the plurality of formed rectangular tube members are butted one another, and the formed rectangular tube members abutting one another are fixed through connection members. However, the use of connection members has caused increase in component count and cost. Furthermore, the use of such connection members has sometimes caused an undesirable appearance.
For the purpose of reducing cost, there has been proposed a method of: radially reducing an end of one rectangular tube; and inserting the radially reduced end into an end (non-radially reduced end) of another rectangular tube so as to connect the rectangular tubes (see patent document 1).
For example, patent document 1 proposes a method of: radially reducing an end of one round tube through the use of a die; connecting the radially reduced end with an end (non-radially reduced end) of another round tube; and thereafter, forming the connected round tubes into a rectangular tube by roll forming.
In the roll forming described in patent document 1, a plurality of roll stands equipped with rolls each having a predetermined dimension are installed around the connected round tubes. Such connected round tubes are inserted into the rolls so as to form a rectangular tube having a predetermined dimension. Rectangular tube members manufactured by such a method are used for fences or barriers.
Patent Document 1: Japanese Patent No. 3359947
The method proposed in patent document 1 has required at least: the step of manufacturing a round tube at roll stands; the step of radially reducing one end of the round tube off-line; the step of connecting a plurality of round tubes; the step of returning the connected round tubes to the roll stands; and the step of forming the connected round tubes into a rectangular tube.
Generally, a rectangular tube has been manufactured by: making a round tube at roll stands; and thereafter, continuously passing the round tube through roll stands so as to form the round tube into a rectangular tube. In other words, if the method proposed by patent document 1 is adopted, an activity to transfer the round tubes to the station where the tube-radially reducing step is carried out would be required at the timing after the round tubes are manufactured at the roll stands before the round tubes are formed into the rectangular tubes, which would cause a problem that the burden of product management and process management regarding the round tubes is increased. Furthermore, since the round tubes are radially reduced by inserting such round tubes into a die, dies corresponding to the outer diameter of the round tube as well as the dimension of radially reduced end thereof would have to be prepared, which would cause another problem that the cost for such dies is increased.
The present invention is come up with in order to solve the above problems. The object of the present invention is to propose a method of manufacturing a rectangular tube having a stepped portion at an end thereof, whose appearance is desirable, by carrying out a simple manufacturing step through the use of an easy-to-use device at low cost.
The method of manufacturing a rectangular tube having a stepped portion according to the present invention is characterized by comprising: forming V-shaped grooves on a rectangular tube at surfaces of an end thereof in a direction parallel to a longitudinal direction thereof; and pressing each of the surfaces having the V-shaped grooves formed thereon with a rotating roll from outside to inside, whereby the end of the rectangular tube is radially reduced.
It is preferable that the above step of forming the V-shaped grooves on the rectangular tube at the surfaces of the end thereof comprises the following step of: placing an internal die having a V-shaped concave portion formed thereon inside the end of the rectangular tube; placing a V-shaped roll having a V-shaped convex portion formed thereon at a position that is opposite to the concave portion and is outside the end of the rectangular tube; and pressing the V-shaped roll against the rectangular tube at each of the surfaces of the end thereof while causing the V-shaped roll to rotate.
Further, it is preferable that the end of the rectangular tube is radially reduced by: shifting a relative position of the rotating roll with respect to the rectangular tube in an longitudinal direction thereof while keeping a status that the rectangular tube is pressed with the rotating roll from outside to inside.
According to the present invention, the radially reduced portion is formed on the rectangular tube at the end thereof by forming the V-shaped grooves on the rectangular tube at the surfaces of the end thereof in a direction parallel to the longitudinal direction thereof in advance, and pressing each of the surfaces of the end thereof through the use of a flat external die. Using this method, there is no need to transport a round tube to the station where a tube-radially reducing step is carried out before the round tube is formed into the rectangular tube. Further, in the tube-radially reducing step, there is no need to prepare the dies corresponding to the outer diameter of the round tube and the dimension of the radially reduced end thereof, but two roll stands and a device for rotating and shifting the rectangular tubes are sufficient for the tube-radially reducing step. Accordingly, not only the tube-radially reducing step can become simpler but also the rectangular tube having a stepped portion of excellent appearance can be obtained. In particular, this method can render the maintenance as being easier in comparison with the method using a die.
