The present invention relates to methods for preparing ceramic powders, and particularly to wet-chemical processes using chelate precursors.
Ceramic powders are used in the fabrication of numerous different types of devices including specialized mechanical components, coating for mechanical components, semiconductor devices, superconducting devices, device packaging, passive electronic components such as capacitors, and more sophisticated energy storage devices. Numerous different techniques exist for the synthesis and fabrication of ceramic powders including solid phase synthesis such as solid-solid diffusion, liquid phase synthesis such as precipitation and coprecipitation, and synthesis using gas phase reactants. Moreover, a host of related fabrication techniques can also be used including: spray drying, spray roasting, metal organic decomposition, freeze drying, sol-gel synthesis, melt solidification, and the like.
Various advantages of wet-chemical methods used in the preparation of powders for the fabrication of ceramics have been well-known since the early 1950s. Pioneering work in this area has been done at the Massachusetts Institute of Technology, the National Bureau of Standards (now the National Institute of Standards and Technology), Philips Research Laboratories, and Motorola, Inc.
Despite the advantages of wet chemical processes, the ceramics industry largely remains reluctant to employ these techniques. Conventional methods for preparing ceramic powders entail mechanical mixing of dry powders of water-insoluble carbonates, oxides, and sometimes silicates, where each constituent of the ceramic composition is carefully selected individually. For example, if the ceramic composition has nine constituents in solid solution, then correspondingly nine starting powders are selected in accordance with the amount of each required for the end product compound. The starting powders are very likely to have different median particle sizes and different particle size distributions. In an attempt to comminute the mixture of powders to a smaller, more uniform particle size and size distribution for each component, the powder mixture is placed in a ball mill and milled for several hours. The milling process generates wear debris from the ball mill itself and, the debris becomes incorporated in the powder mixture. Because of the often wide disparity in particle size among the various commercially available starting powders (and even significant variation in particle size of the same powder from lot to lot), an optimum result from ball milling rarely occurs, and a contamination-free product is never obtained.
Moreover, additional processing steps are still required. Solid-solid diffusion at high temperature (but below the temperature at which sintering starts) of the ball-milled powder mixture is required to form a usable and, preferably, fully reacted homogeneous single powder. The finer each powder in the mixture is, the higher the particle surface-to-volume ratio is for each. This means that there is a greater surface area per unit weight of each powder for the solid-solid diffusion to occur. Moreover, longer times spent at high temperature (e.g., the calcining temperature) produce a more satisfactory end product. Homogeneity is improved by repeating several times the ball-milling and calcining steps in succession, each requiring several hours. Of course, this increases the amount of ball-milling wear debris added to the powder, thereby increasing the amount of contamination in the end ceramic product.
Accordingly, it is desirable to have improved wet-chemical processing techniques to prepare ceramic powders for use in the fabrication of various different devices and materials.
It has been discovered that wet-chemical methods involving the use of water-soluble hydrolytically stable metal-ion chelate precursors and the use of a nonmetal-ion-containing strong base can be used in a coprecipitation procedure for the preparation of ceramic powders. Examples of the precipitants used include tetraalkylammonium hydroxides. A composition-modified barium titanate is one of the ceramic powders that can be produced. Certain metal-ion chelates can be prepared from 2-hydroxypropanoic acid and ammonium hydroxide.
In one embodiment in accordance with the invention a method is disclosed. A plurality of precursor materials are provided in solution. Each of the plurality of precursor materials in solution further comprises at least one constituent ionic species of a ceramic powder. At least one of the plurality of precursor materials in solution is a chelate solution. The plurality of precursor materials are combined in solution with a precipitant solution to cause coprecipitation of the ceramic powder in a combined solution. The ceramic powder is separated from the combined solution.
In another embodiment in accordance with the invention, a substantially contaminant free ceramic powder produced by a process is disclosed. The process includes: providing a plurality of precursor materials in solution, combining the plurality of precursor materials in solution with a nonmetal-ion-containing strong base precipitant solution to cause coprecipitation of the ceramic powder in a combined solution; and separating the ceramic powder from the combined solution. Each of the plurality of precursor materials in solution further comprises at least one constituent ionic species of the ceramic powder. At least one of the plurality of precursor materials in solution is a chelate solution.
The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. As will also be apparent to one of skill in the art, the operations disclosed herein may be implemented in a number of ways, and such changes and modifications may be made without departing from this invention and its broader aspects. Other aspects, inventive features, and advantages of the present invention, as defined solely by the claims, will become apparent in the non-limiting detailed description set forth below.
