1. Field of the Invention
The present invention relates to a method of producing a liquid ejection head for ejecting liquid.
2. Description of the Related Art
An ink jet recording head employed in an ink jet recording method, in which recording is performed by ejecting ink onto a recording medium, is a typical liquid ejection head. An ink jet recording head usually includes an ink flow path, ejection-energy generating elements provided at a part of the flow path, and fine ink-ejection ports through which ink is ejected by the energy generated by the ejection-energy generating portions.
Japanese Patent Publication No. 2-24220 discloses a method of producing a liquid ejection head, which can be applied to the production of an ink jet recording head. In the method disclosed therein, a side wall of a liquid flow path is formed on a substrate having a plurality of ejection-energy generating portions so as to enable communication with the outside at a position near the circumference of the substrate and so as to enable liquid to be supplied therefrom into the flow path. Then, a photoresist layer forming a ceiling of the flow path is laminated thereon, and the photoresist on a space serving as the flow path is exposed, heated, and cured. Finally, unexposed portions of the photoresist are removed to provide ejection ports in the photoresist.
United States Patent Application Publication No. US2007/0070122 discloses a method in which a liquid supply port is processed on the surface of a substrate having a liquid supply port penetrating from the surface to the back surface of the substrate to form a side wall of the flow path. Then, a photoresist layer is laminated thereon, and ejection ports are provided in the photoresist layer, at positions above the space that eventually serves as the flow path.
In the method disclosed in Japanese Patent Publication No. 2-24220, when the ejection ports are provided in the photoresist layer, gas in the space that eventually serves as the flow path is heated by the heat after the exposure and expands. However, because the flow path communicates with the outside air at the circumference of the substrate, the gas can be discharged. Also in the method disclosed in United States Patent Application Publication No. US2007/0070122, the expanded gas can be discharged through the supply port to the back surface of the silicon substrate. By efficiently discharging gas, the photoresist layer can be prevented from being deformed by the expanded gas.
However, because the supply port is provided at a side end of the substrate in the structure of the liquid ejection head disclosed in Japanese Patent Publication No. 2-24220, with a long liquid ejection head, liquid refilling characteristics may vary depending on the distance between the supply port and the ejection ports.
On the other hand, with the method disclosed in United States Patent Application Publication No. US2007/0070122, because the substrate having the opening is weak, the substrate may be deformed by the stress applied thereto when the photoresist layer is formed thereon. In addition, forming a flat layer on the substrate surface having an opening is difficult. Thus, a special flattening process may be required.
As has been described, with the conventional techniques, the gas expanded by the photolithography can be discharged from the supply port. However, the ejection performance of the head and the production process are limited.
The present invention can provide a method of producing, with a high yield, a liquid ejection head having an ejection port member that is precisely formed by efficiently discharging gas expanded by photolithography, with few limitations on the head structure and production process.
The present invention is a method of producing a liquid ejection head including an ejection port member having ejection ports through which liquid is ejected, and a flow-path-wall member having inner walls of liquid flow paths through which liquid is supplied to the ejection ports, the method comprising, in sequence, the steps of: preparing a substrate having the flow-path-wall member; bonding the flow-path-wall member to a resin layer that is composed of a photo-curing resin and serves as the ejection port member such that spaces serving as the flow paths are provided inside; providing through-holes in the resin layer such that the space communicates with the outside air; exposing part of the resin layer; heating the exposed portion of the resin layer; and removing the unexposed portion from the heated resin layer to form the ejection ports, thereby forming the ejection port member.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
FIGS. 2A to 2E1 are schematic cross-sectional views of the recording head in the production process of the method of producing a recording head according to the embodiment of the present invention.
The present invention will be described below with reference to the drawings.
A liquid ejection head can be installed in an apparatus, such as a printer, a copier, a facsimile with a communication system, or a word processor with a printer, as an ink jet recording head that ejects recording ink. A liquid ejection head can also be installed in an industrial recording system combined with various processing apparatuses. In addition, a liquid ejection head can be used for producing biochips, for printing electronic circuits, and for spraying medicine.
A method of producing an ink jet recording head (recording head), in which ink is used as a liquid to be ejected to form a recording image on a recording medium, the method being an example of the method of producing a liquid ejection head of the present invention, will be described below. In the following description, the same reference numerals refer to the same structures (i.e., the structures having the same functions) throughout various figures, and descriptions thereof will be omitted.