Still further, the radially reduced portion formed on the rectangular tube at the end thereof has a shape corresponding to a cross-sectional shape thereof, and is used as a good connection portion. A plurality of rectangular tubes can therefore be connected by simply fitting the radially reduced end of one tube in the open end of another tube, thereby enabling easy construction of high quality fences and barriers designed to harmonize with the adjacent buildings.
For more thorough understanding of the present invention and advantages thereof, the following descriptions should be read in conjunction with the accompanying drawings, in which:
The inventors have studied a forming method of forming a radially reduced portion formed on a rectangular tube at the end thereof with superior forming precision at low cost, and a connecting method of connecting two rectangular tube members by inserting one rectangular tube having a stepped portion, which is manufactured by the forming method, into the end (at which a radially reduced end is not formed) of another rectangular tube.
When a rectangular tube is formed with a radially reduced portion at the end thereof, which is rectangular in cross section, there are many embodiments that two edges opposite to each other at the end of the rectangular tube are pressed from outside to inside. However, the other two edges (two non-pressed edges) adjacent to the two pressed edges are bent outward to the extent that a distance between the two pressed edges is shortened. Furthermore, the two initially pressed edges are bent outward by subsequently pressing the other two bent edges. For this reason, each edge of the radially reduced rectangular tube at the end thereof is bent, which makes it difficult to insert the radially reduced end of one rectangular tube into the non-radially reduced end of another rectangular tube when connecting two rectangular tubes.
In the present invention, therefore, V-shaped grooves are formed on an outer surface of a rectangular tube in a direction parallel to a longitudinal direction of the rectangular tube before pressing two opposite edges of the rectangular tube from outside to inside. A processing method of processing the rectangular tube in such a fashion that the V-shaped grooves are formed thereon will be described with reference to
Initially, an internal die (20) having V-shaped concave portions (20a, 20b, 20c, 20d) formed on an outer surface thereof is inserted into an end of a rectangular tube (10) (see
Subsequently, as shown in
Subsequently, the rectangular tube (10) is rotated approximately 90 degrees around the longitudinal direction thereof as a center of rotation. Subsequently, as shown in
After the V-shaped grooves are formed on the outer surfaces (10a-10d) of the rectangular tube (10) as shown in
Subsequently, the flat rolls (40a, 40b) are shifted in arrow directions in
In such a fashion, by virtue of forming the V-shaped grooves in advance on the outer surfaces (10a-10d) of the end of the rectangular tube (10), the V-shaped grooves formed on the two surfaces not facing the flat rolls (40a, 40b) are deformed so as to be closed therealong, when the rectangular tube (10) is pressed against from opposite outsides to inside, thereby suppressing the bending of the radially reduced end of the rectangular tube (10), and further suppressing a concavo-convex crimp likely to be generated on the radially reduced end. As a result, a rectangular tube having a stepped portion with high dimensional accuracy can be obtained.
In particular, a crimp likely to be generated on the radially reduced portion can be further suppressed by shifting relative positions of the rotating flat rolls (40a, 40b) with respect to the rectangular tube (10) in the longitudinal direction thereof while keeping a status that the rectangular tube (10) is pressed with the rotating flat rolls (40a, 40b) from opposite outsides when forming a radially reduced portion at the end of the rectangular tube (10). In such a radially reducing step, the relative positions of the flat rolls (40a, 40b) with respect to the rectangular tube (10) may be shifted from the end of the rectangular tube (10) at a side to be radially reduced toward the other side not to be radially reduced. However, it is preferable that the relative positions of the flat rolls (40a, 40b) with respect to the rectangular tube (10) are shifted toward the end of the rectangular tube (10) at a side to be radially reduced from the other side not to be radially reduced. This is because, in such a case, the rectangular tube (10) compressed by pressure is radially reduced while shifting from the side not to be radially reduced toward the side to be radially reduced due to plastic flow. As a result, not only a crimp likely to be generated on the radially reduced portion can be further suppressed, but also further amount of radially reduced portion can be achieved if such an amount is requested. In consideration of plastic flow of the rectangular tube (10), it is preferable that the relative positions of the flat rolls (40a, 40b) with respect to the rectangular tube (10) shift in a direction against a rotation direction of the flat rolls (40a, 40b).