A more complete understanding of the present invention and advantages thereof may be acquired by referring to the following description and the accompanying drawings, in which like reference numbers indicate like features.
The following sets forth a detailed description of at least the best contemplated mode for carrying out the one or more devices and/or processes described herein. The description is intended to be illustrative and should not be taken to be limiting.
The processes and techniques described in the present application can be utilized to prepare numerous different types of ceramic powders, as will be understood to those skilled in the art. Thus, although the present application emphasizes the use of these processes and techniques in the fabrication of dielectric materials for use in electrical energy storage devices (e.g., doped or composition-modified barium titanate), the same or similar techniques and processes can be used to prepare other ceramic powders, and those ceramic powders may find application in the manufacture of various components, devices, materials, etc.
As noted in the aforementioned '609 patent application, high-permittivity calcined composition-modified barium titanate powders can be used to fabricate high quality dielectric devices. U.S. Pat. No. 6,078,494 (hereby incorporated by reference herein in its entirety) describes examples of various doped barium titanate dielectric ceramic compositions. More specifically, the '494 patent describes a dielectric ceramic composition comprising a doped barium-calcium-zirconium-titanate of the composition (Ba1-α-μ-νAμDνCaα)[Ti1-x-δ-μ′-ν′MnδA′μ′D′ν′Zrx]zO3, where A=Ag, A′=Dy, Er, Ho, Y, Yb, or Ga; D=Nd, Pr, Sm, or Gd; D′=Nb or Mo, 0.10≦x≦0.25; 0≦μ≦0.01, 0≦μ′≦0.01, 0≦ν≦0.01, 0≦ν′≦0.01, 0≦δ≦0.01, and 0.995≦z≦0≦α≦0.005. These barium-calcium-zirconium-titanate compounds have a perovskite structure of the general composition ABO3, where the rare earth metal ions Nd, Pr, Sm and Gd (having a large ion radius) are arranged at A-sites, and the rare earth metal ions Dy, Er, Ho, Y, Yb and Ga (having a small ion radius) are arranged at B-sites. The perovskite material includes the acceptor ions Ag, Dy, Er, Ho, Y or Yb and the donor ions Nb, Mo, Nd, Pr, Sm and Gd at lattice sites having a different local symmetry. Donors and acceptors form donor-acceptor complexes within the lattice structure of the barium-calcium-zirconium-titanate according to the invention. The dielectric ceramic compositions described by the '494 patent are just some of the many types of ceramic compositions that can be fabricated using the processes and techniques of the present application.
In the present application, chelates are used as precursors to one or more of the constituent components of a target ceramic powder. In general, chelation is the formation or presence of bonds (or other attractive interactions) between two or more separate binding sites within the same ligand and a single central atom. A molecular entity in which there is chelation (and the corresponding chemical species) is called a chelate. The terms bidentate (or didentate), tridentate, tetradentate . . . multidentate are often used to indicate the number of potential binding sites of the ligand, at least two of which are used by the ligand in forming a chelate.
For example, various wet-chemical powder preparation techniques for composition-modified barium titanate are described below. The methods make use of aqueous solutions for some or all reactants to form by coprecipitation the desired powders. Furthermore, the approach extends the use of one or more chelates (preferably water-soluble or water stable) as precursors to several of the component metal ions comprising the constituents of the composition-modified barium titanate. A nonmetal-ion-containing strong base, e.g., selected from among tetraalkylammonium hydroxides, such as tetramethylammonium hydroxide [(CH3)4NOH] in aqueous solution is used as the precipitant for the mixture of precursors in aqueous solution. The tetraalkylammonium hydroxides, unlike conventional strong bases, e.g., sodium and potassium hydroxides, do not introduce contamination metal ions, e.g., sodium and potassium ions, to the end product. Note that there are numerous organic compounds that are basic in pH, but the tetraalkylammonium hydroxides as a group are the only organic compounds that are strong bases, e.g., as strong as common ones: NaOH and KOH, which are inorganic compound bases.
