This application claims priority from Chinese Patent Application No. 2015100861698, filed on Feb. 17, 2015, in the State Intellectual Property Office of China, the content of which are hereby incorporated by reference in their entirety for all purposes.
1. Field of the Invention
The present invention relates to the technical field of civil engineering and experimental measurement of geological materials, in particular to a method of measurement of stress and strain whole process material parameter by using of hydrostatic pressure unloading.
2. Description of the Related Art
The measurement of the rules of variation of geological material whole process parameters is a scientific problem which has not been well solved so far. Its theory and method of measurement is still not sufficiently good. In addition, during the cycle of loading and unloading of the deviatoric stress, the geological material parameters are determined by the approximation to the linear segment of loading according to the test. This often results in large deviation, and even becomes difficult to determine.
The triaxial test measurement of material parameters has a long history. Furthermore, determining material parameters of rock mass and soil mass in the process of cyclic loading test also has a long history. However, since the current measurement neglects the fact that the deformation change from the hydrostatic pressure occurs, the corresponding material parameters are difficult to be determined when the applied deviatoric stress is greater than the proportional limit stress under the cyclic loading and unloading case.
The objective of the present invention is to overcome the existing deficiencies in the current techniques. A method of measurement of stress and strain whole process material parameter by using method for hydrostatic pressure unloading based on the triaxial test is provided.
The method of measurement of stress and strain whole process material parameter by using method for hydrostatic pressure unloading of the present invention includes the following steps:
(1.1) applying a hydrostatic pressure first in a true triaxial test, assuming σ11=σ11H , σ22=σ22H, σ33=σ33H, a relation between the hydrostatic pressure and an initial strain εiiH is:
σiiH=Ciijj0εjjH, i, j ∈(1,3) (1)
where Ciijj0 is an initial stiffness matrix.
(1.2) applying a deviator stress q, q=σ11+σ11H−σ11H; when the applied deviator stress is greater than the proportional limit stress qYield (i.e. yield limit stress space), linear stress-strain relations are expressed as:
σ11+σ11H=C11jjbεjj (2)
σiiH=Ciijjbεjj, i ∈(2,3), j∈(1,3) (3)
where Ciijjb is a stiffness matrix after exceeding yield limit stress space.
For the material parameters in stress state exceeding yield limit stress space, magnitudes thereof are calculated according to the linear segment of unloading curve and unloading is carried out until the hydrostatic pressure tends to zero (Refer to def in the FIGURE). C1111b, C1122b, C1133b is calculated using the equation (2). C2222b, C2233b, C3333b is calculated using the equation (3). As known from the symmetry of the stiffness matrix, C2211b=C1122b, C2233b=C3322b, C3311b=C1133b, C2211b, C3311b, C3322b are checked at the same time, that is, calculating the six material parameters and checking the three material parameters. When the material is completely isotropic,
the volume modulus CV,
can be calculated; or when equal amounts are unloaded in three directions at the same time, 1/CV can be calculated.
(1.3) closing a valve and carrying out non-drainage test for pores connecting material after the application of the hydrostatic pressure is completed under a condition of saturation. Assuming that Bishop effective stress exists, then the equation (2) and the equation (3) are expressed as
σ11+σ11H−α11P=C11jjbεjj (4)
σiiH−αiiP=C iijjbεjj, i ∈(2,3), j∈(1,3) (5)
Under the condition of saturation in which material stiffness parameters Ciijjb are obtained and the external applied stress σii, i ∈(1,3) is kept constant, the water pressure of non-draining test is unloaded from Pa to Pb (Refer to ab in the FIGURE). The strain εii is then sprung back from εiia to εiib. The corresponding amount of deformation spring back is εiia−εiib=−Δεii. The equation of increments for the equation (4) and the equation (5) are:
αiiΔP=CiijjbΔεjj(αii, i∈(1,3)) (6)
P
a
−P
b
=ΔP
Three Biot coefficients α11, α22, α33 can be calculated from the equation (6).