Means for shifting the V-shaped rolls (30a, 30b) used in forming the V-shaped grooves at one end of the rectangular tube (10) (pressure means) does not need to be limited in particular. It is sufficient if it is capable of forming V-shaped grooves having predetermined dimensions on the rectangular tube (10). Likewise, means for shifting the flat rolls (40a, 40b) used in radially reducing the end of the rectangular tube (10) (pressure means) does not need to be limited in particular. It is sufficient if it is capable of processing the rectangular tube (10) to predetermined dimensions.
The end of the rectangular tube (10) may be radially reduced by means other than the flat rolls (40a, 40b) if the outside diameters of the tubes that press against the outer surfaces (10a-10d) of the rectangular tube (10) are substantially constant. Possible convex portions or concave portions formed at the parts not touching the outer surfaces (10a-10d) of the rectangular tube (10) do not affect the radially reducing process of the end of the rectangular tube (10).
The manufacturing equipment according to the present invention consists of two stands, specifically a roll stand having upper and lower V-shaped rolls for preliminary forming and a roll stand with upper and lower flat rolls for radially reducing. In the radially reducing process of the rectangular tube (10), an internal die is inserted into the rectangular tube (10) at one end thereof, and the one end is inserted into the roll stand for preliminary forming and pressed by the V-shaped rolls to form the V-shaped grooves on the outer surfaces of the rectangular tube (10) in the longitudinal direction thereof. Subsequently, the end having V-shaped grooves formed thereon of the rectangular tube (10) is inserted into the roll stand for radially reducing and pressed by the flat rolls to form a radially reduced end.
The rolls of the respective roll stands are arranged so as to interpose the rectangular tube (10) therebetween (from the upper side to the lower side in
For the radially reducing process according to the present invention, rectangular tubes each having 45 mm×45 mm in rectangular cross-section were used. The material for these rectangular tubes was 3.2-mm-thick high-strength steel plates with a tensile strength of 400 MPa. The V-shaped rolls had an outside diameter of 50 mm and a width of 100 mm.
The V-shaped roll has a convex portion at the middle part in a width direction, which has a width of 28 mm, slope length of 20 mm, and inclined angle of 45 degrees. The flat rolls had an outside diameter of 50 mm and a width of 100 mm. The internal die had four V-shaped concave portions on the surface, which measured 5 mm in depth and 10 mm in width.
V-shaped grooves are formed on the outer surfaces of the rectangular tube on a V-groove forming stand. An internal die is inserted into the rectangular tube at one of the ends thereof, and the end was pressed against by V-shaped rolls rotating at a rate of 20 rpm from opposite outsides through the use of hydraulic cylinders to form V-shaped grooves that measured 5 mm in depth, 10 mm in width, and 100 mm in length. In the V-shaped groove forming, two opposite surfaces of the rectangular tube were processed simultaneously, and thereafter, the rectangular tube was rotated 90 degrees before V-shaped grooves were formed on the other two surfaces.
Subsequently, the rectangular tube was inserted into the roll stand for radially reducing, where two surfaces of the V-shaped groove rectangular tube at the end thereof were pressed by flat rolls rotating at a rate of 20 m/min from opposite outsides through the use of hydraulic cylinders. Subsequently, the 100-mm-long end part of the rectangular tube was radially reduced to 38 mm×38 mm. For comparison, the same rectangular tubes and flat rolls as described above were used, and the rectangular tube having the V-shaped grooves not formed on the surfaces thereof was inserted into the roll stand to radially reduce the 100-mm-long end part of the rectangular tube to 38 mm×38 mm by pressing the rotating flat rolls. The formed radially reduced ends were compared with each other. The radially reduced ends formed according to the present invention had flat outer surfaces of the defined dimensions. Meanwhile, the radially reduced ends formed for comparison partly failed to meet the defined dimensions due to the crimp generated on the outer surfaces.