In wet-chemical methods for the preparation of ceramic powders by coprecipitation of a mixture of precursors from solution, small amounts of precipitant will typically be included within the micropores and nanopores of the product powder. Similarly, small amounts of precipitant will also be adsorbed onto the surface of product powder. Where strong bases such as sodium hydroxide or potassium hydroxide are used as the precipitant, a very large amount of DI water is consumed (typically in several successive washings of the precipitated powder) in the attempt to rid the product of the residual precipitant. This procedure is rarely completely successful, and thus some residual precipitant remains. Subsequent calcining in air of the powder product converts the residual sodium or potassium hydroxide (which upon exposure to ambient air is first converted to the carbonate by reaction with carbon dioxide in the ambient air) to the oxide, which by solid-solid diffusion becomes incorporated within the product as a constituent. For many applications, this additional constituent is an undesirable contaminant.
This unwanted result can be circumvented by the use of any of the tetraalkylammonium hydroxides as the strong base. In the examples below, tetramethylammonium hydroxide is selected for the precipitant, but various other tetraalkylammonium hydroxides can be used. In principle, no washing of the precipitated powder is needed to remove residual precipitant. However, in some embodiments, a DI water washing step, or some other washing step, is performed. Thus, a solid-solid solution of water-soluble hydrated and chelated metal-ion species in their proportioned amounts is precipitated as an oxide (the composition-modified barium titanate) by the nonmetal-ion-containing tetramethylammonium hydroxide.
During calcination in air of the product powder, the residuals: tetramethylammonium hydroxide, tetramethylammonium nitrate, tetramethylammonium 2-hydroxypropanate, ammonium hydroxide, ammonium nitrate, and ammonium 2-hydroxypropanate, are thermally decomposed and oxidized and thereby completely converted to gaseous products: H2O, NH3, CO, CO2, N2, O2, N2O, NO, and NO2. Another advantage of the use of a tetraalkylammonium hydroxide as the precipitant is the amount of DI water required for washing is reduced or, in principle, no DI water washing step is needed since the residuals are completely converted to gaseous products.
Preparation of the high-permittivity calcined composition-modified barium titanate powder in this manner yields high purity powders with narrow particle-size distribution. The microstructures of ceramics formed from these calcined wet-chemical-prepared powders are uniform in grain size and can also result in smaller grain size. Electrical properties are improved so that higher relative permittivities and increased dielectric breakdown strengths can be obtained. Further improvement can be obtained by the elimination of voids within the sintered ceramic body with subsequent hot isostatic pressing.
In one embodiment, at least one, but not necessarily all of the precursors are chelates. A solution of the precursors: Ba(NO3)2, Ca(NO3)2.4H2O, Nd(NO3)3.6H2O, Y(NO3)3.4H2O, Mn(CH3COO)2.4H2O, ZrO(NO3)2, and [CH3CH(O—)COONH4]2Ti(OH)2, is formed in deionized water. In this example the Ti chelate [CH3CH(O—)COONH4]2Ti(OH)2 is used. As needed, the solution can be mixed and/or heated (e.g., heated to 80° C.) and is made in the proportionate amount in weight percent for each of the precursors as shown in Table 1.
A separate solution of tetramethylammonium hydroxide, possibly in excess of the amount required, is made in deionized water free of dissolved carbon dioxide (CO2) and heated to 80°-85° C. Table 2 illustrates example calculations for the minimum amount of tetramethylammonium hydroxide needed.
Since the formula weight (FW) of tetramethylammonium hydroxide is 91.15, the weight of the minimum amount of tetramethylammonium hydroxide needed for 100 g of precursor mixture is (0.738105 mol)×(91.15 g/mol)=67.278 g.
The two solutions are mixed by pumping the heated ingredient streams simultaneously through a coaxial fluid jet mixer. A slurry of the coprecipitated powder is produced and collected in a drown-out vessel. The coprecipitated powder is refluxed in the drown-out vessel at 90°-95° C. for 12 hr and then filtered, optionally deionized-water washed, and dried. Alternatively, the powder can be collected by centrifugal sedimentation, or some other technique. The subsequent powder is calcined under suitable conditions, e.g., at 1050° C. in air in an appropriate silica glass (fused quartz) tray or tube.
