The present invention generally relates to a method for forming a pattern during fabrication of a semiconductor device, and, more specifically, to a method for forming an image-reversed pattern.
In general, the lithography process used during semiconductor fabrication comprises the following steps: A layer of photoresist (PR) material is first applied on the surface of the wafer. The resist layer is then selectively exposed to radiation, such as ultraviolet light, electrons, or X-rays, with the exposed areas defined by a mask.
After exposure, the PR layer is subjected to development which alters the chemical property of the PR being exposed in the unwanted areas of the PR layer, exposing the corresponding areas of the underlying layer. Depending on the resist type, the development stage may destroy either the exposed or unexposed areas of the PR layer. The areas with no resist material left on top of them are then being processed to form patterns through additive and/or subtractive processes, allowing the selective deposition or removal of material on the substrate (or other base layer).
During development, the unwanted areas in the PR are dissolved by the developer. In the case where the exposed areas become soluble in the developer, a positive image of the mask pattern is produced on the resist. Such a resist is therefore called a positive photoresist. Negative photoresist layers result in negative images of the mask pattern, wherein the unexposed areas are soluble in the developer and those exposed areas are made non-soluble or significantly less soluble in the developer. Wafer fabrication may employ both positive and negative photoresists, although positive resists are preferred because they offer higher resolution capabilities. Since wafer fabrication may employ both positive and negative photoresists, it is therefore desirable, in certain circumstances, to have a cost-effective way to make a reverse-image of a mask.
In one embodiment of the present invention, a method of forming a reverse image pattern on a semiconductor substrate is provided. The method comprises depositing a transfer layer of amorphous carbon on the semiconductor substrate, depositing a resist layer on the transfer layer, creating a first pattern in the resist layer, creating the first pattern in the transfer layer, removing the resist layer, depositing a reverse mask layer over the first pattern in the transfer layer, planarizing the reverse mask layer down to the transfer layer whereby the first pattern remains filled with the reverse mask layer, and removing the transfer layer, thereby forming a second pattern in the reverse mask layer that is a reverse image of the first pattern.
In another embodiment of the present invention, a method of forming a reverse image pattern on a semiconductor substrate is provided, the method comprises depositing a transfer layer of amorphous carbon on the semiconductor substrate, depositing a resist layer on the transfer layer, creating a first pattern in the resist layer, creating the first pattern in the transfer layer, removing the resist layer, depositing a metal reverse mask layer over the first pattern in the transfer layer, planarizing the metal reverse mask layer; and removing the transfer layer without removing a portion of the metal reverse mask layer, thereby forming a second pattern that is a reverse image of the first pattern.
The structure, operation, and advantages of the present invention will become further apparent upon consideration of the following description taken in conjunction with the accompanying figures (FIGs.). The figures are intended to be illustrative, not limiting.
Certain elements in some of the figures may be omitted, or illustrated not-to-scale, for illustrative clarity. The cross-sectional views may be in the form of “slices”, or “near-sighted” cross-sectional views, omitting certain background lines which would otherwise be visible in a “true” cross-sectional view, for illustrative clarity.
Often, similar elements may be referred to by similar numbers in various figures (FIGs) of the drawing, in which case typically the last two significant digits may be the same, the most significant digit being the number of the drawing figure (FIG).
As stated in the brief description of the drawings, often, similar elements may be referred to by similar numbers in various figures (FIGs) of the drawing, in which case typically the last two significant digits may be the same, the most significant digit being the number of the drawing figure (FIG). For example, base layer 202 of
The material used for the reverse mask layer 408 should meet the following criteria:
The reverse mask layer 408 may be deposited via chemical vapor deposition, atomic layer deposition, plasma enhanced chemical vapor deposition, or other suitable technique. It is preferable to use a deposition technique that does not leave voids in smaller areas of the pattern, and also to limit overburden (the amount of excess material) that can cause problems during planarization.
The removal of the transfer layer (see 504 of
Although the invention has been shown and described with respect to a certain preferred embodiment or embodiments, certain equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described components (assemblies, devices and circuits) the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiments of the invention. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several embodiments, such feature may be combined with one or more features of the other embodiments as may be desired and advantageous for any given or particular application.
Number | Name | Date | Kind |
---|---|---|---|
5328810 | Lowrey et al. | Jul 1994 | A |
5340438 | Roselle | Aug 1994 | A |
7332262 | Latchford et al. | Feb 2008 | B2 |
7455956 | Sandhu et al. | Nov 2008 | B2 |
7678704 | Klee et al. | Mar 2010 | B2 |
7776747 | Ban et al. | Aug 2010 | B2 |
20010013603 | Mitsutake et al. | Aug 2001 | A1 |
20030127426 | Chang et al. | Jul 2003 | A1 |
20050214694 | Hong et al. | Sep 2005 | A1 |
20060267075 | Sandhu et al. | Nov 2006 | A1 |
20080254607 | Plat et al. | Oct 2008 | A1 |
20080272467 | Bok et al. | Nov 2008 | A1 |
20090057821 | Issaq et al. | Mar 2009 | A1 |
20090104786 | Narita | Apr 2009 | A1 |
20100099261 | Lee | Apr 2010 | A1 |
20100190325 | Kim | Jul 2010 | A1 |
20100248160 | Lee | Sep 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20120302069 A1 | Nov 2012 | US |