Jagadish et al., High Level Production of Hybrid Potyvirus-like Particles Carrying Repetitive Copies of Foreign Antigens in Escherichia coli, Bio/technology, vol. 11, Oct. 1993, pp 1166-1170. |
Usha et al., Expression of an Animal Virus Antigenic Site on the Surface of a Plant Virus Particle, Virology, vol. 197, No. 1, Nov. 1993, pp 366-375. |
Fitchen et al., Plant virus expressing hybrid coat protein with added murine epitope elicits autoantibody response, Vaccine 1995, vol. 13, No. 12, pp 1051-1057. |
Haynes et al., Development of a Genetically-Engineered, Candidate Polio Vaccine Employing the Self-Assembling Properties of the Tobacco Mosaic . . . , Bio/technology, vol. 4, Jul. 1986, pp 637-641. |
Hwang et al., Expression of tobacco mosaic virus coat protein and assembly of pseudovirus particles in Escherichia coli, Proc.Natl.Acad.Sci.USA, vol. 91, Sep. 1994, pp 9067-9071. |
Takamatsu et al., Production of enkephalin in tobacco protoplasts . . . , FEBS Letters 08729, vol. 269, No. 1, Aug. 1990, pp 73-76. |
Sugiyama et al., Systemic production of foreign peptides on the particle surface of tobacco mosaic virus, FEBS Letters 359 (1995) pp 247-250. |
Hamamoto et al., A New Tobacco Mosaic Virus Vector and its use for the Systemic Production of Angiotensin-I-Converting Enzyme Inhibitor . . . , Bio/technology, vol. 11, Aug. 1993, pp 930-932. |
Chapman et al., Potato virus X as a vector for gene expression in plants, The Plant Journal (1992) 2(4), pp 549-557. |
Kavanagh et al., Molecular Analysis of a Resistance-Breaking Strain of Potato Virus X, Virology 189, 1992, pp 609-617. |
Tetsuichiro Saito et al., “Mutational Analysis of the Coat Protein Gene of Tobacco Mosaic Virus in Relation to Hypersensitive Response in Tobacco Plants with the N1 Gene,” Virology 173, pp. 11-20, 1989. |
Thomas H. Turpen et al., “Malarial Epitopes Expressed on the Surface of Recombinant Tobacco Mosaic Virus,” Bio/Technology vol. 13, pp. 53-57, Jan. 13, 1995. |
Roy French et al., “Bacterial Gene Inserted in an Engineered RNA Virus: Efficient Expression in Monocotyledonous Plant Cells,” Science, vol. 231, pp. 1294-1297, Mar. 14, 1986. |
Raul Andino et al., “Engineering Poliovirus as a Vaccine Vector for the Expression of Diverse Antigens,” Science, vol. 265, pp. 1448-1451, Sep. 2, 1994. |
D.D. Shukla et al., “The N and C Termini of the Coat Proteins of Potyviruses Are Surface-located and the N Terminus Contains the Major Virus-specific Epitopes,” Journal of General Virology, vol. 69, pp. 1497-1508, 1988. |
Jeremy D. A. Kitson et al., “Chimeric Polioviruses That Include Sequences Derived from Two Independent Antigenic Sites of Foot-and-Mouth Disease Virus (FMDV) Induce Neutralizing Antibodies against FMDV In Guinea Pigs,” Journal of Virology, vol. 65, No.6, pp. 3068-3075, Jun. 1991. |
Karen L. Burke et al., “A Cassette Vector for the Construction of Antigen Chimaeras of Poliovirus,” Journal Of General Virology, vol. 70, pp. 2475-2479, 1989. |
M. James C. Crabbe et al., “Modelling of poliovirus HIV-1 antigen chimaeras,” FEBS, vol. 271, No. 1, 2, pp. 194-198, Oct. 1990. |
Annette Martin et al., “Engineering a poliovirus type 2 antigenic site on a type 1 capsid results in a chimaeric virus which is neurovirulent for mice,” The EMBO Journal, vol. 7, No. 9, pp. 2839-2847, 1988. |
J.M. Hogle et al., “Three-Dimensional Structure of Poliovirus at 2.9 Å Resolution,” Science vol. 229, pp. 1358-1365, Sep. 27, 1985. |
David J. Evans et al., “An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies,” Letters to Nature, vol. 339, pp. 385-388, Jun. 1, 1989. |
Karen L. Burke et al., “Antigen chimaeras of poliovirus as potential new vaccines”, Letters to Nature, vol. 332, pp. 81-82, Mar. 3, 1988. |
Johannes T. Dessens et al., “Mutational Analysis ofthe Putative Catalytic Triad of the Cowpea Mosaic Virus 24K Protease,” Virology, vol. 184, pp. 738-746, 1991. |
