Method of treating atherosclerotic occlusive disease

Information

  • Patent Grant
  • 10835395
  • Patent Number
    10,835,395
  • Date Filed
    Tuesday, December 10, 2013
    11 years ago
  • Date Issued
    Tuesday, November 17, 2020
    4 years ago
Abstract
A tack device for holding plaque against blood vessel walls in treating atherosclerotic occlusive disease can be formed as a thin, annular band of durable, flexible material. The tack device may also have a plurality of barbs or anchoring points on its outer annular periphery. The annular band can have a length in the axial direction of the blood vessel walls that is about equal to or less than its diameter as installed in the blood vessel. A preferred method is to perform angioplasty with a drug eluting balloon as a first step, and if there is any dissection to the blood vessel caused by the balloon angioplasty, one or more tack devices may be installed to tack down the dissected area of the blood vessel surface.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

This invention relates to treatment of atherosclerotic occlusive disease by intravascular procedures for pushing and holding plaque accumulated on the blood vessel walls out of the way for reopened blood flow.


Description of the Related Art

Atherosclerotic occlusive disease is the primary cause of stroke, heart attack, limb loss, and death in the US and the industrialized world. Atherosclerotic plaque forms a hard layer along the wall of an artery and is comprised of calcium, cholesterol, compacted thrombus and cellular debris. As the atherosclerotic disease progresses, the blood supply intended to pass through a specific blood vessel is diminished or even prevented by the occlusive process. One of the most widely utilized methods of treating clinically significant atherosclerotic plaque is balloon angioplasty.


Balloon angioplasty is an accepted method of opening blocked or narrowed blood vessels in every vascular bed in the body. Balloon angioplasty is performed with a balloon angioplasty catheter. The balloon angioplasty catheter consists of a cigar shaped, cylindrical balloon attached to a catheter. The balloon angioplasty catheter is placed into the artery from a remote access site that is created either percutaneously or through open exposure of the artery. The catheter is passed along the inside of the blood vessel over a wire that guides the way of the catheter. The portion of the catheter with the balloon attached is placed at the location of the atherosclerotic plaque that requires treatment. The balloon is inflated to a size that is consistent with the original diameter of the artery prior to developing occlusive disease. When the balloon is inflated, the plaque is broken. Cleavage planes form within the plaque, permitting the plaque to expand in diameter with the expanding balloon. Frequently, a segment of the plaque is more resistant to dilatation than the remainder of the plaque. When this occurs, greater pressure pumped into the balloon results in full dilatation of the balloon to its intended size. The balloon is deflated and removed and the artery segment is reexamined. The process of balloon angioplasty is one of uncontrolled plaque disruption. The lumen of the blood vessel at the site of treatment is usually somewhat larger, but not always and not reliably.


Some of the cleavage planes created by fracture of the plaque with balloon angioplasty form dissection. A dissection occurs when a portion of the plaque is lifted away from the artery and is not fully adherent and may be mobile or loose. The plaque that has been disrupted by dissection protrudes into the flowstream. If the plaque lifts completely in the direction of blood flow, it may impede flow or cause acute occlusion of the blood vessel. There is evidence that dissection after balloon angioplasty must be treated to prevent occlusion and to resolve residual stenosis. There is also evidence that in some circumstances, it is better to place a metal retaining structure, such as stent to hold open the artery after angioplasty and force the dissected material back against the wall of the blood vessel to create an adequate lumen for blood flow.


Therefore, the clinical management of dissection after balloon angioplasty is currently performed primarily with stents. As illustrated in FIG. 24A, a stent is a tube having a diameter that is sized to the artery. A stent is placed into the artery at the location of a dissection to force the dissection flap against the inner wall of the blood vessel. Stents are usually made of metal alloys. They have varying degrees of flexibility, visibility, and different placement techniques. Stents are placed in every vascular bed in the body. The development of stents has significantly changed the approach to minimally invasive treatment of vascular disease, making it safer and in many cases more durable. The incidence of acute occlusion after balloon angioplasty has decreased significantly with stents.


However, stents have significant disadvantages and much research and development is being done to address these issues. Stents induce repeat narrowing of the treated blood vessel (recurrent stenosis). Recurrent stenosis is the “Achilles heel” of stenting. Depending on the location and the size of the artery, in-growth of intimal hyperplastic tissue from the vessel wall in between struts or through openings in the stent may occur and cause failure of the vascular reconstruction by narrowing or occlusion of the stent. This may occur any time after stent placement. In many cases, the stent itself seems to incite local vessel wall reaction that causes stenosis, even in the segment of the stent that was placed over artery segments that were not particularly narrowed or diseased during the original stent procedure. This reaction of the blood vessel to the presence of the stent is likely due to the scaffolding effect of the stent. This reaction of recurrent stenosis or tissue in growth of the blood vessel is in response to the stent. This activity shows that the extensive use of metal and vessel coverage in the artery as happens with stenting is contributing to the narrowing. The recurrent stenosis is a problem because it causes failure of the stent and there is no effective treatment. Existing treatment methods that have been used for this problem include; repeat angioplasty, cutting balloon angioplasty, cryoplasty, atherectomy, and even repeat stenting. None of these methods have a high degree of long-term success.


Stents may also fracture due to material stress. Stent fracture may occur with chronic material stress and is associated with the development of recurrent stenosis at the site of stent fracture. This is a relatively new finding and it may require specialized stent designs for each application in each vascular bed. Structural integrity of stents remains a current issue for their use. Arteries that are particularly mobile, such as the lower extremity arteries and the carotid arteries, are of particular concern. The integrity of the entire stent is tested any time the vessel bends or is compressed anywhere along the stented segment. One reason why stent fractures may occur is because a longer segment of the artery has been treated than is necessary. The scaffolding effect of the stent affects the overall mechanical behavior of the artery, making the artery less flexible. Available stenting materials have limited bending cycles and are prone to failure at repeated high frequency bending sites.


Many artery segments are stented even when they do not require it, thereby exacerbating the disadvantages of stents. There are several reasons for this. Many cases require more than one stent to be placed and often several are needed. Much of the stent length is often placed over artery segments that do not need stenting and are merely adjoining an area of dissection or disease. Stents that are adjusted to the precise length of the lesion are not available. When one attempts to place multiple stents and in the segments most in need of stenting, the cost is prohibitive since installation and material is required per stent. The time it takes to do this also adds to the cost and risk of the procedure. The more length of artery that receives a stent that it does not need, the more stiffness is conferred to the artery, and the more scaffolding affect occurs. This may also help to incite the arterial reaction to the stent that causes recurrent stenosis.


SUMMARY OF INVENTION

In accordance with the present invention, a device (and related method of deployment) for treating atherosclerotic occlusive disease comprises a thin, annular band of durable, flexible material (a “plaque tack”) having a plurality of barbs or anchoring elements on its outer annular periphery, which is installed intravascularly in one or more specific positions of a plaque accumulation site. The plaque tack is dimensioned and designed to be applied with a spring force against the plaque to press and hold it against the blood vessel walls. The barbs or anchoring elements are embedded into or at least emplaced in physical contact against the plaque by the spring force so that the plaque tack is retained securely in position from being dislodged. The plaque tack is generally used after a balloon angioplasty procedure to reopen the vessel lumen for desired blood flow. The annular band of the plaque tack has a width in the axial (length) direction of the vessel walls that is about equal to or less than its diameter, in order to minimize the emplacement of foreign scaffolding structure in the blood vessel. One or more tacks are applied only in positions along the length of a plaque accumulation site where specific holding forces are needed to stabilize the site and/or hold pieces of plaque out of the way of blood flow. The barbs or anchor points of the tack(s) may be pressed with an expansion force into the plaque and/or vessel walls by a post-installation balloon expansion procedure.


In the present invention, the plaque tack device is designed as a minimally invasive approach to tacking loose or dissected atherosclerotic plaque to the wall of the artery, as illustrated in FIG. 24B. It may be used to treat either de novo atherosclerotic lesions or the inadequate results of balloon angioplasty. It is designed to maintain adequate lumen in a treated artery without the inherent disadvantages of vascular stents. The device may also be used to administer medications, fluid, or other treatment (“eluting”) agents into the atherosclerotic plaque or the wall of the blood vessel or into the bloodstream.


The plaque tack and installation procedure may be designed in a number of ways that share a common methodology of utilizing an expansion force of the delivery mechanism (such as balloon expansion) and/or the spring force of a compressible annular band to enable the tack to be moved into position in the blood vessel, then released, unfolded or unplied to expand to its full diametral size within the blood vessel walls.


In a preferred embodiment, the tack device comprises a thin, annular band of durable, flexible material having a plurality of barbs or anchoring points on its outer annular periphery, said annular band being dimensioned and designed to be applied with an expansion force against the plaque to press and hold the plaque at an applied site of said band against the blood vessel walls. Besides stabilizing the emplacement of the tack, the barbs play a role in tacking the plaque to the blood vessel wall. The annular band has a length in the axial direction of the blood vessel walls that is about equal to or less than its diameter when expanded. In a ring or ribbon-shaped form, the annular band can have a ratio of length to diameter as low as 1/100. The plaque tack device can also have a structure for carrying medication such that it elutes a biologically active agent to the plaque to inhibit growth and/or for treating the blood vessel wall.


For all embodiments an important parameter characterizing design of a plaque tack is the ratio: Vessel Coverage Area (C) to Total Vessel Surface area (TVS), where C/TVS is less than or equal to about 60%. This equation can be applied to one tack device or when several spaced-apart tack devices are placed across the length of a blood vessel treatment area.


In another preferred embodiment, a tack device is formed with concentric side rings or mesh bands connected by longitudinal bridge members. As adapted from a measure of Relative Metal Surface Area (RMS) compared to the number of longitudinal segments in the device structure, an equation for Effective Metallic Interface (EMI) may be used to compare this embodiment of the tack device to a typical stent, as follows:






EMI
=



(

1
+

n
2


)


C





s
=
1

x








(
lw
)

s








where x is the number of sections of metal, l is an individual metal section length, w is an individual metal section width, C is the vessel coverage area underneath the device (lumen surface), and n is the number of bridge members longitudinally connected between circumferentially oriented segments. The summation found in the denominator can be interpreted as the total metal surface area. The preferred embodiment of the tack device has an EMI≤10, whereas the EMI of a typical stent would be several times greater.


