This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2013-190235, filed Sep. 13, 2013; the entire contents of which are incorporated herein by reference.
Exemplary embodiments described herein generally relate to a method of manufacturing a semiconductor device.
As an electrode pad of a semiconductor device, an aluminum film containing silicon is widely used from the viewpoint of the bonding property and reliability.
Such a silicon-containing aluminum film is etched by dry-etching in many cases.
Exemplary embodiments are to provide a method capable of manufacturing a semiconductor device including a silicon-containing aluminum film with high shape accuracy.
In general, according to one exemplary embodiment, there is provided a method of manufacturing a semiconductor device including: dry-etching an aluminum film containing silicon with a first etching gas containing halogen to decrease the thickness of the aluminum film (first etching); and dry-etching the aluminum film with a second etching gas containing inert gas (second etching).
Hereinafter, embodiments will be described with reference to the drawings. First, a first embodiment will be described.
First, as illustrated in
Next, as illustrated in
For example, as the etching gas, a mixture of chlorine gas (Cl2) and boron trichloride gas (BCl3) is used. It is assumed that a flow rate of the chlorine gas (Cl2) is 100 sccm, a flow rate of the boron trichloride gas (BCl3) is 100 sccm, a pressure is 0.1 Pa, and a power (Source/Bias) is (1000/200 W). Under these conditions, etching is performed for a time corresponding to 2.5 μm in terms of a pure aluminum film containing no silicon.
Next, as illustrated in
For example, as the etching gas, a mixture of argon gas (Ar) and chlorine gas (Cl2) is used. It is assumed that a flow rate of the argon gas (Ar) is 80 sccm, a flow rate of the chlorine gas (Cl2) is 40 sccm, a pressure is 1.5 Pa, and a power (Source/Bias) is (1000/200 W). Under these conditions, etching is performed for a time corresponding to 2.0 μm in terms of a pure aluminum film containing no silicon.
It should be noted that the etching gas of the first dry-etching may also contain inert gas. However, a flow ratio of inert gas in the etching gas of the first dry-etching is controlled to be lower than a flow ratio of inert gas in the etching gas of the second dry-etching.
In the second dry-etching, not only a base material made of aluminum but also the nodule 4 made of silicon is removed by etching. In addition, an upper portion of the interlayer insulating film 2 is slightly dug in the opening region 7. However, a trace of the nodule 4 is small in the top surface 2a of the interlayer insulating film 2.
Next, through necessary subsequent treatments, a semiconductor device is manufactured. The semiconductor device according to this exemplary embodiment is, for example, a power semiconductor device, and the AlSi film 3 forms an electrode pad of the device. By forming the electrode pad using the silicon-containing aluminum film instead of a pure aluminum film, the bonding property and reliability of the electrode pad are improved.
Next, the operation and advantageous effects of the embodiment will be described. In this embodiment, a part of the AlSi film 3 positioned inside the opening region 7 is etched by the first dry-etching illustrated in
The residual portion of the AlSi film 3 is etched by the second dry-etching illustrated in
As a result, a shape of the top surface 2a of the interlayer insulating film 2 in the opening region 7 is flat substantially without being reflected from a shape of the nodule 4. In this way, according to this embodiment, a substrate surface after etching can be finished in a flat shape, and a semiconductor device including the silicon-containing aluminum film can be manufactured with a high shape accuracy. As a result, in the manufactured semiconductor device, shape defects are difficult to occur, and characteristic defects caused by the shape defects are also difficult to occur.
In addition, by performing the first dry-etching before the second dry-etching, most part of the AlSi film 3 in the opening region 7 can be etched at a high etching rate while reserving the resist mask 5. As a result, the AlSi film 3 can be efficiently etched, and a semiconductor device can be manufactured with high productivity.
On the other hand, when it is assumed that the AlSi film 3 is etched by only the second dry-etching without performing the first dry-etching, an etching time is increased because the etching rate of the second dry-etching is lower than that of the first dry-etching. As a result, the productivity of a semiconductor device deteriorates. In addition, it is difficult to reserve the resist mask 5 until the etching of the AlSi film 3 is completed.
Further, in this embodiment, the etching gas of the second dry-etching contains halogen gas. As a result, since the AlSi film 3 can be etched not only by a sputtering effect due to inert gas but also by a chemical reaction due to halogen, the etching rate of the second dry-etching can be increased.
In this embodiment, a barrier layer made of, for example, titanium nitride (TiN) may be provided between the interlayer insulating film 2 and the AlSi film 3. In the second dry-etching, this barrier layer is selectively etched to the interlayer insulating film 2 and is removed from the opening region 7.
Next, a comparative example will be described. In this comparative example, an AlSi film 3 is etched by only the first dry-etching without performing the second dry-etching.
As illustrated in
As illustrated in
As illustrated in
Accordingly, when it is assumed that the first dry-etching is stopped in a state illustrated in
In this test example, semiconductor devices are manufactured using the method according to the embodiment and the method according to the comparative example, and surface roughness of each top surface of interlayer insulating films thereof is compared with each other. Etching conditions are the same as those in the above-described embodiment. In a square region having a length of one side of 0.1 mm at the center of the silicon wafer 1, the surface roughness (average roughness Ra) of the top surface 2a of the interlayer insulating film 2 is measured using an atomic force microscope (AFM). The results are illustrated in
As illustrated in
In addition, as illustrated in
Next, a second embodiment will be described. In this embodiment, in the process of forming the AlSi film 3 illustrated in
Therefore, in this embodiment, in the second dry-etching illustrated in
In this embodiment, the nodule 4 having a size close to the thickness of the AlSi film 3 before etching may be formed. In this case, a configuration may be adopted in which, when a part of the nodule 4 protrudes from the top surface of the AlSi film 3, the first dry-etching is stopped and the second dry-etching is started.
In this way, according to this embodiment, while securing the flatness of the top surface 2a of the interlayer insulating film 2 in the opening region 7, the flatness of the top surface of the AlSi film 3 can be improved in regions other than the opening region 7. In this embodiment, configurations and effects of the manufacturing method other than the above-described configurations and effects are the same as those of the first embodiment.
In the first and second embodiments, the examples in which the second dry-etching is stopped when the AlSi film 3 is removed in the opening region 7 are described. However, after the AlSi film 3 is removed in the opening region 7, the second dry-etching may be continued for a period of time, that is, over-etching may be performed.
According to the above-described embodiments, a method capable of manufacturing a semiconductor device including a silicon-containing aluminum film with a high shape accuracy can be realized.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2013-190235 | Sep 2013 | JP | national |