In other examples, multiple chelate precursors are used in a similar process. In the case of Zr, various Zr compounds can be used as precursors. As noted in the example above, oxozirconium(IV) nitrate(zirconyl nitrate) [ZrO(NO3)2] can be used. However, ZrO(NO3)2 requires a relatively low pH of about 1.5, provided by an added acid solution, e.g., nitric acid (HNO3), to prevent hydrolysis. An alternative approach for the precursor is the use of the hydrolytically stable chelate: zirconium(IV) bis(ammonium 2-hydroxypropanato)dihydroxide [zirconium(IV) bis(ammonium lactato)dihydroxide] {[CH3CH(O—)COONH4]2Zr(OH)2} aqueous solution, which is stable over the pH range from 6 to 8 up to 100° C. Although this compound is not readily available commercially, it can be prepared from any of the alkyl oxides of zirconium(IV). Any of these zirconium(IV)alkyl oxides serve as an intermediate from the zirconium tetrachloride[zirconium(IV) chloride] (ZrCl4) source in the preparation of all other zirconium(IV) compounds. Examples of commercially available zirconium(IV)alkyl oxides include: the ethoxide [Zr(OCH2CH3)4], the propoxide [Zr(OCH2CH2CH3)4], the isopropoxide {Zr[OCH(CH3)2]4}, the butoxide [Zr(OCH2CH2CH2CH3)4], and the tert-butoxide {Zr[OC(CH3)3]4}.
Of these examples, zirconium(IV)isopropoxide(tetra-2-propyl zirconate) is likely to be the lowest cost because of the very large volume of 2-propanol (isopropyl alcohol) produced by several manufacturers. These alkyl oxides are all soluble in alcohols, but they all hydrolyze in the presence of moisture. However, by reaction with 2-hydroxypropanoic acid (2-hydroxypropionic acid, lactic acid) [CH3CH(OH)COOH], 85 wt % in aqueous solution, followed with ammonium hydroxide (NH4OH), 28 wt % ammonia (NH3) in water, the water-stable zirconium(IV) chelate is prepared. The other reaction product is the alcohol from which the zirconium(IV) alkyl oxide was originally made in the reaction with the zirconium tetrachloride source. This alcohol is recoverable by fractional distillation, membrane pervaporization, or the like.
The suitable water-stable titanium(IV) chelate: titanium(IV) bis(ammonium 2-hydroxypropanato)dihydroxide[titanium(IV) bis(ammonium lactato)dihydroxide] {[CH3CH(O—)COONH4]2Ti(OH)2}, is commercially available from, for example, DuPont with trade name Tyzor® LA. It can be prepared from any of the alkyl oxides of titanium(IV). Readily available commercial titanium(IV) alkyl oxides include the following: the methoxide [Ti(OCH3)4], the ethoxide [Ti(OCH2CH3)4], the propoxide [Ti(OCH2CH2CH3)4], the isopropoxide {Ti[OCH(CH3)2]4}, the butoxide [Ti(OCH2CH2CH2CH3)4], and the tert-butoxide {Ti[OC(CH3)3]4}). Of these, titanium(IV) isopropoxide(tetra-2-propyl titanate) is likely to be the least expensive. By similar preparation methods as those described above for the conversion of an alkyl oxide of zirconium(IV) to the water-stable chelate, an alkyl oxide of titanium(IV) can be converted to the water-stable titanium(IV) chelate.
Water-soluble and/or stable chelates of manganese(II), yttrium(III), lanthanum(III), neodymium(III), and several other metal ions can be prepared with the use of 2-hydroxypropanoic acid (lactic acid) and ammonium hydroxide. The most convenient starting compounds are commercially available water-insoluble carbonates of these metal ions, because they more readily react with 2-hydroxypropanoic acid aqueous solution to form the very stable water-soluble (ammonium 2-hydroxypropanato) metal-ion chelates. Water-insoluble oxides can also be used as starting compounds, although they are not as quickly reactive.
For example, a manganese chelate can be produced when the manganese(II) carbonate (MnCO3) is converted to bis(ammonium 2-hydroxypropanato) manganese(II) (i.e., ammonium manganese (II) 2-hydroxypropanate) {Mn[CH3CH(O—)COONH4]2}, as shown in the following reaction equations:
Similarly, an yttrium chelate can be produced by converting yttrium(III) carbonate [Y2(CO3)3] to tris(ammonium 2-hydroxypropanato) yttrium(III) (i.e., ammonium yttrium(III) 2-hydroxypropanate) {Y[CH3CH(O—)COONH4]3} as shown in the following reaction equations:
A lanthanum chelate can be produced by converting lanthanum(III) carbonate [La2(CO3)3] to tris(ammonium 2-hydroxypropanato) lanthunm(III) (i.e., ammonium lanthanum(III) 2-hydroxypropanate) {La[CH3CH(O—)COONH4]3} as shown in the following reaction equations:
A neodymium chelate can be produced by converting neodymium(III) carbonate [Nd2(CO3)3] to tris(ammonium 2-hydroxypropanato) neodymium(III) (i.e., ammonium neodymium(III) 2-hydroxypropanate) {Nd[CH3CH(O—)COONH4]3} as shown in the following reaction equations:
In general, nitrate compounds have the highest solubilities in water, as concentration in moles per liter of solution at 20° C., i.e., molar, and moles per 1000 grams of water at 20° C., i.e., molal, of any salt. Uniquely, there are no water-insoluble nitrates. Since the nitrate anion [(NO3)−] does not interfere with the formation of the chelate, the nitrates, too, can be used as starting compounds. The nitrates are readily available commercially. Accordingly the first reaction of 2-hydroxypropanoic acid with the oxo-metal-ion and metal-ion species as indicated above are as follows:
Then with ammonium hydroxide the reaction is:
The next-step reactions with ammonium hydroxide are the same as those given above.