The present invention also encompasses the method of using the tack device to treat any plaque dissection in the blood vessel after balloon angioplasty by installing it with an expansion force against the plaque to hold it against the blood vessel walls. A most preferred method encompasses one wherein drug eluting balloon angioplasty is first performed, and if there is any damage, disruption, dissection, or irregularity to the blood vessel caused by the balloon angioplasty, one or more tack devices may be used to tack down the damaged, disrupted, dissected, or irregular blood vessel surface, so as to avoid the need to install a stent and thereby maintain a ‘stent-free’ environment.


Other objects, features, and advantages of the present invention will be explained in the following detailed description of the invention having reference to the appended drawings.





BRIEF DESCRIPTION OF DRAWINGS


FIGS. 1A and 1B are schematic diagrams of a first embodiment in ribbon form for the plaque tack device of the present invention.



FIG. 2 is a side view of the first embodiment of the ribbon tack of FIG. 1B in its annular shape after deployment.



FIG. 3 is a plan view of the ribbon tack of FIG. 1B in its annular shape after deployment.



FIGS. 4A and 4B are alternative versions of the ribbon tack of FIG. 1B having stabilizing wings.



FIG. 5 is a schematic diagram of a third embodiment of flexing star tack having outward triangular anchor points and inward radial fingers.



FIG. 6 is a schematic diagram of a fourth embodiment of a spiral coil tack with unjoined ends that can be pulled in opposite directions horizontally to reduce its cross-sectional diameter for insertion in the blood vessel.



FIGS. 7A-7D show alternative shapes for the flexing star tack of FIG. 5 with a variety of different anchor point designs.



FIG. 8 is a photo image of the ribbon tack of FIG. 1B showing the tongues or cutout portions protruding at an angle from the metal strip when the tack is bent into an annular shape.



FIG. 9 is a dose-up image of the anchor points of the ribbon tack of FIG. 1B.



FIG. 10 is a photo image of the ribbon tack of FIG. 1B prior to installation.



FIG. 11 illustrates a pattern of capillaries formed on the tongues of the ribbon tack of FIG. 1B for delivering plaque-growth retarding material into the plaque.



FIG. 12 is a dose-up view of the capillaries formed on the tongues of the ribbon tack in FIG. 11.



FIG. 13 is a schematic diagram of a second embodiment of a folding ring tack having inner V-shaped segments for folding and outer inverted-V-shaped points for anchoring.



FIG. 14 is a schematic representation of the ribbon tack loaded in multiple units on the delivery head of a catheter tube for insertion into the blood vessel.



FIG. 15 is a detailed view of the delivery head for the ribbon tacks in FIG. 14.



FIG. 16 is a schematic representation of the folding ring tack loaded in multiple units on the delivery head of a catheter tube with a retainer for holding them on the sheath in compressed form.



FIG. 17 is a schematic representation showing the folding ring tack partially deployed.



FIG. 18 is a schematic representation showing folding ring tack fully deployed in the blood vessel.



FIG. 19A shows a fifth embodiment of a metallic mesh tack in end view, FIG. 19B shows it in side view, FIG. 19C shows the metallic mesh tack in perspective, and FIG. 19D shows a section of the metallic mesh tack in a detailed view.



FIG. 20 is a schematic representation showing multiple units of the metallic mesh tack loaded on a catheter delivery tube.



FIG. 21 is a schematic representation showing the metallic mesh tack released from the delivery head and fully expanded in the blood vessel.



FIG. 22 is a schematic representation the spiral coil tack loaded in multiple units on the delivery head of a sheath and held down by a retainer cover.



FIG. 23 is a schematic representation showing the spiral coil tack released from the delivery head and fully expanded in the blood vessel.



FIG. 24A illustrates the use of a stent installed after angioplasty as conventionally practiced in the prior art.



FIG. 24B illustrates the use of the plaque tack installed after angioplasty demonstrating its advantages over the prior art.



FIG. 25 shows a detailed view of a preferred embodiment of the plaque tack formed with concentric rings connected by a series of bridging members.



FIG. 26 illustrates the use of multiple tack devices which are spaced apart over the length of a treatment site as compared to a typical stent.





DETAILED DESCRIPTION OF INVENTION

In the following detailed description of the invention, certain preferred embodiments are illustrated providing certain specific details of their implementation. However, it will be recognized by one skilled in the art that many other variations and modifications may be made given the disclosed principles of the invention. Reference for the description is made to the accompanying drawings, wherein like reference numerals refer to similar parts throughout the several views.


As illustrated in FIG. 24B, the plaque tack device in the present invention generally comprises a thin, annular band of durable, flexible material having a plurality of barbs or anchoring elements on its outer annular periphery. The plaque tack is dimensioned diametrically and is designed to be applied with a spring force against the plaque to press and hold it against the blood vessel walls. The barbs or anchoring elements are embedded into or at least emplaced in physical contact against the plaque by the spring force of the plaque tack. The plaque tack extends over only a small area in the axial direction of the vessel walls, in order to minimize the amount of foreign structure placed in the blood vessel. One or more tacks are applied only in positions along the length of a plaque accumulation site where specific holding forces are needed to stabilize the site and/or hold pieces of plaque out of the way of blood flow.


The plaque tack and installation procedure may be designed in a number of ways that share a common methodology of utilizing the spring force of a spring-like annular band to enable the tack to be compressed, folded, or plied to take up a small-diameter volume so that it can be moved into position in the blood vessel on a sheath or catheter, then released, unfolded or unplied to expand to its full-diametral size within the blood vessel walls.


In the following description, five general embodiments of the plaque tack device and how to deliver it are explained in detail, referred to as: (1) ribbon tack; (2) folding ring tack; (3) flexible ring tack; (4) spiral coil tack; and (5) metallic mesh tack. All these embodiments are delivered into the blood vessel from endovascular insertion. The delivery device for each involves a delivery apparatus that has some features of a vascular sheath. The delivery device for each is different and has features that are specifically designed to deliver the specific tack.


Referring to FIGS. 1A and 1B, a first preferred embodiment of the plaque tack device is shown in two versions of a ribbon tack, each having a linear, flat shape like a ribbon. The version in FIG. 1A has a base end 31, rows 33 of cutout tongues or apertured portions that open out as pointed barbs or anchors, and a retainer end 35. The version in FIG. 1B has a base end 32, single row 34 of cutout portions that open out as pointed barbs or anchors, and a retainer end 35. Each version may be made of a material such as a corrosion-resistant metal, polymer, composite or other durable, flexible material. A preferred material is a metal having “shape-memory” (such as Nitinol) which allows it to be formed initially with an annular shape prior to forming in a linear shape, then resume the annular shape when exposed for a length of time at internal body temperature. When the strip is deployed in the blood vessel, it is curved into an annular shape. FIG. 2 shows the view of the strip of material in FIG. 1B after it is curved into its preferred shape of deployment in the blood vessel, leaving a large inner, open area 36 for blood flow through it. The barbs are shown opened to outwardly pointing angles 37 due to bending forces so that they point toward the wall or surface of the blood vessel.


In a typical configuration, the ribbon tack may have a width of about 0.1 to 5 mm, a diameter (when curved in annular shape) of about 1 to 10 mm, a length (when extended linearly) of about 3 to 30 mm, and a barb height from 0.01 to 5 mm. In general, the annular band of the plaque tack has a width in the axial direction of the vessel walls that is about equal to or less than its diameter, in order to minimize the amount of foreign structure to be emplaced in the blood vessel. For tack designs in a ring or ribbon shape, the width/diameter ratio can be in the range of 1/10 to 1/100.



FIG. 3 is a schematic diagram showing a top view of the ribbon tack bent into its annular shape. FIG. 4 shows an alternative version of the ribbon tack having stabilizing wings provided along its side edges for added lateral stability when deployed in the blood vessel. FIG. 8 shows an overhead photo image of the ribbon tack with anchors protruding at an outward angle. FIG. 9 is a close-up image of the anchors of the annular strip. FIG. 10 is an overhead image of the metal strip extended linearly when at rest.



FIG. 11 illustrates a pattern of capillaries 25 that may be formed by etching the surfaces of the tongues or cutout portions for delivering plaque-growth retarding material or other treatment agent where the tack is installed at the plaque accumulation site. FIG. 12 illustrates how the pattern of capillaries 25 is supplied with plaque-retarding or treatment material through a supply conduit 24. The material may be either resident within the channels prior to insertion of the tack or transferred from a reservoir on the inside of the annulus, through a hole to the outside of the component on the surface, into the anchored object, and into the tissue wall, enabling delivery of a treatment or such that enables additional preventative measures for retaining optimal blood flow. The forces that enable the transfer of the material from the inside of the annulus through the tree branches might be either capillary force or a combination of capillary and hydraulic pressure. Capillary action, capillarity, capillary motion, or wicking is the ability of a substance to draw another substance into it. The standard reference is to a tube in plants but can be seen readily with porous paper. It occurs when the adhesive intermolecular forces between the liquid and a substance are stronger than the cohesive intermolecular forces inside the liquid. The effect causes a concave meniscus to form where the substance is touching a vertical surface.


The array of barbs or anchor points is used for linking the annular band of the tack with the plaque mass or blood vessel wall. The barb is made of a sufficiently rigid material to sustain a locking relationship with the blood vessel tissue and/or to pierce the plaque and maintain a locking relationship therewith. The barb is comprised of a head disposed on a support body. Preferably, the head and support body are integral with each other and are constructed as a single piece. The barb may project at an angle of 90 degrees to the tangent of the annular band, or an acute angle may also be used.


Referring to FIG. 13, a second preferred embodiment of the plaque tack device is formed as a folding ring tack having inner V-shaped segments for folding alternating with outer inverted-V-shaped points. The V-shaped segments allow the ring to be radially folded to a small-diameter volume for carriage on a deployment tube on the end of the sheath. At the desired position in the blood vessel, the compressed ring tack is released from the deployment tube so that the ring springs out to its full diametral shape and the outward points act as barb or anchor points embedded into or pressed against the plaque. The folding ring tack is preferably made of metal wire material. Other options for the shape of the anchors on the outer surface may be used.