Owen Jenkins et al., “An Antigen Chimera of Poliovirus Induces Antibodies against Human Papillomavirus Type 16,” Journal of Virology, vol. 64, No. 3, pp. 1201-1206, Mar. 1990. |
Paul Ahlquist et al., “Nucleotide Sequence of the Brome Mosaic Virus Genome and its Implications for Replication,” J. Molecular Biology, vol. 172, pp. 369-383, 1984. |
A.D. Murdin et al., “Phenotypic characterization of antigenic hybrids of poliovirus,” Microbial Pathogenesis, vol. 10, pp. 39-45, 1991. |
A.D. Murdin et al., “The effect of site and mode of expression of a heterologous antigenic determinant on the properties of poliovirus hybrids,” Microbial Pathogenesis, vol. 10, pp. 27-37, 1991. |
Zhongguo Chen et al., “Capsid structure and RNA packaging in comoviruses,” seminars in Virology, vol. 1, pp. 453-466, 1990. |
Michael M. Sveda et al., “Functional expression in primate cells of cloned DNA coding for the hemagglutinin surface glycoprotein of influenza virus,” Proc. Nat'l. Acad. Sci., vol. 78, No. 9, pp. 5448-5492, Sep. 1981. |
Hugh S. Mason et al., “Expression of hepatitis B surface antigen in transgenic plants,” Proc. Natl'l. Acad. Sci., vol. 89, pp. 11745-11749, Dec. 1992. |
Jonathan B. Rohll et al., “3-Terminal Nucleotide Sequences Important for the Accumulation of Cowpea Mosaic Virus M-RNA,” Virology, vol. 193, pp. 672-679, 1993. |
Douglas R. Black et al., “Structure and Infectivity of Picornaviral RNA Encapsidated by Cowpea Chlorotic Mottle Virus Protein,” Journal of Virology, vol. 12, No. 6, pp. 1209-1215, Dec. 1973. |
D.E. Sleat et al., “Packaging of Recombinant RNA Molecules into Pseudovirus Particles Directed by the Origin-of-Assembly Sequence from Tobacco Mosaic Virus RNA,” Virology, vol. 155, pp. 299-308, 1986. |
Robert Sacher et al., “Hybrid Brome Mosaic Virus RNAs Express and Are Packaged in Tobacco Mosaic Virus Coat Protein in Vivo,” Virology, vol. 167, pp. 15-24, 1988. |
C.L. Holness et al., “Identification of the Initiation Codons for Translation of Cowpea Mosaic Virus Middle Competent RNA Using Site-Directed Mutagenesis of an Infectious cDNA Clone,” Virology 172, pp. 311-320, 1989. |
G.P. Lomonossoff et al., “The Synthesis and Structure of Comovirus Capsids,” Prog. Biophys. Molec. Biol. vol. 55, pp. 107-137, 1991. |
Zhongguo Chen et al., “Protein-RNA Interaction in an Icosahedral Virus at 3.0 Å Resolution,” Science, vol. 245, pp. 154-159, 1989. |
Bruno Zaccomer et al., “The remarkable variety of plant RNA virus genomes,” Journal of General Virology, vol. 76, pp. 231-247, 1995. |
Thorleif Joelson et al., “Presentation of a foreign peptide on the surface of tomato bushy stunt virus,” Journal Of General Virology, vol. 78, pp. 1213-1217, 1997. |
Kristian Dalsgaard et al., “Plant-derived vaccine protects target animals against a viral disease,” Nature Biotechnology, vol. 15, pp. 248-252, Mar. 1997. |
George P. Lomonossoff, “Plant viruses and pharmaceuticals,” Agro-Food-Industry-Hi-Tech, pp. 7-11, Mar./Apr. 1995. |
Tianwei Lin et al., “Structure-based design of peptide presentation on a viral surface: the crystal structure of a plant/animal virus chimera at 2.8 Å resolution,” Folding & Design, vol. 1, No. 3, pp. 179-187, Apr. 17, 1996. |
George Lomonossoff et al., “Eukaryotic viral expression systems for polypeptides,” seminars in Virology, vol. 6, pp. 257-267, 1995. |
Rob Goldbach et al., “Evolution of Plus-Strand RNA Viruses,” Intervirology, vol. 29, pp. 260-267, 1988. |
Rob Goldbach et al., “Genetic Organization, Evolution and Expression of Plant Viral RNA Genomes,” Proceedings of the NATO Advanced Research Workshop on Recognition and Response in Plant-Virus Interactions, held at Chichester, West Sussex, UK, Apr. 12-16, 1989, 10 pp. |
J. Johnson et al., “Presentation of Heterologous Peptides on Plant Viruses: Genetics, Structure, and Function,” Annu. Rev. Phytopathol., vol. 35, pp. 67-86, 1997. |
Ryan et al. 1994 The EMBO Journal vol. 13 No. 4 (Feb. 15) p 928-933, Feb. 1994. |