Claims
- 1. An apparatus comprising a low-carbon steel tube, said low-carbon steel tube yielding plastically more than about 5% before fracturing at temperatures down to about −40° C. when stress sufficient to cause said low-carbon steel tube to so yield is applied to said low-carbon steel tube.
- 2. The apparatus of claim 1 wherein said low-carbon steel tube is formed from a low-carbon steel consists essentially of, by weight, about 0.07% to about 0.12% carbon, about 0.70% to about 1.60% manganese, up to about 0.020% phosphorous, up to about 0.015% sulfur, about 0.06% to about 0.35% silicon, about 0.25% to about 1.20% chromium, up to about 0.65% nickel, about 0.20% to about 0.70% molybdenum, up to about 0.35% copper, about 0.02% to about 0.06% aluminum, up to about 0.05% vanadium, up to about 0.25% residual elements, and the balance iron.
- 3. The apparatus of claim 1, wherein said low-carbon steel tube has a tensile strength of at least about 130,000 psi, a yield strength of at least about 104,000 psi, and an elongation at break of at least about 14%.
- 4. The apparatus of claim 1, wherein said low-carbon steel tube is formed from a low-carbon steel that consists essentially of, by weight, about 0.07% to about 0.12% carbon, about 0.70% to about 1.60% manganese, up to about 0.020% phosphorous, up to about 0.015% sulfur, about 0.06% to about 0.35% silicon, about 0.25% to about 1.20% chromium, up to about 0.65% nickel, about 0.20% to about 0.70% molybdenum, up to about 0.35% copper, about 0.02% to about 0.06% aluminum, up to about 0.05% vanadium, up to about 0.19% residual elements, and the balance iron and has a tensile strength of at least about 130,000 psi, a yield strength of at least about 104,000 psi, and an elongation at break of at least about 14%.
- 5. A method comprising the steps of:
casting a billet of low-carbon steel, said billet of low-carbon steel having a first diameter and consists essentially of, by weight, about 0.07% to about 0.12% carbon, about 0.70% to about 1.60% manganese, up to about 0.020% phosphorous, up to about 0.015% sulfur, about 0.06% to about 0.35% silicon, about 0.25% to about 1.20% chromium, up to about 0.65% nickel, about 0.20% to about 0.70% molybdenum, up to about 0.35% copper, about 0.02% to about 0.06% aluminum, up to about 0.05% vanadium, up to about 0.25% residual elements, and the balance iron; reducing the diameter of said billet of low-carbon steel by hot-rolling said billet, forming a tube having an annular wall by piercing said billet; reducing the thickness of said annular wall to a first thickness by cold drawing said tube, heat treating said tube after said cold drawing to form a low-carbon steel tube that yields plastically more than about 5% before fracturing at temperatures down to about −40° C. when stress sufficient to cause said low carbon steel tube to so yield is applied to said low-carbon steel tube.
- 6. The method of claim 5, wherein the step of heat treating comprises heating said tube to a temperature of at least about 900° C., cooling said tube to room temperature, and tempering said tube to a temperature of at least about 500° C.
- 7. The method of claim 6, wherein the step of heat treating comprises induction heating said tube to a temperature of about 900° C. and cooling said tube to room temperature.
Parent Case Info
[0001] The present invention is a continuation-in-part of U.S. patent application Ser. No. 09/654,153, filed Sep. 1, 2000 and assigned to the assignee of the present invention.
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09654153 |
Sep 2000 |
US |
Child |
09944873 |
Aug 2001 |
US |