Referring to FIG. 5, a third preferred embodiment of the plaque tack device is formed as a flexible ring tack having a pliable or hinged structure and formed with an array of radially extending points 59 on an outer side of the ring, and an array of inner radial fingers 50. The array of inner radial fingers are used to displace the points to lie horizontally flat in one axial direction when the fingers and pushed in the opposite axial direction. With the barbs or points displaced to lie horizontally flat, the flexible ring tack can be loaded on a catheter delivery tube and held down by a cover. The fingers are then removed so that they are not present to obscure the blood vessel when the tack is installed. At the desired position, the retainer cover is displaced to release the ring tack which springs up to extend its points radially outwardly for embedding into the plaque. The body of the annular ring may have differing degrees of thickness and different designs for the fingers in the central area, such as the raised triangular anchors 59 and radial fingers 50 shown in FIG. 5.



FIGS. 7A-7D show alternative shapes for the third embodiment of FIG. 5 with a variety of different anchoring designs 72, 73, 78, 80. The fingers 76, 77 for bending the points flat for insertion are included with any of the designs. When the fingers are removed after pre-loading, and the flexible ring tack has been deployed, the inner area 74, 75 within the annular ring 79, 82 is left unobstructed.


Referring to FIG. 6, a fourth preferred embodiment of the plaque tack device is formed in a coil shape 64 with ends unjoined and with barbs or points 61 on its outer periphery. The ends are pulled longitudinally in opposite directions to flatten the annular band to a spiral shape extending linearly so that it can be carried around or inside the length of a tubular sheath into the blood vessel held in place by a retainer element. At the desired position in the blood vessel, the retainer element is released to allow the tack to expand back to its full-diameter annular shape against the plaque.



FIGS. 14 and 15 show a preferred delivery method for the ribbon tack described above. Multiple flat ribbon strips 80 in linear form are arranged in parallel in an array 80a carried on the outer surface of the delivery head 81 of a tubular catheter 82. Each ribbon strip 80 is carried in a respective barrel 83 of a multi-barreled tack magazine 84 which wraps around the catheter, as indicated in FIG. 14. The catheter has an internal pressure chamber 85 which is loaded with saline solution or CO2 gas used to eject a ribbon strip from its barrel as it is moved by rotation of the magazine 84 in the direction RR to bring each ribbon strip in turn to an ejector position (left side of the figure) in alignment with an ejector track 86 formed in the delivery head. Pressurized fluid from the pressure chamber 85 is used to push a mover member that ejects the ribbon strip from its barrel into the ejector track 86. As shown in more detail in FIG. 15, the ejector track 86 leads into a curved outlet tunnel 87 which bends the ribbon strip towards its annular shape as the delivery head rotates. The outlet tunnel 87 curves 90 degrees from the axial direction of the catheter to the radial direction facing toward the vessel walls. This curved tunnel captures the end of the ribbon pushed into the ejector track and causes the middle part of the ribbon strip to bulge outward toward the blood vessel wall where it will lay down perpendicular to the axis of the blood vessel. The delivery head of the catheter rotates as part of the delivery mechanism. As the ribbon is being pushed out of the delivery head under hydraulic or propulsive pressure, the rotation of the delivery head allows the ribbon to be laid down in its annular shape spanning the blood vessel walls.


A preferred delivery method for the second described embodiment of the folding ring tack of FIG. 13 is shown in FIGS. 16, 17, and 18. The folding ring tack has an overall circular shape with inner V bends that allow it to be folded in zig-zag fashion to a compressed smaller-volume form for loading onto the delivery end of a catheter tube 92. As shown in FIG. 16, multiple units of the compressed folding ring tacks 90 are arrayed in a series on the surface of the tube. The catheter tube is hollow and lined with a fabric 91 that slides over the outer surface of the tube and is pulled over the end of the tube into its interior (direction of the U-shaped arrows). The fabric is made of a strong, durable material with low friction such as Teflon or Kevlar or like material. Multiple tacks may be loaded onto the surface of the fabric covering the outer surface of the catheter tube. The tacks are held down in their compressed, folded form by a shell or cover 93 that is telescoped over the catheter tube and prevents early deployment of the tacks. The shell may be a transparent plastic sleeve or similar structure having its end set back a small distance from the end of the catheter tube. As the fabric 91 is pulled inside the tube is pulled, the compressed tack 90 is advanced toward the end of the catheter tube. When the tack reaches the end, it is released from the shell 93, and springs back to its original shape of an annular band with outer barbs that embed or are emplaced against the plaque and blood vessel walls. FIG. 17 shows this process in action with the tack half-way deployed. The fabric 91 advancing the tack 90 is being pulled into the center of the hollow delivery tube. FIG. 18 shows the tack in place in the blood vessel after it has been separated from the delivery catheter.


The third preferred embodiment of the flexing ring tack of FIG. 5 may be deployed by a similar method as described above, by loading onto a similar sliding fabric carrier which is pulled over the outer surface of a catheter tube, with a shell sleeved over the tube for retaining the tacks from deployment until each reaches the end of the tube.


A fifth embodiment of the plaque tack in the form of a metallic mesh tack is illustrated in FIGS. 19A-D, and its manner of deployment in FIGS. 20 and 21. In FIG. 19A, the metallic mesh tack is shown in end view having an annular band 100a formed of interleaved mesh, and outer points or barbs 100b. The metallic mesh tack may be laser cut or etched out of a metal tube form or made of thin metal wire which is looped and interleaved in a mesh that is welded, soldered, looped and/or linked together into the desired mesh shape. FIG. 19B shows the metallic mesh tack in side view with barbs projecting from the annular band 100a. The barbs on its outward surface will contact and embed into the wall of the blood vessel. FIG. 19C shows the metallic mesh tack at rest in its fully expanded state in perspective view, and FIG. 19D shows a section of the metallic mesh tack in a detailed view. The mesh pattern is specifically designed so that it can be compressed radially inward to a smaller-volume size for loading on a catheter delivery device to be inserted into the blood vessel.


A preferred method of delivery for the metallic mesh tack is shown in FIG. 20. Multiple mesh tacks 100 are compressed to its smaller-volume size and loaded onto the surface of a catheter delivery tube 102 in an array 100x over a given length of the tube. As in the previously described delivery method, a cover or shell 103 is sleeved over the surface of the tube to hold the tacks in their compressed state and prevent early deployment of the tacks. As the cover 103 is withdrawn down the length of the tube, each mesh tack in turn is released and expands to its full-volume size. FIG. 21 shows the mesh tack 100 expanded and deployed in the blood vessel.


A preferred delivery method for the fourth described embodiment of the spiral coil tack of FIG. 6 is illustrated in FIGS. 22 and 23. The coil shaped tack in FIG. 6 is formed with barbs and a band with unjoined ends that may or may not have a taper with varying degrees of thickness along its length. This design is uncoiled in its rest state and looks like a “broken” circle. The coil tack can be compressed to a fraction of its at-rest diameter by pulling its ends in opposite linear directions to form a tight spiral that occupies a smaller-diameter volume so that it can be inserted into the blood vessel. When released it can expand to several times the diameter of its spiral form. FIG. 22 shows multiple units of spiral coil tacks 110 loaded in the interior of the catheter delivery tube 112. When the tack is compressed, it occupies several spiral turns and it spaced out longitudinally. In this case, the delivery catheter is lined with fabric 113 slidable on its interior surface over the end of the tube to its outside (indicated by the pair of U-shaped arrows). As the fabric is pulled through the center of the tube, the tack is advanced toward the end of the delivery catheter. When the tack reaches the end of the delivery catheter, the tack is released from the tube and re-expands to its full size to be deployed into the wall of the blood vessel. FIG. 23 shows the tack deployed in the blood vessel.


In the embodiments described above, the preferred plaque tack device may be made from Nitinol, silicon composite (with or without an inert coating), polyglycolic acid, or some other superelastic material. The anchors can have a preferred length of 0.01 mm to 5 mm. The strip of material can be created from ribbon, round or rectangular wire or a sheet of material processed through photolithographic processing, laser or water cutting, chemical etching or mechanical removal of the final shape, or the use of bottom up fabrication, for instance chemical vapor deposition processes, or the use of injection modeling, hot embossing, or the use of electro or electroless-plating. It may be fabricated from metal, plastic, ceramic, or composite material.


The plaque tack is designed to be inherently self-aligning, i.e., its mechanical installation can accommodate small misalignments. This serves to facilitate placing the tacks in specific locations within diseased blood vessels. With respect to the piercing barb that has a pointed shape, it can be used to embed in objects having irregular surfaces such as plaque or dissected or damaged artery surfaces. After deployment of the plaque tack, the surgeon has the option of placing an angioplasty balloon at the site of the tack and inflating the balloon to press the anchor or anchors into the wall of the blood vessel.


Plaque Tack Design Parameters


The purposes of the plaque tack described herein, as distinct from traditional stenting, are to reduce the amount of implanted foreign material to a minimum while still performing focal treatment of the blood vessel condition so as to cause a minimum of blood vessel wall reaction and adverse post-treatment re-stenosis. The preferred plaque tack is designed to have substantially less metal coverage and/or contact with the blood vessel surface, thereby inciting less acute and chronic inflammation. Reduced pressure of implanted material against the blood vessel wall is correlated with a lower incidence of intimal hyperplasia and better long-term patency. Substantially reduced length along the axial distance of the blood vessel permits a more targeted treatment, correlates with less foreign body coverage of the blood vessel surface, avoids covering portions of the surface that are not in need of coverage, and correlates with both early and late improved patency of blood vessel reconstructions. The plaque tack is deployed only where needed to tack down plaque that has been disrupted by balloon angioplasty or other mechanisms. Rather than cover an entire area of treatment, the plaque tack is placed locally and selectively, and not extending into normal or less diseased artery segments. This permits the blood vessel to retain its natural flexibility because there is a minimal to no scaffolding effect when a small profile tack is used locally or when even multiple tacks are spaced apart over the area of treatment.