Referring to
As shown in
As shown in
Next, as shown in
Next, as shown in FIG. 2A1, through-holes 7 are provided in the resin layer 6a using laser light or the like, such that the internal spaces 8a surrounded by the flow-path-wall member 5 and the resin layer 6a communicate with the outside air. Desirably, the through-holes 7 are provided in the resin layer 6a in a dispersed manner because the through-holes 7 serve as gas escape holes in the subsequent heating step. Examples of the laser light that can be used in providing the through-holes include excimer laser light that employs krypton and fluorine gases, YAG laser light, and the like. The choice of the suitable laser light depends on the material of the resin layer 6a. A laser stop layer 3 composed of metal, such as copper, gold, and tantalum, or their alloy, which absorbs laser light for processing resin is formed on the insulating protection film 4. The laser stop layer 3 significantly reduces the damage to the substrate 1 because the laser stop layer 3 absorbs the laser light penetrating through the resin layer 6a. The laser stop layer 3 is unnecessary when CO2 laser (wavelength: 10600 nm) is used because it causes less damage to the silicon substrate 1. The through-holes 7 may be provided also by mechanical processing, such as dry etching or drilling. Any other method of providing holes may be employed, as long as the holes can be provided at such a low temperature that the gas in the spaces 8a does not expand until the resin layer 6a is substantially deformed. As shown in
Next, as shown in FIGS. 2B and 2B1, to form the ejection port member 6, part of the resin layer 6a is exposed while blocking light incident on a portion that becomes the ejection ports 11 using a mask 20. At this time, to remove a portion of the resin layer 6a extending outward of the flow-path-wall member 5, light incident on this portion may be blocked. Although the ejection ports 11 can be formed at positions facing the energy generating elements 2, the ejection ports 11 do not necessarily have to be formed at those positions.
Then, as shown in FIGS. 2C and 2C1, the resin layer 6a is heated to cure the exposed portion. The resin layer 6a can be heated, in a chamber, using an oven or the like from the surface of the substrate, or using a hot-plate or the like, from the back surface of the substrate. The heating temperature can be appropriately selected according to the property of the photo-curing resin. Although the gas (air, replacement gas, or the like) in the spaces 8a eventually serve as the flow paths expand at this time, the resin layer 6a is not substantially deformed because the gas is discharged from the through-holes 7. Accordingly, the exposed portion of the resin layer 6a can be sufficiently cured without reducing the heating level from the originally intended level, whereby the ejection ports 11 can be formed with a high resolution and the mechanical strength of the ejection port member 6 can be increased.
Next, as shown in FIGS. 2D and 2D1, the unexposed and, hence, uncured portion of the resin layer 6a is removed to form the ejection ports 11 communicating with the flow paths 8 in the resin layer 6a. Thus, the ejection port member 6 is formed. The ejection ports 11 are used for forming an image. On the other hand, the through-holes 7 can be used as the ejection ports that do not contribute to the formation of an image. However, the through-holes 7 may be associated with the energy generating elements 2 so that they can be used as the ejection ports for image formation.
Then, as shown in FIGS. 2E and 2E1, the mask 10 on the substrate 1, at a portion which eventually serves as the ink supply port 13, is patterned by photolithography. Then, a part of the silicon substrate 1 and the insulating protection film 4 covering the portion which eventually serves as the ink supply port 13 are removed by etching, such as wet etching or dry etching. Thus, the ink supply port 13 penetrating the substrate and communicating with the flow paths 8 is formed.
Then, the substrate 1 is divided into chips using a dicing saw or the like. An electric wiring line for driving the energy generating elements 2 are bonded to each chip, and then a chip tank member for supplying ink is bonded. Thus, a recording head that can be mounted to a recording apparatus is completed.
The present invention will be described in more detail below based on the Example.
A method of producing ink jet recording head according to Example 1 will be described.