The method of measurement of stress and strain whole process material parameter by using method for unloading hydrostatic pressure of the present invention includes the following steps:
(2.1) for false triaxial test which adopts 50mm×50mm×100 mm hexahedron sample, first applying a hydrostatic pressure σ11=σ22=σ33=σH, a relation between the hydrostatic pressure and an initial strain εiiH is:
σiiH=Ciijj0εjjH, i,j∈(1,3) (7)
where Ciijj0 is an initial stiffness matrix.
(2.2) applying a deviator stress q, q=σ11+σ11H−σ11H; when the applied deviator stress is greater than the proportional limit stress qYield (i.e. yield limit stress space), linear stress-strain relations are expressed as:
σ11+σ11H=C11jjbεjj (8)
σiiH=Ciijjbεjj, i∈(2,3), j∈(1,3) (9)
where Ciijjb is a stiffness matrix after exceeding yield limit stress space.
For the material parameters in stress state exceeding yield limit stress space, magnitudes thereof are calculated according to the linear segment of unloading curve and unloading is carried out until the hydrostatic pressure tends to zero (Refer to def in the FIGURE). C1111b, C1122b, C1133b is calculated using the equation (8). C2222b, C2233b is calculated using the equation (9). Using the feature of the false triaxial test σ22H=σ33H, i.e. C2211bε11, C2222bε22+C2233bε33=C3311bε11+C3322bε22+C3333bε33, C3333b is calculated. As known from the symmetry of the stiffness matrix, C2211b=C1122b, C2233b=C3322b, C3311b=C1133b, C2211b, C3311b, C3322b are checked at the same time, that is, calculating the six material parameters and checking the three material parameters. When the material is completely isotropic,
the volume modulus CV,
can be calculated; or when equal amounts are unloaded in three directions at the same time, 1/CV can be calculated.
(2.3) closing a valve and carrying out non-drainage test for pores connecting material after the application of the hydrostatic pressure is completed under a condition of saturation. Assuming that Bishop effective stress exists, then the equation (8) and the equation (9) are expressed as
σ11+σ11H−α11P=C11jjbεjj (10)
σiiH−αiiP=Ciijjbεjj, i∈(2,3),j∈(1,3) (11)
Under the condition of saturation in which material stiffness parameters Ciijjb are obtained and the external applied stress σii, i ∈(1,3) is kept constant, the water pressure of non-draining test is unloaded from Pa to Pb (Refer to ab in the FIGURE). The strain εii is then sprung back from εiia, to εiib. The corresponding amount of deformation spring back is εiia−εiib=−Δεii. The equation of increments for the equation (10) and the equation (11) are:
αiiΔP=CiijjbΔεjj(αii,i ∈(1,3)) (12)
P
a
−P
b
=ΔP
Three Biot coefficients α11, α22, α33 can be calculated.
The method of measurement of stress and strain whole process material parameter by using method for unloading hydrostatic pressure of the present invention includes the following steps:
(3.1) for traditional false triaxial test using ø50 mm×100 mm cylinder sample, first applying a hydrostatic pressure σ11=σ22=σ33=σH, a relation between the hydrostatic pressure and an initial strain εiiH is:
σiiH=Ciijj0εjjH, i,j∈(1,3) (13)
where Ciijj0 is an initial stiffness matrix.
(3.2) applying a deviator stress q, q=σ11+σ11H−ε11H; when the applied deviator stress is greater than the proportional limit stress qYield (i.e. yield limit stress space), linear stress-strain relations are expressed as:
σ11+σ11H=C11jjbεjj (14)
σ22H=C22jjbεjj, σ22H=σ33H (15)
where Ciijjb is a stiffness matrix after exceeding yield limit stress space;
For the material parameters in stress state exceeding yield limit stress, magnitudes thereof are calculated according to the linear segment of unloading curve and unloading is carried out until the hydrostatic pressure tends to zero (Refer to def in the FIGURE). C111b, C1122b is calculated using the equation (14). C2222b is calculated using the equation (15). Using the symmetry of the stiffness matrix C2211b=C1122b, C2233b=C3322b, C3311b=C1133b and the feature of deformation measurement of the traditional false triaxial test, then σ22H=σ33H and ε22=ε33, C2211b=C3311b, i.e. C2211bε11+C2222bε22+C2233bε33+C3311bε11+C3322bε22+C3333bε33, then C2222b=C3333b, that is, the current radial deformation measurement by ring-shaped transducer in the traditional false triaxial test substantially assumes that the sample failure occurs symmetrically. The three material parameters can then be calculated. When the material is completely isotropic,
the volume modulus CV,
can be calculated; or when equal amounts are unloaded in three directions at the same time, 1/CV can be calculated.