One important parameter for design of a plaque tack is having a tack length to diameter (L/D) ratio about equal to or less than 1. That is, the length of the tack along the axis of the blood vessel is about equal to or less than the diameter of the tack. The preferred plaque tack is thus shaped like an annular ring or band, whereas the typical stent is shaped like an elongated tube. The small-profile tack can thus be used locally for targeted treatment of disrupted regions of the blood vessel surface with a minimum of foreign material coverage or contact. Our tests show that a plaque tack with length/diameter ratio≤1 causes almost no biological reaction or subsequent blood vessel narrowing in comparison to a traditional stent where the length is greater than the diameter, and usually much greater. Our tests indicate that device L/D≤1 results in a reduction in scaffolding much less than that of the typical stent and causes less arterial wall reaction. For application at sites of small dissection after balloon angioplasty, a plaque tack of minimal footprint may be used such as a single, thin ring-type tack with an L/D ratio in the range of 1/10 to 1/100.


Studies on stenting have shown that the length of a stent is correlated with a tendency for occlusion in multiple vascular territories. The more stent length that has been placed, the higher likelihood that the reconstruction will fail. The length of a stent is also directly linked to the frequency and tendency of the stent to break when placed in the superficial femoral artery. The medical literature indicates that the superficial femoral artery performs like a rubber band, and it is likely that changes to the natural elongation and contraction of the superficial femoral artery play a significant role in the failure mode of superficial femoral artery stents. In contrast, the small-profile plaque tack can be implanted only in local areas requiring their use, thereby enabling the blood vessel to retain its natural flexibility to move and bend even after the surface has undergone tacking. Multiple tacks may be implanted separated by regions free of metallic support, thereby leaving the artery free to bend more naturally.


Radial pressure exerted on the blood vessel wall can also be substantially reduced by the small-profile tack design, even when multiple tacks are used in a spaced-apart configuration. To minimize this outward force while still providing the required retention of dissections against the arterial wall, a series of anchor barbs is utilized. The presence of the barbs applying focal pressure to the wall of the artery allows the rest of the tack to apply minimum outward force to the artery wall. The points of the barbs which apply the pressure are very focal, and this is where the most force is applied. The focal nature of the application of the pressure exerted by the tack also minimizes the structural effects of the device. The uniformly distributed focal anchor points provide a distribution of radial energy maximizing the tendency to form a circular lumen.


Another important parameter for design of a plaque tack is the ratio of Vessel Coverage Area (C) to Total Vessel Surface area (TVS). This equation can be applied to one tack device or when several spaced-apart tack devices are placed across the length of a blood vessel treatment area. For a plaque tack, the C/TVS ratio is in the range of about 60% or less, whereas for a stent it can be 100% or more (if applied to overlap the treatment site). For a focal lesion, the conventional treated vessel length is X+10 mm to 20 mm where X is the length of the lesion and the added length is adjoining on normal or less diseased artery. In traditional stenting, the entire treated vessel length would be covered with a stent. For example, in the case of a 2 cm lesion, the treated vessel length would be 3 to 4 cm (usually a single stent of this length would be selected), so that C/TVS is 150%-200%. In contrast, with tack placement, about ½ of X would be covered, and none of the adjoining normal or less diseased artery would be treated. For example, in a 2 cm lesion, approximately 1 cm would be covered, so that the C/TVS ratio is about 60% or less. The key to this innovative approach is placement of bands only in regions of dissections requiring arterial tacking.


In another preferred embodiment, a tack device is formed with concentric side rings or mesh bands connected by longitudinal bridge members. FIG. 25 shows a detailed view of the preferred embodiment of the plaque tack formed with concentric rings on each side connected by a series of bridging members that can include a pair of barbs 300 with an eyelet 302 positioned between the barbs 300. In the figure the concentric side rings are shown compressed for delivery in the blood vessel. When expanded, the diameter of the tack device is about equal to the width of the tack device. The number of bridging members is chosen depending upon the application. For example, 6 or fewer bridge members may be used between the two concentric rings when desired for limiting neointimal hyperplasia.


The literature in the industry has noted that an important factor in stent design may be the ratio of Relative Metal Surface Area (RMS) compared to the number of longitudinal segments in the device structure, for example, as presented by Mosseri M, Rozenman Y, Mereuta A, Hasin Y, Gotsman M., “New Indicator for Stent Covering Area”, in Catheterization and Cardiovascular Diagnosis, 1998, v. 445, pp. 188-192. As adapted from the RMS measure, an equation for Effective Metallic Interface (EMI) may be used to compare the embodiment of the tack device with longitudinal bridging members to a typical stent, as follows:






EMI
=



(

1
+

n
2


)


C





s
=
1

x








(
lw
)

s








where x is the number of sections of metal, l is an individual metal section length, w is an individual metal section width, C is the vessel coverage area underneath the device (lumen surface), and n is the number of bridge members longitudinally connected between circumferentially oriented segments. The summation found in the denominator can be interpreted as the total metal surface area. The embodiment of the tack device with longitudinal bridging members has an EMI≤10, whereas the EMI of a typical stent would be several times greater. This low EMI is due to the nature of the tack design having a small foot-print and minimal longitudinal bridges while a stent typically has a large foot-print and would be a multiple several times that.



FIG. 26 illustrates the use of multiple tack devices which are spaced apart over the length as compared to a treatment site compared to a typical stent. Preferably, the spacing between tack devices is at least the width of the tack device. Note that the spacing between adjacent tack devices leaves untreated vessel area. A typical stent is shown in the upper part of the figure compared to the use of 6 spaced-apart tack devices at the bottom part of the figure. The overall length of treatment area is 6.6 cm (the same length of the stent) while each band is shown as 6 mm long separated by 6 mm spaces. Therefore, the Vessel Coverage Area for the stent is the same as Total Vessel Surface area (=6.6 cm×0.6π, or 12.44 cm2) which gives a C/TVS ratio of 100%. For the series of spaced-apart tack devices, C is equal to 6×0.6 cm×0.6π, or 6.78 cm2, while TVS is 12.44 cm2, therefore the C/TVS ratio is equal to 54.5%.


When two or more stents need to be employed over an extended length of treatment site, it has been a conventional practice to overlap adjoining stents to prevent kinking between stents. Due to the increased metal lattice, the region of overlap becomes highly rigid and noncompliant. This noncompliance limits the natural arterial flexibility and increases the tendency for restenosis. Stent fractures occur more frequently in the superficial femoral artery where this bending has a high frequency and are common when multiple stents are deployed and overlap. Stent fractures are associated with a higher risk of in-stent restenosis and re-occlusion. In contrast, the plaque tacks are designed to be applied in local areas and not to be overlapped. Optimal spacing is a minimum of 1 tack width apart for tacks. This permits the artery to maintain its flexibility, and only a half or less of the treated length of the artery will be covered with metal.


Another advantage of using the plaque tack is that the presence of its outer barbs permits the pressure of tack upon the blood vessel wall to be minimized by making the pressure focal and applying low pressure through the barb contact with the wall. The presence of the barbs applying focal pressure to the wall of the artery allows the rest of the tack to apply minimum outward force to the artery wall. The uniformly distributed focal anchor points provide a distribution of radial energy maximizing the tendency to form a circular lumen. Circular lumens offer additional benefit from the standpoint of the vessel wall interaction, independent of the vascular injury.


Use of Plague Tack after Drug Eluting Balloon Angioplasty


The use of plaque tacks can be combined with use of Drug Eluting Balloon (DEB) angioplasty to manage post angioplasty dissection and avoid the need for stents. In DEB angioplasty, a drug-eluting balloon or a drug coated balloon is prepared in a conventional manner. The drug may be one, or a combination, of biologically active agents that are used for various functions, such as anti-thrombotic, anti-mitotic, anti-proliferative, anti-inflammatory, stimulative of healing, or other functions. The DEB is delivered on a guidewire across an area of blockage or narrowing in the blood vessel system. The DEB is inflated to a specific pressure and for a period of time consistent with the manufactures guidelines of use for treatment purposes, as it pertains the drug coating and the intended outcomes, then the DEB is deflated and removed. At this stage the medication from the DEB has been transferred to the wall of the blood vessel. Intravascular imaging or ultrasound is then used to assess the integrity of the artery and the smoothness of the blood vessel surface at the site where the balloon was inflated. The presence of damage along the surface may be indicated as dissection, elevation of plaque, disruption of tissue, irregularity of surface. In cases where the damage is focal or localized, the plaque tack may be used to tack down the damaged, disrupted, dissected, or irregular blood vessel surface. This permits continuation of a ‘stent-free’ environment even if damage to the blood vessel has occurred after balloon angioplasty.


At this stage the medication from the DEB has been transferred to the wall of the blood vessel. Contrast is administered into the blood vessel under fluoroscopic guidance or another method such as intravascular ultrasound is used to assess the integrity of the artery and the smoothness of the blood vessel surface at the site where the balloon was inflated. In some cases, one or more of these completion studies will demonstrate the presence of damage along the surface at the site of the balloon inflation. This damage may include dissection, elevation of plaque, disruption of tissue, irregularity of surface.


The plaque tack delivery catheter is loaded with multiple tacks that may be placed at the discretion of the operator, and advanced over a guidewire in the blood vessel to the location where the dissection or disruption or irregularity has occurred. The location is specifically and carefully identified using angiography. The plaque tack(s) is or are deployed at the location(s) of the lesion. More than one tack may be placed to tack down a major dissection. If more than one tack is placed, it may be placed only according to the rules of proper spacing of tacks. That is, the tack should be at least one tack-length apart and do not overlap. After placement of the tack, it may be further expanded into the wall of the blood vessel using a standard angioplasty balloon or a drug-eluting or drug coated balloon. The purpose of the tack is not so much to hold the blood vessel lumen open as to tack down the non-smooth or dissected surface of the blood vessel. This ‘touch-up strategy’ permits the resolution of the damage created by the drug-eluting or drug coated balloon without resorting to stent placement and thereby maintaining a ‘stent-free’ environment.


As a further measure, described above, the plaque tack itself can be used to deliver medication to the blood vessel. In addition to the delivery of medication from the barbs, the entire tack can be coated with medication prior to tack placement. The purpose of this activity is to permit the tack to elute biologically active agent or agents that have positive effects on the blood vessel.