In the preparation of the hydrolytically stable chelates, at the first step of the reaction of either (1) the titanium(IV) and zirconium(IV) alkyl oxides, or (2) the metal-ion(II) and metal-ion(III) carbonates with the 2-hydroxypropanoic acid aqueous solution, the more acidic hydrogen ion of the carboxyl group (COOH) splits off first to form (1) the alcohol from which the alkyl oxide was made, or (2) water and carbon dioxide. With addition of the weak base ammonium hydroxide, the hydrogen atom of the hydroxyl group (OH) splits off as a hydrogen ion to form water and the ammonium ion [(NH4)+] salt of the 2-hydroxypropanate chelate. The hydrogen atom of the hydroxyl group (OH) on the carbon atom (the 2-position or alpha-position) adjacent to the carbonyl group (C═O) is relatively acidic forming a hydrogen ion splitting off with sufficiently basic conditions provided by the addition of the ammonium hydroxide aqueous solution. Additionally, the presence of the hydroxyl group in the 2-position to the carboxylic acid group results in an increased acidity of the latter.
As a chelating agent, 2-hydroxypropanoic acid is a bidentate ligand, since it can bond to a central metal cation via both oxygen atoms of the five-sided ring. Since the outer cage has two or three anion groups, the total negative charge exceeds the positive charge of the central metal cation, and the chelate is an anion with the ammonium cations [(NH4)+] for charge balance. Ammonium ion salts have high water solubilities at neutral and near neutral pH conditions.
Use of hydrolytically stable chelates in this regard is extremely versatile, even though many of the chelate precursors are not readily available commercially. In particular, such chelates have applicability to all the metal ions of the Periodic Table except, those of Groups IA and perhaps IIA, for coprecipitation procedures in the preparation of ceramic powders. Alkaline metal ions do not form complexes and alkaline earth metal ions (Group IIA) form rather weak complexes with 2-hydroxypropanoic acid.
In general all the water-soluble 2-hydroxycarboxylic acids (alpha-hydroxycarboxylic acids) form considerably stronger complex molecular ions with most metals ions, through bidentate chelation involving both functional donor groups, than do the corresponding simple carboxylic acids. This feature makes possible in aqueous solution at neutral and near neutral pH hydrolytically stable mixtures of these chelates involving two to nearly all metal ions and oxometal ions in any mole ratio of any one to any other. Moreover, it is important to note that the ammonium compounds: nitrates, 2-hydroxproanates, etc., thermally decompose and oxidize away as gases, so that they do not have to be washed away from the product precipitate. Numerous variations on these chelate formation techniques will be known to those skilled in the art.
Table 3 illustrates an example composition modified barium titanate compound formed using the above described chelate precursors. In this example, the formula weight of the resulting compound is 237.24.
In one embodiment, the two ingredient streams, one containing the aqueous solution of all the metal-ion compound precursors, and the other containing the aqueous solution of the tetramethylammonium hydroxide strong base, are reacted together simultaneously and continuously in a fluid jet column that provides a high turbulence energy environment. The total volume for the saturated or near-saturated commercially available and specially manufactured aqueous solutions of the precursors is typically four times that of the 25 wt % tetramethylammonium hydroxide aqueous solution. There are two options in this case for the jet fluid column: (1) adjust the former to a flow rate four times that of the latter, keeping the stream velocities equal by having the applied driving pressure to the two streams the same, but with the cross-sectional area of the nozzle of the former four times that of the latter; and (2) dilute one volume of the latter by three volumes of DI water, thereby lowering the concentration from 25 wt % to 6.25 wt % With equal volumes for both streams, the nozzles are alike, the flow rates are equal, and the applied driving pressure is the same. The amount of liquid processed is 60 percent greater than that of the first option, however. The first has the substantial advantage of minimizing the amount of liquid handling and the usage of DI water. There is no technical advantage in product quality of one over the other. Examples of such fluid jet column mixing techniques are described in U.S. Pat. No. 5,087,437 (hereby incorporated by reference herein in its entirety).