(3.3) closing a valve and carrying out non-drainage test for pores connecting material after the application of the hydrostatic pressure is completed under a condition of saturation. Assuming that Bishop effective stress exists, then the equation (14) and the equation (15) are expressed as
σ11+σ11Hα11P=C11jjbεjj (16)
σiiH−αiiP=Ciijjbεjj, i∈(2,3), j∈(1,3) (17)
Under the condition of saturation in which material stiffness parameters Ciijjb are obtained and the external applied stress σ11, i ∈(1,3) is kept constant, the water pressure of non-draining test is unloaded from Pa to Pb. The strain εii is then sprung back from εiia, to εiib. The corresponding amount of deformation spring back is εiia−εiib=Δεii. The equation of increments for the equation (16) and the equation (17) are:
αiiP=CiijjbΔεjj(αii,i∈(1,2)) (18)
P
a
−P
b
=ΔP
Two Biot coefficients α11, α22 can be calculated.
The peak and proportional limit yield stress spaces decrease with an increase in damage until connecting with the residual strength yield surface. A specific expression is fyield(σyield)fD(D)=Const, where fyield(σyield) is the yield stress space, fD(D) is a function of damage variable (D), Const is a constant, that is a product of the yield stress space and the function of damage variable is constant.
The advantages of the method of the present invention are:
The present invention is directed to the cyclic test of loading and unloading. With the assumption that only the deviator stress generates damage to the sample, a test method of unloading the hydrostatic pressure is invented in order to calculate mechanical parameters in different stages of stress and strain. Nine mechanical parameters can be calculated in connection with hexahedral (50 mm×50 mm×100 mm) pores connecting samples in the true triaxial test. Six mechanical parameters can be calculated for non-pores connecting samples. Nine mechanical parameters can be calculated in connection with hexahedral (50 mm×50 mm×100 mm) pores connecting samples in the traditional triaxial test. Six mechanical parameters can be calculated for non-pores connecting samples. Six mechanical parameters can be calculated in connection with cylinder (ø50 mm×100 mm) pores connecting samples in the traditional triaxial test. Four mechanical parameters can be calculated for non-pores connecting samples. The specific expressions and test methods are provided.
The present invention also points out that apart from a complete isotropic body and equal amounts loaded and unloaded in three directions at the same time, the slope of the average stress and volume strain relation curve is meaningless for geological materials with linear elasticity. In addition, the yield limit stress space changes with the variations of damage and the expressions are provided. It is inappropriate for the residual traction stress not to be considered for the simulation of cyclic mechanical behavior.
The sole FIGURE is a loading and unloading diagram of parameters of the present invention.
The method of measurement of stress and strain whole process material parameter by using method for hydrostatic pressure unloading of the present invention includes the following steps:
(1.1) applying a hydrostatic pressure first in a true triaxial test, assuming σ11=σ11H, σ22=σ22H, σ33=σ33H, a relation between the hydrostatic pressure and an initial strain εiiH is:
σiiH=Ciijj0, i, j∈(1,3) (1)
where Ciijj0 is an initial stiffness matrix.
(1.2) applying a deviator stress q, q=σ11+σ11H−σ11H; when the applied deviator stress is greater than the proportional limit stress qYield (i.e. yield limit stress space), linear stress-strain relations are expressed as:
σ11+σ11H=C11jjbεjj (2)
σiiH=Ciijjbεjj, i∈(2,3), j∈(1,3) (3)
where Ciijjb is a stiffness matrix after exceeding yield limit stress space.