It is to be understood that many modifications and variations may be devised given the above description of the principles of the invention. It is intended that all such modifications and variations be considered as within the spirit and scope of this invention, as defined in the following claims.

Claims
  • 1. A method of treating a blood vessel comprising: advancing a plurality of implants held in a compressed state by an outer cover to a treatment area in a blood vessel after a balloon angioplasty has been performed at the treatment area, each of the implants of the plurality of implants having a distal most end and a proximal most end along a longitudinal axis, each of the implants of the plurality of implants comprising cells formed by first, second and third undulating rings, wherein the first undulating ring is directly connected to the second undulating ring and the second undulating ring is directly connected to the third undulating ring, and having an implant width defined by a distance between the distal most end and the proximal most end;withdrawing the outer cover a distance;allowing a first implant of the plurality of implants to expand against a wall of the blood vessel at the treatment area; andexpanding a second implant of the plurality of implants against the wall of the blood vessel at the treatment area, the second implant spaced away from the first implant a distance equal to at least the implant width of the second implant such that a portion of the treatment area between the first and second implants that has been treated by the balloon angioplasty includes diseased tissue that is not covered by an implant.
  • 2. The method of claim 1, wherein the implant width is about equal to or less than a diameter of the implant when expanded in a blood vessel.
  • 3. The method of claim 1, wherein the first and second implants and any additional implants are only applied where specific holding forces are needed to either stabilize the treatment area or hold pieces of plaque out of the way of blood flow in the treatment area.
  • 4. The method of claim 1, wherein only half of the treatment area that has been treated by the balloon angioplasty is covered with implants.
  • 5. The method of claim 1, wherein less than half of the treatment area that has been treated by the balloon angioplasty is covered with implants.
  • 6. The method of claim 1, further comprising delivering plaque treatment medication to the blood vessel with at least one of the first implant and the second implant.
  • 7. The method of claim 1, further comprising expanding one or more additional implants at a damage, disruption, dissection, or irregularity in the blood vessel caused by the balloon angioplasty, the one or more additional implants holding down the damaged, disrupted, dissected, or irregular blood vessel surface and each implant spaced away from all other implants by at least the width of the implant.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/246,776, filed Sep. 27, 2011, now U.S. Pat. No. 9,974,670, which is a continuation of U.S. patent application Ser. No. 12/483,193, filed Jun. 11, 2009, now U.S. Pat. No. 8,128,677, which is a continuation-in-part of U.S. patent application Ser. No. 11/955,331, filed Dec. 12, 2007, now U.S. Pat. No. 7,896,911. All of the above applications are incorporated by reference herein and made apart of this specification. Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (482)
Number Name Date Kind
3221746 Noble Dec 1965 A
3635223 Klieman Jan 1972 A
4292974 Fogarty et al. Oct 1981 A
4446867 Leveen et al. May 1984 A
4465072 Taheri Aug 1984 A
4515587 Schiff May 1985 A
4545367 Tucci Oct 1985 A
4545390 Leary Oct 1985 A
4552127 Schiff Nov 1985 A
4576591 Kay et al. Mar 1986 A
4589412 Kensey May 1986 A
4641654 Samson et al. Feb 1987 A
4651738 Demer et al. Mar 1987 A
4687465 Prindle et al. Aug 1987 A
4723550 Bales et al. Feb 1988 A
4723936 Buchbinder et al. Feb 1988 A
4723938 Goodin et al. Feb 1988 A
4726374 Bales et al. Feb 1988 A
4758223 Rydell Jul 1988 A
4762130 Fogarty et al. Aug 1988 A
4781192 Demer Nov 1988 A
4784636 Rydell Nov 1988 A
4846174 Willard et al. Jul 1989 A
4848342 Kaltenbach Jul 1989 A
RE33166 Samson Feb 1990 E
5009659 Hamlin et al. Apr 1991 A
5024668 Peters et al. Jun 1991 A
5042707 Taheri Aug 1991 A
5047015 Foote et al. Sep 1991 A
5102390 Crittenden et al. Apr 1992 A
5196024 Barath Mar 1993 A
5201757 Heyn et al. Apr 1993 A
5242452 Inoue Sep 1993 A
5246420 Kraus et al. Sep 1993 A
5250029 Lin et al. Oct 1993 A
5250060 Carbo et al. Oct 1993 A
5263962 Johnson et al. Nov 1993 A
5269758 Taheri Dec 1993 A
5304121 Sahatjian Apr 1994 A
5318529 Kontos Jun 1994 A
5336234 Virgil et al. Aug 1994 A
5344397 Heaven et al. Sep 1994 A
5383890 Miraki et al. Jan 1995 A
5397305 Kawula et al. Mar 1995 A
5397355 Marin et al. Mar 1995 A
5421955 Lau Jun 1995 A
5423851 Samuels Jun 1995 A
5423885 Williams Jun 1995 A
5501689 Green et al. Mar 1996 A
5534007 St. Germain Jul 1996 A
5536252 Imran et al. Jul 1996 A
5540659 Teirstein Jul 1996 A
5545135 Iacob et al. Aug 1996 A
5562728 Lazarus et al. Oct 1996 A
5569272 Reed et al. Oct 1996 A
5571135 Fraser et al. Nov 1996 A
5591197 Orth et al. Jan 1997 A
5593417 Rhodes Jan 1997 A
5616149 Barath Apr 1997 A
5634928 Fischell et al. Jun 1997 A
5643312 Fischell et al. Jul 1997 A
5665116 Chaisson Sep 1997 A
5681346 Orth et al. Oct 1997 A
5704913 Abele et al. Jan 1998 A
5725572 Lam et al. Mar 1998 A
5728158 Lau et al. Mar 1998 A
5743874 Fischell et al. Apr 1998 A
5746716 Vigil et al. May 1998 A
5746764 Green et al. May 1998 A
5776161 Globerman Jul 1998 A
5797951 Mueller Aug 1998 A
5800526 Anderson et al. Sep 1998 A
5813977 Hinchliffe et al. Sep 1998 A
5817152 Birsall et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5833694 Poncet Nov 1998 A
5843033 Ropiak Dec 1998 A
5911725 Boury Jun 1999 A
5925061 Ogi et al. Jul 1999 A
5928247 Barry et al. Jul 1999 A
5954742 Osypka Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5968088 Hansen et al. Oct 1999 A
5972023 Tanner et al. Oct 1999 A
5980552 Pinchasik et al. Nov 1999 A
6004328 Solar Dec 1999 A
6007543 Ellis et al. Dec 1999 A
6009614 Morales Jan 2000 A
6013854 Moriuchi Jan 2000 A
6022374 Imran Feb 2000 A
6036725 Avellanet Mar 2000 A
6048360 Khosravi et al. Apr 2000 A
6053941 Lindenberg et al. Apr 2000 A
6053943 Edwin et al. Apr 2000 A
6080177 Igaki Jun 2000 A
6090135 Plaia et al. Jul 2000 A
6110198 Fogarty et al. Aug 2000 A
6123722 Fogarty et al. Sep 2000 A
6126685 Lenker et al. Oct 2000 A
6129754 Kanesaka et al. Oct 2000 A
6139573 Sogard et al. Oct 2000 A
6143016 Bleam et al. Nov 2000 A
6146358 Rowe Nov 2000 A
6152937 Peterson et al. Nov 2000 A
6157852 Selmon et al. Dec 2000 A
6165199 Barbut Dec 2000 A
6187034 Frantzen Feb 2001 B1
6197013 Reed Mar 2001 B1
6197103 Davies et al. Mar 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6203568 Lombardi et al. Mar 2001 B1
6203569 Wijay Mar 2001 B1
6221102 Baker et al. Apr 2001 B1
6241667 Vetter et al. Jun 2001 B1
6254628 Wallace et al. Jul 2001 B1
6258117 Camrud et al. Jul 2001 B1
6266550 Selmon et al. Jul 2001 B1
6270524 Kim Aug 2001 B1
6273909 Kugler et al. Aug 2001 B1
6290728 Phelps et al. Sep 2001 B1
6312444 Barbut Nov 2001 B1
6312460 Drasler et al. Nov 2001 B2
6325824 Limon Dec 2001 B2
6344053 Boneau Feb 2002 B1
6364901 Inoue Apr 2002 B1
6364904 Smith Apr 2002 B1
6371962 Ellis et al. Apr 2002 B1
6387113 Hawkins et al. May 2002 B1
6402777 Globerman Jun 2002 B1
6409752 Boatman Jun 2002 B1
6409863 Williams et al. Jun 2002 B1
6425915 Khosravi et al. Jul 2002 B1
6428550 Vargas et al. Aug 2002 B1
6428566 Holt Aug 2002 B1
6475237 Drasler et al. Nov 2002 B2
6485510 Camrud et al. Nov 2002 B1
6491707 Makower et al. Dec 2002 B2
6508822 Peterson et al. Jan 2003 B1