First, the substrate 1 was prepared, on the surface of which the energy generating elements 2, composed of an exothermic material, and the insulating protection film 4, including two layers composed of SiO and SiN and deposited by plasma-CVD, were formed. SiO and SiN protect the electric wiring lines from ink. The mask 10 used for forming the ink supply port 13, formed on the back surface of the substrate 1, was an oxidation film. The electric pads for electrical connection and the laser stop layer 3 were composed of Au and formed by sputtering. The laser stop layer may also be composed of Cu or Ag. The electric pads, the wiring lines, and the driving elements are not shown. A negative-type photosensitive resin film having a thickness of 18 μm was formed on the substrate 1 by spin-coating, to form side walls of flow paths. The composition of Composition 1, composed of the aforementioned materials, is as follows.
epoxy resin available from DAICEL CHEMICAL INDUSTRIES, LTD., under the trade name “EHPE3150”: 100% by weight light cationic initiator available from ADEKA CORPORATION, under the trade name “SP-172”: 6% by weight xylene (solvent) 100% by weight
The negative-type photosensitive resin was exposed and developed to form the flow-path-wall member 5 (see
Next, the film-like resin layer 6a composed of the negative-type photosensitive resin was placed on the flow-path-wall member 5, together with a base film 12 (see
epoxy resin available from DAICEL CHEMICAL INDUSTRIES, LTD., under the trade name “EHPE3150”: 100% by weight light cationic initiator available from ADEKA CORPORATION, under the trade name “SP-172”: 6% by weight
The film-like resin layer 6a was laminated by using a laminator available from MCK CO., LTD, under the trade name “MDF-200C”, at a roller temperature of 35° C., a stage temperature of 35° C., a roller speed of 10 mm/s, and a roller pressure of 0.2 MPa. The resin layer 6a was placed on the flow-path-wall member 5, together with the base film 12.
Next, laser light was emitted to both the resin layer 6a and the base film 12 to from the through-holes 7 having a diameter of 10 μm in the resin layer 6a (see
Next, using an i-line exposure FPA-3000i5 (wavelength: 365 nm) available from CANON KABUSHIKI KAISHA, the resin layer 6a was exposed with a portion to be provided with the ejection ports being covered with the mask 20 (see
Then, the resin layer 6a was heated at 90° C. for four minutes to cure the exposed portion (see
Next, development was performed to provide the ejection ports 11. At the position of A-A′ cross section, the unexposed portions 6b around the through-holes 7 were removed by the development, and the ejection ports 11 used for forming an image, having a diameter of 15 μm, which is larger than the diameter of the through-holes, were formed (see
Next, the mask 10 on the portion which eventually serves as the ink supply port 13 was patterned to form an opening pattern of the ink supply port 13. Thereafter, using tetramethyl ammonium hydroxide solution from the opening, the supply port 13 was formed (see
Then, the substrate was divided into chips using a dicing saw or the like. An electric wiring line for driving the energy generating elements 2 were bonded to each chip, and then a chip tank member for supplying ink was bonded. Thus, a recording head was obtained. As a result of the observation of the recording head from the side surface, no warping was found in the ejection port surface. Furthermore, good printing results were obtained with this recording head, without blurring.
The present invention enables high-yield production of a liquid ejection head having an ejection port member that is precisely formed and prevented from being deformed by efficiently discharging internal gas from through-holes provided in an ejection port member in an ejection-port forming step, with flexibility in structure and production process.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2010-201064 filed Sep. 8, 2010, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2010-201064 | Sep 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4362809 | Chen et al. | Dec 1982 | A |
4370405 | O'Toole et al. | Jan 1983 | A |
4557797 | Fuller et al. | Dec 1985 | A |
4609614 | Pampalone et al. | Sep 1986 | A |
5126289 | Ziger | Jun 1992 | A |
5607824 | Fahey et al. | Mar 1997 | A |
5635333 | Petersen et al. | Jun 1997 | A |
5948290 | Yamamoto et al. | Sep 1999 | A |
6114085 | Padmanaban et al. | Sep 2000 | A |
6669995 | Insalaco et al. | Dec 2003 | B1 |
7470505 | Bertelsen et al. | Dec 2008 | B2 |
20020079558 | Natarajan et al. | Jun 2002 | A1 |
20040253535 | Cameron et al. | Dec 2004 | A1 |
20070070122 | Bertelsen et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
1080892 | Jan 1994 | CN |
1621236 | Jun 2005 | CN |
1721190 | Jan 2006 | CN |
101497268 | Aug 2009 | CN |
1403065 | Mar 2004 | EP |
H02-024220 | May 1990 | JP |
2008-119955 | May 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20120055022 A1 | Mar 2012 | US |