In other embodiments, other techniques and devices can be used to combine the ingredient streams such as, for example: (1) pouring one solution in one vessel into the other solution in another vessel and using mechanical or ultrasonic mixing, and (2) metering the solution in one vessel at some given flow rate into the other solution in another vessel and using mechanical or ultrasonic mixing. Numerous other mixing techniques will be known to those skilled in the art.
The resulting slurry can be refluxed as appropriate. Next, the slurry is transferred to a filtration or separation device. The separating of the precipitate from the liquid phase and the isolation of precipitate can be carried out using a variety of devices and techniques including: conventional filtering, vacuum filtering, centrifugal separation, sedimentation, spray drying, freeze drying, or the like. The filtered powder can then undergo various washing, drying, and calcining steps as desired.
The advantages of wet-chemical methods in the preparation of powders for fabricating oxide ceramics of technical significance are enlarged in scope with the use, as precursors, of hydrolytically stable chelates of metal ions or oxometal ions at neutral and near-neutral pH, and with the use, as the strong-base precipitating agent such as a tetraalkylammonium hydroxide aqueous solution. A preferred chelating agent is the very water-soluble 2-hydroxypropanoic acid (i.e., lactic acid) followed by neutralization with the weak-base ammonium hydroxide aqueous solution, both of which are produced in high volume and are thus relatively low in cost.
In the examples illustrated above, various compounds, solutions, temperature ranges, pH ranges, quantities, weights, and the like are provided for illustration purposes. Those having skill in the art will recognize that some or all of those parameters can be adjusted as desired or necessary. For example, other acids can be used in place of 2-hydroxypropanoic acid as a chelating agent. Alpha-hydroxycarboxylic acids having at least the same five-sided ring including the carbonyl group and having the two oxygen atoms of the ring bonding to the central metal ion or oxometal ion can be used and include:
These water-soluble chelating agents are also useful in preparing the water-soluble precursors for the coprecipitation procedure, but they are more costly than lactic acid. Other water-soluble alpha-hydroxycarboxylic acids can be used as will be known to those skilled in the art.
Although the present invention has been described with respect to specific embodiments thereof, various changes and modifications may be suggested to one skilled in the art and it is intended that the present invention encompass such changes and modifications as fall within the scope of the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 09/833,609, entitled “Electrical-Energy-Storage Unit (EESU) Utilizing Ceramic and Integrated-Circuit Technologies for Replacement of Electrochemical Batteries,” filed Apr. 12, 2001, now U.S. Pat. No. 7,033,406 and naming Richard D. Weir and Carl W. Nelson as inventors. The above-referenced application is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3647364 | Mazdiyasni et al. | Mar 1972 | A |
3947553 | Moss | Mar 1976 | A |
4054598 | eBlum et al. | Oct 1977 | A |
4606906 | Ritter et al. | Aug 1986 | A |
4643984 | Abe et al. | Feb 1987 | A |