6517573 Pollock Feb 2003 B1
6520984 Garrison Feb 2003 B1
6527800 McGuckin, Jr. et al. Mar 2003 B1
6547817 Fischell et al. Apr 2003 B1
6551353 Baker et al. Apr 2003 B1
6599296 Gillick et al. Jul 2003 B1
6623521 Steinke et al. Sep 2003 B2
6629994 Gomez et al. Oct 2003 B2
6635083 Cheng et al. Oct 2003 B1
6648911 Sirhan et al. Nov 2003 B1
6660031 Tran et al. Dec 2003 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6692504 Kurz et al. Feb 2004 B2
6699274 Stinson Mar 2004 B2
6699277 Freidberg et al. Mar 2004 B1
6706061 Fischell et al. Mar 2004 B1
6716240 Fischell et al. Apr 2004 B2
6719775 Slaker et al. Apr 2004 B2
6723119 Pinchasik et al. Apr 2004 B2
6730116 Wolinsky et al. May 2004 B1
6746475 Rivelli, Jr. Jun 2004 B1
6752828 Thornton Jun 2004 B2
6755854 Gillick et al. Jun 2004 B2
6786922 Schaeffer Sep 2004 B2
6790221 Monroe et al. Sep 2004 B2
6790227 Burgermeister Sep 2004 B2
6810882 Langberg et al. Nov 2004 B2
6814752 Chuter Nov 2004 B1
6827731 Armstrong et al. Dec 2004 B2
6843400 Lee Jan 2005 B1
6846323 Yip et al. Jan 2005 B2
6849087 Chuter Feb 2005 B1
6863685 Davila et al. Mar 2005 B2
6896697 Yip et al. May 2005 B1
6899718 Gifford, III et al. May 2005 B2
6899914 Schaldach et al. May 2005 B2
6913600 Valley et al. Jul 2005 B2
6942680 Grayzel et al. Sep 2005 B2
6942689 Majercak Sep 2005 B2
6945992 Goodson, IV et al. Sep 2005 B2
6951554 Johansen et al. Oct 2005 B2
6986784 Weiser et al. Jan 2006 B1
7001422 Escamilla et al. Feb 2006 B2
7001424 Patel et al. Feb 2006 B2
7007698 Thornton Mar 2006 B2
7018402 Vito et al. Mar 2006 B2
7025791 Levine et al. Apr 2006 B2
7037330 Rivelli, Jr. et al. May 2006 B1
7041130 Santini, Jr. et al. May 2006 B2
7052511 Weldon May 2006 B2
7087088 Berg et al. Aug 2006 B2
7105016 Shiu et al. Sep 2006 B2
7122043 Greenhalgh et al. Oct 2006 B2
7137993 Acosta et al. Nov 2006 B2
7147655 Chermoni Dec 2006 B2
7147656 Andreas et al. Dec 2006 B2
7147661 Chobotov et al. Dec 2006 B2
7150745 Stern et al. Dec 2006 B2
7160312 Saadat Jan 2007 B2
7163552 Diaz Jan 2007 B2
7166125 Baker et al. Jan 2007 B1
7169158 Sniffin et al. Jan 2007 B2
7169163 Becker Jan 2007 B2
7179284 Khosravi et al. Feb 2007 B2
7192440 Andreas et al. Mar 2007 B2
7201770 Johnson et al. Apr 2007 B2
7208002 Shelso Apr 2007 B2
7211101 Carley et al. May 2007 B2
7243408 Vietmeier Jul 2007 B2
7258697 Cox et al. Aug 2007 B1
7261731 Patel et al. Aug 2007 B2
7267684 Rolando et al. Sep 2007 B2
7270673 Yee et al. Sep 2007 B2
7273492 Cheng et al. Sep 2007 B2
7279007 Nikolic et al. Oct 2007 B2
7296577 Lashinski et al. Nov 2007 B2
7300456 Andreas et al. Nov 2007 B2
7294146 Chew et al. Dec 2007 B2
7303572 Meisheimer et al. Dec 2007 B2
7306617 Majercak Dec 2007 B2
7309341 Ortiz et al. Dec 2007 B2
7309350 Landreville et al. Dec 2007 B2
7316711 Allen et al. Jan 2008 B2
7320702 Hammersmark et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7323007 Sano Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329279 Haug et al. Feb 2008 B2
7331987 Cox Feb 2008 B1
7331990 Gianotti Feb 2008 B2
7331992 Randall et al. Feb 2008 B2
7351255 Andreas Apr 2008 B2
7399307 Evans et al. Jul 2008 B2
7402168 Sanderson et al. Jul 2008 B2
7431729 Chanduszko Oct 2008 B2
7445631 Salaheih et al. Nov 2008 B2
7476245 Abbate Jan 2009 B2
7500986 Lye et al. Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7524330 Berreklouw Apr 2009 B2
7537607 Gerberding May 2009 B2
7556647 Drews et al. Jul 2009 B2
7578840 Schaeffer Aug 2009 B2
7604662 Cambronne et al. Oct 2009 B2
7617007 Williams et al. Nov 2009 B2
7618432 Pedersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7625399 Case et al. Dec 2009 B2
7628803 Pavcnik et al. Dec 2009 B2
7637935 Pappas et al. Dec 2009 B2
7655034 Mitchell et al. Feb 2010 B2
7658759 Case et al. Feb 2010 B2
7666216 Hogendijk et al. Feb 2010 B2
7686824 Konstantino et al. Mar 2010 B2
7695507 Rivelli, Jr. et al. Apr 2010 B2
7720521 Chang et al. May 2010 B2
7736387 Pollock et al. Jun 2010 B2
7758594 Lamson et al. Jul 2010 B2
7758627 Richter Jul 2010 B2
7758632 Hojeibane et al. Jul 2010 B2
7763063 Arbefeuille et al. Jul 2010 B2
7806918 Nissl et al. Oct 2010 B2
7810223 Hemerick et al. Oct 2010 B2
7828834 Garbe Nov 2010 B2
7833262 McGuckin, Jr. et al. Nov 2010 B2
7842080 Chouinard Nov 2010 B2
7846194 Hartley et al. Dec 2010 B2
7867267 Sullivan et al. Jan 2011 B2
7871431 Gurm et al. Jan 2011 B2
7883537 Grayzel et al. Feb 2011 B2
7896911 Schneider et al. Mar 2011 B2
7905913 Chew et al. Mar 2011 B2
7922755 Acosta et al. Apr 2011 B2
7933660 Carr Apr 2011 B2
7942920 Majercak May 2011 B2
7955315 Feinberg et al. Jun 2011 B2
7963987 Melsheimer et al. Jun 2011 B2
7967855 Furst et al. Jun 2011 B2
7972373 Contiliano et al. Jul 2011 B2
8002725 Hogendijk Aug 2011 B2
8024851 Barr et al. Sep 2011 B2
8034099 Pellegrini Oct 2011 B2
8043354 Greenberg et al. Oct 2011 B2
8043357 Hartley Oct 2011 B2
8048151 O'Brien et al. Nov 2011 B2
8052738 Craven Nov 2011 B2
8057543 O'Brien et al. Nov 2011 B2
8092468 Hansen Jan 2012 B2
8127422 Wu Mar 2012 B2
8128677 Schneider et al. Mar 2012 B2
8157851 Andreas Apr 2012 B2
8177831 Andreas May 2012 B2
8236045 Benichou et al. Aug 2012 B2
8292938 Case Oct 2012 B2
8308790 Arbefeuille et al. Nov 2012 B2
8317859 Snow et al. Nov 2012 B2
8323243 Schneider et al. Dec 2012 B2
8328864 Niermann Dec 2012 B2
8353945 Andreas et al. Jan 2013 B2
8366766 Berreklouw Feb 2013 B2
8394139 Roeder et al. Mar 2013 B2
8403978 Schlun et al. Mar 2013 B2
8414636 Nabulsi et al. Apr 2013 B2
8460357 McGarry et al. Jun 2013 B2
8474460 Barrett et al. Jul 2013 B2
8500787 Simpson et al. Aug 2013 B2
8500789 Wuebbeling et al. Aug 2013 B2
8540760 Paul, Jr. et al. Sep 2013 B2
8585747 Andreas et al. Nov 2013 B2
8652198 Andreas et al. Feb 2014 B2
8740973 Furst et al. Jun 2014 B2
8745842 Wu Jun 2014 B2
8771335 Griego et al. Jul 2014 B2
8778010 Venturelli et al. Jul 2014 B2
8784467 Connelly et al. Jul 2014 B2
8864811 Kao Oct 2014 B2
8888841 Pandelidis et al. Nov 2014 B2
8900289 Thompson Dec 2014 B2
8956398 George et al. Feb 2015 B2
8961583 Hojeibane et al. Feb 2015 B2
8966736 Wu Mar 2015 B2
8986362 Snow et al. Mar 2015 B2
9050181 Hartley Jun 2015 B2
9101500 Feld et al. Aug 2015 B2
9101503 Lowe et al. Aug 2015 B2
9113999 Taylor et al. Aug 2015 B2
9216082 Von Segesser et al. Dec 2015 B2
9237959 Cage Jan 2016 B2
9301864 Kao Apr 2016 B2
9370437 Chuter et al. Jun 2016 B2
9375327 Giasolli et al. Jun 2016 B2
9398967 Cornelius Jul 2016 B2
9452067 Wu Sep 2016 B2
9480826 Schneider et al. Nov 2016 B2
9545322 Schneider et al. Jan 2017 B2
9585777 Pacetti Mar 2017 B2
9603730 Giasolli et al. Mar 2017 B2
9603980 Zhao Mar 2017 B2
9707115 Masakazu Jul 2017 B2
9730818 Giasolli et al. Aug 2017 B2
9737368 Lumauig Aug 2017 B2
9918835 Guyenot et al. Mar 2018 B2
9974670 Schneider et al. May 2018 B2
10022250 Giasolli et al. Jul 2018 B2
10117762 Giasolli et al. Nov 2018 B2
10137013 Giasolli et al. Nov 2018 B2
10166127 Giasolli et al. Jan 2019 B2
10188533 Schneider et al. Jan 2019 B2
10245167 Longo Apr 2019 B2
10245168 Amendt et al. Apr 2019 B2
10271973 Giasolli et al. Apr 2019 B2
10278839 Giasolli et al. May 2019 B2
10285831 Giasolli et al. May 2019 B2
10292845 Higashi et al. May 2019 B2
10299945 Schneider et al. May 2019 B2
10390977 Giasolli et al. Aug 2019 B2
10660771 Giasolli et al. May 2020 B2
20020007211 Pinchasik et al. Jan 2002 A1
20020055772 McGuckin, Jr. et al. May 2002 A1
20020120323 Thompson Aug 2002 A1
20020123790 White et al. Sep 2002 A1
20020143386 Davila et al. Oct 2002 A1
20020151955 Tran et al. Oct 2002 A1
20020156496 Chermoni Oct 2002 A1
20020165599 Nasralla Nov 2002 A1
20020169495 Gifford et al. Nov 2002 A1
20030018377 Berg et al. Jan 2003 A1
20030055491 Schwartz Mar 2003 A1
20030069630 Burgermeister et al. Apr 2003 A1
20030130720 DePalma et al. Jul 2003 A1
20030158595 Randall et al. Aug 2003 A1