For the material parameters in stress state exceeding yield limit stress space, magnitudes thereof are calculated according to the linear segment of unloading curve and unloading is carried out until the hydrostatic pressure tends to zero (Refer to def in the FIGURE). C1111b, C1122b, C1133b is calculated using the equation (2). C2222b, C2233b, C3333b is calculated using the equation (3). As known from the symmetry of the stiffness matrix, C2211b=C1122b, C2233b=C3322b, C3311b=C1133b, C2211b, C3311b, C3322b are checked at the same time, that is, calculating the six material parameters and checking the three material parameters. When the material is completely isotropic,
the volume modulus CV,
can be calculated; or when equal amounts are unloaded in three directions at the same time, 1/CV can be calculated.
(1.3) closing a valve and carrying out non-drainage test for pores connecting material after the application of the hydrostatic pressure is completed under a condition of saturation. Assuming that Bishop effective stress exists, then the equation (2) and the equation (3) are expressed as
σ11+σ11H−α11P=C11jjbεjj (4)
σiiH−αiiP=Ciijjbεjj, i∈(2,3),j∈(1,3) (5)
Under the condition of saturation in which material stiffness parameters Ciijjb are obtained and the external applied stress σii, i ∈(1,3) is kept constant, the water pressure of non-draining test is unloaded from Pa to Pb (Refer to ab in the FIGURE). The strain εii is then sprung back from εiia to εiib. The corresponding amount of deformation spring back is εiia−εiib=−Δεii. The equation of increments for the equation (4) and the equation (5) are:
αiiΔP=CiijjbΔεjj(αii, i∈(1,3)) (6)
P
a
−P
b
=ΔP
Three Biot coefficients α11, α22, α33 can be calculated from the equation (6).
The method of measurement of stress and strain whole process material parameter by using method for hydrostatic pressure unloading of the present invention includes the following steps:
(2.1) for false triaxial test which adopts 50 mm×50 mm×100 mm hexahedron sample, first applying a hydrostatic pressure σ11=σ22=σ33=σH, a relation between the hydrostatic pressure and an initial strain εiiH is:
σiiH=Ciijj0εjjH, i,j∈(1,3) (7)
where Ciijj0 is an initial stiffness matrix.
(2.2) applying a deviator stress q, q=σ11+σ11H−σ11H; when the applied deviator stress is greater than the proportional limit stress qYield (i.e. yield limit stress space), linear stress-strain relations are expressed as:
σ11+σ11H=C11jjbεjj (8)
σiiH=Ciijjbεjj, i∈(2,3), j∈(1,3) (9)
where Ciijjb is a stiffness matrix after exceeding yield limit stress space.
For the material parameters in stress state exceeding yield limit stress space, magnitudes thereof are calculated according to the linear segment of unloading curve and unloading is carried out until the hydrostatic pressure tends to zero (Refer to def in the FIGURE). C1111b, C1122b, C1133b is calculated using the equation (8). C2222b, C2233b is calculated using the equation (9). Using the feature of the false triaxial test σ22H=σ33H, i.e. C2211bε11+C2222bε22+C2233bε33=C3311bε11+C3322bε22+C3333bε33, C3333b is calculated. As known from the symmetry of the stiffness matrix, C2211b=C1122b, C2233b=C3322b, C3311b=C1133b, C2211b, C3311b, C3322b are checked at the same time, that is, calculating the six material parameters and checking the three material parameters. When the material is completely isotropic,
the volume modulus CV,
can be calculated; or when equal amounts are unloaded in three directions at the same time, 1/CV can be calculated.
(2.3) closing a valve and carrying out non-drainage test for pores connecting material after the application of the hydrostatic pressure is completed under a condition of saturation. Assuming that Bishop effective stress exists, then the equation (8) and the equation (9) are expressed as
σ11+σ11H−α11P=C 11jjbεjj (10)
σiiH−αiiP=Ciijjbεjj, i∈(2,3),j∈(1,3) (11)
Under the condition of saturation in which material stiffness parameters Ciijjb are obtained and the external applied stress σii, i ∈(1,3) is kept constant, the water pressure of non-draining test is unloaded from Pa to Pb (Refer to ab in the FIGURE). The strain εii is then sprung back from εiia to εiib. The corresponding amount of deformation spring back is εiia−εiib=−Δεii. The equation of increments for the equation (10) and the equation (11) are:
αiiΔP=CiijjbΔεjj(αii,i∈(1,3)) (12)
P
a
−P
b
=ΔP
Three Biot coefficients α11, α22, α33 can be calculated.