4671618 | Wu et al. | Jun 1987 | A |
4733328 | Blazej | Mar 1988 | A |
4772576 | Kimura et al. | Sep 1988 | A |
4834952 | Rollat | May 1989 | A |
4839339 | Bunker et al. | Jun 1989 | A |
4859448 | Klee et al. | Aug 1989 | A |
4880758 | Heistand, II et al. | Nov 1989 | A |
4886654 | Ohga et al. | Dec 1989 | A |
4946810 | Heistand, II et al. | Aug 1990 | A |
5011804 | Bergna et al. | Apr 1991 | A |
5017446 | Reichman et al. | May 1991 | A |
5043843 | Kimura et al. | Aug 1991 | A |
5045170 | Bullock et al. | Sep 1991 | A |
5064783 | Luckevich | Nov 1991 | A |
5082811 | Bruno | Jan 1992 | A |
5086021 | Sasaki et al. | Feb 1992 | A |
5087437 | Bruno et al. | Feb 1992 | A |
5116560 | Dole et al. | May 1992 | A |
5116790 | Bruno et al. | May 1992 | A |
5118528 | Fessi et al. | Jun 1992 | A |
5155072 | Bruno et al. | Oct 1992 | A |
5196388 | Shyu | Mar 1993 | A |
5238673 | Bruno et al. | Aug 1993 | A |
5242674 | Bruno et al. | Sep 1993 | A |
5252311 | Riman et al. | Oct 1993 | A |
5340510 | Bowen | Aug 1994 | A |
5362472 | Lauter et al. | Nov 1994 | A |
5407618 | Stephenson | Apr 1995 | A |
5417956 | Moser | May 1995 | A |
5445806 | Kinugasa et al. | Aug 1995 | A |
5466646 | Moser | Nov 1995 | A |
5514822 | Scott et al. | May 1996 | A |
5559260 | Scott et al. | Sep 1996 | A |
5654456 | Scott et al. | Aug 1997 | A |
5708302 | Azuma et al. | Jan 1998 | A |
5711988 | Tsai et al. | Jan 1998 | A |
5730874 | Wai et al. | Mar 1998 | A |
5731948 | Yializis et al. | Mar 1998 | A |
5738919 | Thomas et al. | Apr 1998 | A |
5744258 | Bai et al. | Apr 1998 | A |
5776239 | Bruno | Jul 1998 | A |
5777038 | Nishikawa et al. | Jul 1998 | A |
5797971 | Zheng et al. | Aug 1998 | A |
5800857 | Ahmad et al. | Sep 1998 | A |
5833905 | Miki | Nov 1998 | A |
5850113 | Weimer et al. | Dec 1998 | A |
5867363 | Tsai et al. | Feb 1999 | A |
5900223 | Matijevic et al. | May 1999 | A |
5929259 | Lockemeyer | Jul 1999 | A |
5973175 | Bruno | Oct 1999 | A |
5973913 | McEwen et al. | Oct 1999 | A |
5995359 | Klee et al. | Nov 1999 | A |
6005764 | Anderson et al. | Dec 1999 | A |
6072688 | Hennings et al. | Jun 2000 | A |
6078494 | Hansen | Jun 2000 | A |
6159442 | Thumm et al. | Dec 2000 | A |
6195249 | Honda et al. | Feb 2001 | B1 |
6221332 | Thumm et al. | Apr 2001 | B1 |
6228161 | Drummond | May 2001 | B1 |
6243254 | Wada et al. | Jun 2001 | B1 |
6268054 | Costantino et al. | Jul 2001 | B1 |
6282079 | Nagakari et al. | Aug 2001 | B1 |
6294620 | Huang et al. | Sep 2001 | B1 |
6296716 | Haerle et al. | Oct 2001 | B1 |
6331929 | Masuda | Dec 2001 | B1 |
6352681 | Horikawa et al. | Mar 2002 | B1 |
6410157 | Nakamura | Jun 2002 | B1 |
6420476 | Yamada et al. | Jul 2002 | B1 |
6432526 | Arney et al. | Aug 2002 | B1 |
6447910 | Wataya | Sep 2002 | B1 |
6485591 | Nakao | Nov 2002 | B1 |
6501639 | Takafuji | Dec 2002 | B2 |
6550117 | Tokuoka | Apr 2003 | B1 |
6589501 | Moser et al. | Jul 2003 | B2 |
6599463 | Miyazaki et al. | Jul 2003 | B2 |
6627099 | Ono et al. | Sep 2003 | B2 |
6673274 | Venigalla et al. | Jan 2004 | B2 |
6692721 | Hur et al. | Feb 2004 | B2 |
6703719 | McConnell | Mar 2004 | B1 |
6715197 | Okuyama | Apr 2004 | B2 |
6749898 | Nakamura | Jun 2004 | B2 |
6790875 | Noguchi et al. | Sep 2004 | B2 |
6790907 | Takata et al. | Sep 2004 | B2 |
6819540 | Allen et al. | Nov 2004 | B2 |
6869586 | Moser et al. | Mar 2005 | B1 |
6905989 | Ellis et al. | Jun 2005 | B2 |