20030191479 Thornton Oct 2003 A1
20030220683 Minasian et al. Nov 2003 A1
20030225446 Hartley Dec 2003 A1
20030225448 Gerberding Dec 2003 A1
20040010307 Grad et al. Jan 2004 A1
20040098077 Gianotti May 2004 A1
20040143287 Konstantino et al. Jul 2004 A1
20040158308 Hogendijk et al. Aug 2004 A1
20040186551 Kao et al. Sep 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040215324 Vonderwalde et al. Oct 2004 A1
20040215326 Goodson, IV et al. Oct 2004 A1
20040230293 Yip Nov 2004 A1
20040260389 Case et al. Dec 2004 A1
20040267348 Gunderson et al. Dec 2004 A1
20050010275 Sahatjian et al. Jan 2005 A1
20050096727 Allen et al. May 2005 A1
20050096731 Looi et al. May 2005 A1
20050131525 Hartley Jun 2005 A1
20050149163 Sahota Jul 2005 A1
20050171592 Majercak Aug 2005 A1
20050172471 Vietmeier Aug 2005 A1
20050222670 Schaeffer Oct 2005 A1
20050246008 Hogendijk et al. Nov 2005 A1
20050251164 Gifford, III et al. Nov 2005 A1
20050278011 Peckham Dec 2005 A1
20050288764 Snow et al. Dec 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060047297 Case Mar 2006 A1
20060069424 Acosta et al. Mar 2006 A1
20060074478 Feller, III Apr 2006 A1
20060095113 Niermann May 2006 A1
20060111769 Murray May 2006 A1
20060184225 Pryor Aug 2006 A1
20060184227 Rust Aug 2006 A1
20060193892 Furst et al. Aug 2006 A1
20060206190 Chermoni Sep 2006 A1
20060229700 Acosta et al. Oct 2006 A1
20060248698 Hanson et al. Nov 2006 A1
20060271151 McGarry et al. Nov 2006 A1
20060276871 Lamson et al. Dec 2006 A1
20060282149 Kao Dec 2006 A1
20070021826 Case Jan 2007 A1
20070088420 Andreas et al. Apr 2007 A1
20070093744 Elmaleh Apr 2007 A1
20070156223 Vaughan Jul 2007 A1
20070156225 George et al. Jul 2007 A1
20070156226 Chew et al. Jul 2007 A1
20070179587 Acosta et al. Aug 2007 A1
20070191926 Nikanorov et al. Aug 2007 A1
20070233235 Chouinard Oct 2007 A1
20070255391 Hojeibane et al. Nov 2007 A1
20070276461 Andreas et al. Nov 2007 A1
20080033522 Grewe et al. Feb 2008 A1
20080051867 Davila et al. Feb 2008 A1
20080077229 Andreas et al. Mar 2008 A1
20080082154 Tseng et al. Apr 2008 A1
20080132989 Snow et al. Jun 2008 A1
20080132999 Mericle et al. Jun 2008 A1
20080208327 Rowe Aug 2008 A1
20080221658 Martin et al. Sep 2008 A1
20080255653 Schkolnik Oct 2008 A1
20080264102 Berra Oct 2008 A1
20080269865 Snow et al. Oct 2008 A1
20080319528 Yribarren et al. Dec 2008 A1
20090018637 Paul, Jr. et al. Jan 2009 A1
20090076594 Sabaria Mar 2009 A1
20090082841 Zacharias et al. Mar 2009 A1
20090149943 Tower Jun 2009 A1
20090214615 Zhao Aug 2009 A1
20090216284 Chin et al. Aug 2009 A1
20090248139 Pellegrini Oct 2009 A1
20090248141 Shandas et al. Oct 2009 A1
20090270965 Sinha et al. Oct 2009 A1
20090270967 Fleming, III et al. Oct 2009 A1
20090276031 Kao Nov 2009 A1
20100042121 Schneider et al. Feb 2010 A1
20100131045 Globerman et al. May 2010 A1
20100137966 Magnuson Jun 2010 A1
20100228333 Drasler et al. Sep 2010 A1
20100298921 Schlun et al. Nov 2010 A1
20100318173 Kolandaivelu et al. Dec 2010 A1
20110004237 Schneider et al. Jan 2011 A1
20110077731 Lee et al. Mar 2011 A1
20110125248 George et al. May 2011 A1
20110152992 Schneider et al. Jun 2011 A1
20110230954 Schneider et al. Sep 2011 A1
20110301685 Kao Dec 2011 A1
20110301690 Giasolli et al. Dec 2011 A1
20110307049 Kao Dec 2011 A1
20120016457 Chobotov et al. Jan 2012 A1
20120035705 Giasolli et al. Feb 2012 A1
20120083872 Schneider et al. Apr 2012 A1
20120191176 Nagl et al. Jul 2012 A1
20130144375 Giasolli et al. Jun 2013 A1
20140081380 Giasolli et al. Mar 2014 A1
20140288629 Amendt Sep 2014 A1
20170000629 Giasolli et al. Jan 2017 A1
20170181873 Schneider et al. Jun 2017 A1
20170296366 Giasolli et al. Oct 2017 A1
20170319361 Giasolli et al. Nov 2017 A1
20170319364 Jung et al. Nov 2017 A1
20170367856 Tanaka et al. Dec 2017 A1
20180110634 Giasolli et al. Apr 2018 A1
20180200085 Giasolli et al. Jul 2018 A1
20180200086 Giasolli et al. Jul 2018 A1
20180200087 Giasolli et al. Jul 2018 A1
20180207007 Giasolli et al. Jul 2018 A1
20180207008 Giasolli et al. Jul 2018 A1
20190192319 Giasolli et al. Jun 2019 A1
20190192321 Schneider et al. Jun 2019 A1
20190282381 Giasolli et al. Sep 2019 A1
Foreign Referenced Citations (99)
Number Date Country
2008335140 Nov 2012 AU
2011274392 Nov 2013 AU
2014201067 Mar 2014 AU
2010259907 Aug 2015 AU
2013212056 Jul 2016 AU
2015207895 May 2017 AU
2014280976 Jul 2017 AU
2705275 Jul 2013 CA
1856280 Nov 2006 CN
101102728 Jan 2008 CN
101262835 Sep 2008 CN
101754727 Jun 2010 CN
101909552 Dec 2010 CN
102292036 Dec 2011 CN
102724931 Oct 2012 CN
103313682 Sep 2013 CN
104220026 Dec 2014 CN
104887365 Sep 2015 CN
103313682 Aug 2016 CN
104220026 Sep 2016 CN
106466205 Mar 2017 CN
106473786 Mar 2017 CN
106473849 Mar 2017 CN
107028691 Aug 2017 CN
107157632 Sep 2017 CN
107205834 Sep 2017 CN
104887365 Dec 2017 CN
60030705 May 2007 DE
10 2009 041 025 Mar 2011 DE
20 2011 107 781 Dec 2011 DE
20 2011 110 714 Dec 2015 DE
10 2014 016 588 May 2016 DE
20 2011 110 818 Sep 2016 DE
2775968 Dec 2017 DK
0497620 Aug 1992 EP
0714640 Jun 1996 EP
0855883 Aug 1998 EP
0812580 Feb 2004 EP
1393766 Mar 2004 EP
1236446 Aug 2005 EP
1803423 Jul 2007 EP
1894545 Mar 2008 EP
1452151 Oct 2008 EP
1378212 Sep 2009 EP
2219535 Aug 2010 EP
2440155 Apr 2012 EP
1786367 Apr 2013 EP
1973502 Apr 2014 EP
2806826 Dec 2014 EP
2881086 Jun 2015 EP
2699207 Oct 2015 EP
2590602 Dec 2015 EP
3015078 May 2016 EP
3058900 Aug 2016 EP
1689327 Sep 2016 EP
3072463 Sep 2016 EP
2775968 Sep 2017 EP
3217927 Sep 2017 EP
2714816 Jul 1995 FR
201106757 Jun 2011 GB
H06-000221 Jan 1994 JP
H08-332229 Dec 1996 JP
H11-501526 Feb 1999 JP
H11-506665 Jun 1999 JP
2007-503923 Mar 2007 JP
2008-504078 Feb 2008 JP
2008-246214 Oct 2008 JP
2008-537891 Oct 2008 JP
2010-516333 May 2010 JP
2015-506760 Mar 2015 JP
2016-135278 Jul 2016 JP
6006808 Oct 2016 JP
10-2017-0084214 Jul 2017 KR
WO 1996002211 Feb 1996 WO
WO 9609013 Mar 1996 WO
WO 1996037167 Nov 1996 WO
WO 1999048440 Sep 1999 WO
WO 1999049440 Sep 1999 WO
WO 2000066034 Nov 2000 WO
WO 2001076509 Oct 2001 WO
WO 2002034163 May 2002 WO
WO 03047651 Jun 2003 WO
WO 2003101310 Dec 2003 WO
WO 2004006983 Jan 2004 WO
WO 2004032799 Apr 2004 WO
WO 2006005082 Jan 2006 WO
WO 2006026371 Mar 2006 WO
WO 2007088549 Aug 2007 WO
WO 2007109621 Sep 2007 WO
WO 2009076517 Jun 2009 WO
WO 2010037141 Apr 2010 WO
WO 2010118432 Oct 2010 WO
WO 2010144845 Dec 2010 WO
WO 2011153110 Dec 2011 WO
WO 2012006602 Jan 2012 WO
WO 2012143731 Oct 2012 WO
WO 2013068127 May 2013 WO
WO 2013112768 Aug 2013 WO
WO 2016074799 May 2016 WO
Non-Patent Literature Citations (72)
Entry
Mosseri M, Rozenman Y, Mereuta A, Hasin Y, Gotsman M., “New Indicator for Stent Covering Area”, in Catheterization and Cardiovascular Diagnosis, 1998, v. 44, pp. 188-192.
Colombo et al., Intravascular Ultrasound-Guided Percutaneous Transluminal Coronary Angioplasty With Provisional Spot Stenting for Treatment of Long Coronary Lesions, Journal of the American College of Cardiology, vol. 38, No. 5, Nov. 1, 2001.
Australian Office Action (Notice of Acceptance), re AU Application No. 2011274392, dated Nov. 14, 2013, including accepted (allowed) claims.
Australian Office Action, re AU Application No. 2008335140, dated Apr. 21, 2011.
Australian Office Action, re AU Application No. 2008335140, dated Mar. 15, 2011.
Australian Office Action, re AU Application No. 2011274392, dated May 3, 2013.
European Office Action and Supplemental European Search Report, re EP Application No. 11804455.1, dated Jun. 11, 2014.
European Office Action and Supplementary Partial European Search Report, re EP Application No. 08858824.9, dated Sep. 27, 2012.
International Search Report and Written Opinion, re PCT Application No. PCT/US2010/038379, dated Feb. 25, 2011.
International Search Report and Written Opinion, re PCT Application No. PCT/US2011/038468, dated Jan. 18, 2012.