Number | Date | Country | Kind |
---|---|---|---|
2011-217072 | Sep 2011 | JP | national |
This is a continuation application of International Patent Application No. PCT/JP2012/074870 filed on Sep. 27, 2012 claiming priority upon Japanese Patent Application No. 2011-217072 filed on Sep. 30, 2011, of which full contents are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1979430 | Wright | Nov 1934 | A |
1983074 | Durell | Dec 1934 | A |
1994725 | Offutt | Mar 1935 | A |
2055771 | McLaughlin | Sep 1936 | A |
3042099 | Neely | Jul 1962 | A |
3144070 | Mieszczak | Aug 1964 | A |
3370451 | Schuetz | Feb 1968 | A |
3399559 | Mitchell | Sep 1968 | A |
4350036 | Valente | Sep 1982 | A |
4982487 | Maruko et al. | Jan 1991 | A |
5907969 | Soder | Jun 1999 | A |
6757974 | Kido | Jul 2004 | B2 |
8833127 | Tomizawa | Sep 2014 | B2 |
20040139777 | Waldrop | Jul 2004 | A1 |
20150273558 | Tanoue et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
2283734 | Sep 1998 | CA |
1136479 | Nov 1996 | CN |
2426774 | Apr 2001 | CN |
1745930 | Mar 2006 | CN |
102172724 | Sep 2011 | CN |
WO 2010013273 | Feb 2010 | IT |
49-6037 | Feb 1974 | JP |
P491974-6037 | Feb 1974 | JP |
49-29628 | Aug 1974 | JP |
52-12768 | Mar 1977 | JP |
58-187224 | Nov 1983 | JP |
58187224 | Nov 1983 | JP |
P581983187224 | Nov 1983 | JP |
S58187224 | Nov 1983 | JP |
U061994-19938 | Mar 1994 | JP |
P 2001-522310 | Nov 2001 | JP |
P3359947 | Oct 2002 | JP |
2010-021553 | Feb 2010 | WO |
Entry |
---|
Office Action dated Apr. 3, 2015, in counterpart Chinese Patent Application No. 201280047837.0, 5 pages. |
English translation of the body text of the Office Action dated Apr. 3, 2015, in counterpart Chinese Patent Application No. 201280047837.0, 3 pages. |
Office Action dated Sep. 25, 2015, in counterpart Chinse Patent Application No. 201280047837.0, 5 pages. |
English translation of the body text of the Office Action dated Sep. 25, 2015, in counterpart Chinse Patent Application No. 201280047837.0, 2 pages. |
Office Action dated May 23, 2016, in Chinese Application No. 201280047837.0, with English translation, 9 pages. |
Office Action dated Aug. 5, 2016, in counterpart Australia Patent Application No. 2012317495, 3 pages. |
Office Action dated Dec. 30, 2015; U.S. Appl. No. 14/229,351; 9 pages. |
Final Office Action dated May 11, 2016; U.S. Appl. No. 14/229,351; 8 pages. |
Office Action dated Apr. 1, 2015, in Chinese Patent Application No. 201280047618.2, with English translation, 11 pages. |
Office Action dated Oct. 26, 2015, in Chinese Patent Application No. 201280047618,2, with English translation, 7 pages. |
Office Action dated Jul. 27, 2016, in Taiwanese Patent Application No. 101135477, 8 pages. |
Office Action for U.S. Appl. No. 14/229,351 dated Jan. 6, 2017. |
Number | Date | Country | |
---|---|---|---|
20150273548 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2012/074870 | Sep 2012 | US |
Child | 14229440 | US |