7033406 | Weir et al. | Apr 2006 | B2 |
7061139 | Young | Jun 2006 | B2 |
7068898 | Buretea et al. | Jun 2006 | B2 |
7091344 | Hall et al. | Aug 2006 | B2 |
7147834 | Wong et al. | Dec 2006 | B2 |
7164197 | Mao et al. | Jan 2007 | B2 |
7182930 | Tsay et al. | Feb 2007 | B2 |
7190016 | Cahalen et al. | Mar 2007 | B2 |
7223378 | Sterzel | May 2007 | B2 |
7228050 | Buretea et al. | Jun 2007 | B1 |
7247590 | Kawabata et al. | Jul 2007 | B2 |
7431911 | Shirakawa et al. | Oct 2008 | B2 |
7496318 | Miura et al. | Feb 2009 | B2 |
7595109 | Weir et al. | Sep 2009 | B2 |
20010010367 | Burnell-Jones | Aug 2001 | A1 |
20020186522 | Honda et al. | Dec 2002 | A1 |
20030052658 | Baretich | Mar 2003 | A1 |
20030215384 | Sterzel et al. | Nov 2003 | A1 |
20040071944 | Weir et al. | Apr 2004 | A1 |
20040135436 | Gilbreth | Jul 2004 | A1 |
20040163570 | Vanmaele et al. | Aug 2004 | A1 |
20040175585 | Zou et al. | Sep 2004 | A1 |
20050167404 | Yamazaki | Aug 2005 | A1 |
20060022304 | Rzeznik | Feb 2006 | A1 |
20060078492 | Kurozumi et al. | Apr 2006 | A1 |
20060133988 | Kurozumi et al. | Jun 2006 | A1 |
20060159850 | Breton et al. | Jul 2006 | A1 |
20060172880 | Shirakawa et al. | Aug 2006 | A1 |
20060182667 | Zech et al. | Aug 2006 | A1 |
20060210779 | Weir et al. | Sep 2006 | A1 |
20060269762 | Pulugurtha et al. | Nov 2006 | A1 |
20060283354 | Shinoda et al. | Dec 2006 | A1 |
20070026580 | Fujii | Feb 2007 | A1 |
20070040204 | Pulugurtha et al. | Feb 2007 | A1 |
20070085212 | Mao et al. | Apr 2007 | A1 |
20070141747 | Li et al. | Jun 2007 | A1 |
20070199729 | Siegel et al. | Aug 2007 | A1 |
20070205389 | Kurozumi et al. | Sep 2007 | A1 |
20070253145 | Kurozumi et al. | Nov 2007 | A1 |
20080016681 | Eisenring | Jan 2008 | A1 |
20080026929 | Jensen et al. | Jan 2008 | A1 |
20080031796 | Weir et al. | Feb 2008 | A1 |
20080044344 | Shikida et al. | Feb 2008 | A1 |
20080090006 | Yoshinaka et al. | Apr 2008 | A1 |
20080145292 | Shirakawa et al. | Jun 2008 | A1 |
20080241042 | Li et al. | Oct 2008 | A1 |
20080280161 | Jang et al. | Nov 2008 | A1 |
20080318144 | Watanabe et al. | Dec 2008 | A1 |
20090001317 | Okamoto | Jan 2009 | A1 |
20090001353 | Shukla et al. | Jan 2009 | A1 |
20090002802 | Shibuya et al. | Jan 2009 | A1 |
20090050850 | Fukui et al. | Feb 2009 | A1 |
20090326729 | Hakim et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
0250085 | Dec 1987 | EP |
0206575 | Feb 1993 | EP |
1020487 | Jul 2000 | EP |
1148030 | Oct 2001 | EP |
1296339 | Oct 2001 | EP |
1500721 | Jan 2005 | EP |
1598326 | Nov 2005 | EP |
1626065 | Feb 2006 | EP |
1724015 | Nov 2006 | EP |
1788040 | May 2007 | EP |
1860068 | Nov 2007 | EP |
55154321 | Dec 1980 | JP |
63248719 | Oct 1988 | JP |
01179721 | Jul 1989 | JP |
03068102 | Mar 1991 | JP |
403068102 | Mar 1991 | JP |
05017150 | Jan 1993 | JP |
07291607 | Nov 1995 | JP |
10092685 | Apr 1998 | JP |
11147716 | Jun 1999 | JP |
2001110665 | Apr 2001 | JP |
2003192343 | Jul 2003 | JP |
9108469 | Jun 1991 | WO |
WO 9316012 | Aug 1993 | WO |
2004092070 | Oct 2004 | WO |
2005097704 | Oct 2005 | WO |
2005097705 | Oct 2005 | WO |
2006022447 | Mar 2006 | WO |
2006124670 | Nov 2006 | WO |
2007103421 | Sep 2007 | WO |
2008153585 | Dec 2008 | WO |
2008155970 | Dec 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20070148065 A1 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09833609 | Apr 2001 | US |
Child | 11369255 | US |