The method of measurement of stress and strain whole process material parameter by using method for hydrostatic pressure unloading of the present invention includes the following steps:
(3.1) for traditional false triaxial test using ø50 mm×100 mm cylinder sample, first applying a hydrostatic pressure σ11=σ22=σ33=σH, a relation between the hydrostatic pressure and an initial strain εiiH is:
σiiH=Ciijj0εjjH, i,j∈(1,3) (13)
where Ciijj0 is an initial stiffness matrix.
(3.2) applying a deviator stress q, q=σ11+σ11H−σ11H; when the applied deviator stress is greater than the proportional limit stress qYield (i.e. yield limit stress space), linear stress-strain relations are expressed as:
σ11+σ11H=C11jjbεjj (14)
σ22H=C22jjbεjj, σ22H=σ33H (15)
where Ciijjb is a stiffness matrix after exceeding yield limit stress space;
For the material parameters in stress state exceeding yield limit stress space, magnitudes thereof are calculated according to the linear segment of unloading curve and unloading is carried out until the hydrostatic pressure tends to zero (Refer to def in the FIGURE). C1111b, C1122b is calculated using the equation (14). C2222b is calculated using the equation (15). Using the symmetry of the stiffness matrix C2211b=C1122b, C2233b=C3322b, C3311b=C1133b and the feature of deformation measurement of the traditional false triaxial test, then σ22H=σ33H and ε22=ε33, C2211b=C3311b, i.e. C2211bε11+C2222bε22+C2233bε33=C3311bε11+C3322bε22+C3333bε33, then C2222b=C3333b, that is, the current radial deformation measurement by ring-shaped transducer in the traditional false triaxial test substantially assumes that the sample failure occurs symmetrically. The three material parameters can then be calculated. When the material is completely isotropic,
the volume modulus CV,
can be calculated; or when equal amounts are unloaded in three directions at the same time, 1/CV can be calculated.
(3.3) closing a valve and carrying out non-drainage test for pores connecting material after the application of the hydrostatic pressure is completed under a condition of saturation. Assuming that Bishop effective stress exists, then the equation (14) and the equation (15) are expressed as
σ11+σ11H−α11P=C11jjbεjj (16)
σiiH−αiiP=Ciijjbεjj, i∈(2,3),j∈(1,3) (17)
Under the condition of saturation in which material stiffness parameters Ciijjb are obtained and the external applied stress σii, i ∈(1,3) is kept constant, the water pressure of non-draining test is unloaded from Pa to Pb. The strain εii is then sprung back from εiia to εiib. The corresponding amount of deformation spring back is εiia−εiib=−Δεii. The equation of increments for the equation (16) and the equation (17) are:
αiiΔP=CiijjbΔεjj(αii,i∈(1,2)) (18)
P
a
−P
b
=ΔP
Two Biot coefficients α11, α22 can be calculated.
The reasons for providing the method of the present invention are:
(1) due to the elastic behavior which damages and weakens the material. The material generates new damage after the loading stress is greater than the proportional limit stress space. That is, the proportional limit stress space decreases with an increase in damage until connecting with the residual strength stress space.
(2) because the sample loading is greater than the proportional limit stress space. The residual irreversible deformation and elastic deformation exist in the sample. This residual deformation must generate tensile stress in the sample. During loading-unloading-reloading cycle, a part of deformation generated by the compressive stress must fill up with the deformation generated by the residual tensile stress, which results in the reloading curve difficult to reflect the characteristics of the material. Therefore, it is inappropriate for the residual traction stress not to be considered for the simulation of cyclic mechanical behavior.
Number | Date | Country | Kind |
---|---|---|---|
201510086169.8 | Feb 2015 | CN | national |