International Search Report and Written Opinion, re PCT Application No. PCT/US2013/023030, dated Apr. 16, 2013.
International Search Report and Written Opinion, re PCT Application PCT/US2008/086396, dated Jul. 27, 2009.
International Search Report and Written Opinion, re PCT Application PCT/US2011/043471, dated Feb. 9, 2012.
International Search Report, re PCT Application No. PCT/US2013/023030, dated Apr. 16, 2013.
Bosiers, M. et al., “Results from the Tack Optimized Balloon Angioplasty (TOBA) study demonstrate the benefits of minimal metal implants for dissection repair after angioplasty”, Journal of Vascular Surgery, vol. 64, Jul. 2016, in 8 pages.
Kokkinidis, D. et al., “Emerging and Future Therapeutic Options for Femoropopliteal and Infrapopliteal Endovascular Intervention”, Interventional Cardiology Clinics, vol. 6, 2017, in 17 pages.
Shishehbor, M. et al., “Endovascular Treatment of Femoropopliteal Lesions”, Journal of the American College of Cardiology, vol. 66, 2015, in 4 pages.
Zeller, T. et al., “Novel Approaches to the Management of Advanced Peripheral Artery Disease: Perspectives on Drug-Coated Balloons, Drug-Eluting Stents, and Bioresorbable Scaffolds”, Current Cardiology Reports, vol. 17, Sep. 2015, in 6 pages.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2008/086396, dated Jun. 15, 2010.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2011/038468, dated Dec. 12, 2012.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2011/043471, dated Jan. 17, 2013.
International Preliminary Report on Patentability, re PCT Application No. PCT/US2013/023030, dated Jan. 17, 2013.
English translation of the first Office Action and Search Report in Chinese Application No. 201601546800.2 in 5 pages dated Sep. 28, 2017.
English translation of the first Office Action and Search Report in Chinese Application No. 201610546643.5 in 5 pages dated Oct. 17, 2017.
U.S. Appl. No. 11/955,331 (U.S. Pat. No. 7,896,911), filed Dec. 12, 2007 (Mar. 1, 2011), Device and Method for Tacking Plaque to Blood Vessel Wall.
U.S. Appl. No. 13/038,175 (U.S. Pat. No. 9,545,322), filed Mar. 1, 2011 (Jan. 17, 2017), Device and Method for Tacking Plaque to Blood Vessel Wall.
U.S. Appl. No. 15/375,026, filed Dec. 9, 2016, Device and Method for Tacking Plaque to Blood Vessel Wall.
U.S. Appl. No. 12/483,193 (U.S. Pat. No. 8,128,677), filed Jun. 11, 2009 (Mar. 6, 2012), Device and Method for Tacking Plaque to a Blood Vessel Wall.
U.S. Appl. No. 13/246,776 (U.S. Pat. No. 9,974,670), filed Sep. 27, 2011 (May 22, 2018), Method of Treating Atherosclerotic Occlusive Disease.
U.S. Appl. No. 15/984,111 (U.S. Pat. No. 10,299,945), filed May 18, 2018 (May 28, 2019), Method of Treating Atherosclerotic Occlusive Disease.
U.S. Appl. No. 12/790,819 (U.S. Pat. No. 10,188,533), filed May 29, 2010 (Jan. 29, 2019), Minimal Surface Area Contact Device for Holding Plaque to Blood Vessel Wall.
U.S. Appl. No. 16/259,146, filed Jan. 28, 2019, Minimal Surface Area Contact Device for Holding Plaque to Blood Vessel Wall.
U.S. Appl. No. 13/118,388, filed May 28, 2011, Stent Device Having Focal Elevating Elements for Minimal Surface Area Contact With Lumen Walls.
U.S. Appl. No. 13/179,458 (U.S. Pat. No. 10,022,250), filed Jul. 8, 2011 (Jul. 17, 2018), Deployment Device for Placement of Multiple Intraluminal Surgical Staples.
U.S. Appl. No. 15/815,515, filed Nov. 16, 2017, Deployment Device for Placement of Multiple Intraluminal Surgical Staples.
U.S. Appl. No. 15/921,464, (U.S. Pat. No. 10,660,771), filed Mar. 14, 2018 (May 26, 2020), Deployment Device for Placement of Multiple Intraluminal Surgical Staples.
U.S. Appl. No. 16/881,385, filed May 22, 2020, Deployment Device for Placement of Multiple Intraluminal Surgical Staples.
U.S. Appl. No. 13/153,257 (U.S. Pat. No. 9,375,327), filed Jun. 3, 2011 (Jun. 28, 2016), Endovascular Implant.
U.S. Appl. No. 15/170,772 (U.S. Pat. No. 10,278,839), filed Jun. 1, 2016 (May 7, 2019), Endovascular Implant.
U.S. Appl. No. 15/640,095, filed Jun. 30, 2017, Endovascular Implant.
U.S. Appl. No. 15/921,448 (U.S. Pat. No. 10,285,831), filed Mar. 14, 2018 (May 14, 2019), Endovascular Implant.
U.S. Appl. No. 15/921,459 (U.S. Pat. No. 10,390,977), filed Mar. 14, 2018 (Aug. 27, 2019), Endovascular Implant.
U.S. Appl. No. 15/921,477 (U.S. Pat. No. 10,271,973), filed Mar. 14, 2018 (Apr. 30, 2019), Endovascular Implant.
U.S. Appl. No. 16/426,627, filed May 30, 2019, Endovascular Implant and Deployment Devices.
U.S. Appl. No. 13/749,643 (U.S. Pat. No. 9,730,818), filed Jan. 24, 2013 (Aug. 15, 2017), Endoluminal Device and Method.
U.S. Appl. No. 14/089,703 (U.S. Pat. No. 9,603,730), filed Nov. 25, 2013 (Mar. 28, 2017), Endoluminal Device and Method.
U.S. Appl. No. 15/472,215, filed Mar. 28, 2017, Endoluminal Device and Method.
U.S. Appl. No. 15/654,586 (U.S. Pat. No. 10,117,762), filed Jul. 19, 2017 (Nov. 6, 2018), Endoluminal Device and Method.
U.S. Appl. No. 15/837,870 (U.S. Pat. No. 10,137,013), filed Dec. 11, 2017 (Nov. 27, 2018), Endoluminal Device and Method.
U.S. Appl. No. 15/921,541 (U.S. Pat. No. 10,166,127), filed Mar. 14, 2018 (Jan. 1, 2019), Endoluminal Device and Method.
U.S. Appl. No. 16/225,528, filed Dec. 19, 2018, Endoluminal Device and Method.
U.S. Appl. No. 13/939,019, filed Jul. 10, 2013, Systems and Methods for Attaching Radiopaque Markers to a Medical Device.
U.S. Appl. No. 14/746,636 (U.S. Pat. No. 9,192,500), filed Jun. 22, 2015 (Nov. 24, 2015), Delivery Device and Method of Delivery.
U.S. Appl. No. 14/885,295 (U.S. Pat. No. 9,375,337), filed Oct. 16, 2015 (Jun. 28, 2016), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/133,709, filed Apr. 20, 2016, Delivery Device and Method of Delivery.
U.S. Appl. No. 14/935,087 (U.S. Pat. No. 9,345,603), filed Nov. 6, 2015 (May 24, 2016), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/133,751 (U.S. Pat. No. 9,602,786), filed Apr. 20, 2016 (Mar. 21, 2017), Delivery Device and Method of Delivery.
U.S. Appl. No. 14/935,121 (U.S. Pat. No. 9,320,632), filed Nov. 6, 2015 (Apr. 26, 2016), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/133,158 (U.S. Pat. No. 9,584,777), filed Apr. 19, 2016 (Feb. 28, 2017), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/011,321 (U.S. Pat. No. 9,456,914), filed Jan. 29, 2016 (Oct. 4, 2016), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/134,315 (U.S. Pat. No. 9,585,782), filed Apr. 20, 2016 (Mar. 7, 2017), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/415,167 (U.S. Pat. No. 10,610,392), filed Jan. 25, 2017 (Apr. 7, 2020), Delivery Device and Method of Delivery.
U.S. Appl. No. 16/821,578, filed Mar. 17, 2020, Delivery Device and Method of Delivery.
U.S. Appl. No. 14/656,462 (U.S. Pat. No. 9,375,336), filed Mar. 12, 2015 (Jun. 28, 2016), Delivery Device and Method of Delivery.
U.S. Appl. No. 14/935,154 (U.S. Pat. No. 9,445,929), filed Nov. 6, 2015 (Sep. 20, 2016), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/194,410, filed Jun. 27, 2016, Delivery Device and Method of Delivery.
U.S. Appl. No. 15/000,437 (U.S. Pat. No. 9,433,520), filed Jan. 19, 2016 (Sep. 6, 2016), Delivery Device and Method of Delivery.
U.S. Appl. No. 15/227,757 (U.S. Pat. No. 10,245,167), filed Aug. 3, 2016 (Apr. 2, 2019), Delivery Device and Method of Delivery.
U.S. Appl. No. 16/372,224, filed Apr. 1, 2019, Delivery Device and Method of Delivery.
U.S. Appl. No. 16/067,082, filed Jun. 28, 2018, Delivery Device and Method of Delivery.
U.S. Appl. No. 15/705,793, filed Sep. 15, 2017, Delivery Device and Method of Delivery.
U.S. Appl. No. 16/632,841, filed Jan. 21, 2020, Delivery Device and Method of Delivery.
Related Publications (1)
Number Date Country
20140194967 A1 Jul 2014 US
Continuations (2)
Number Date Country
Parent 13246776 Sep 2011 US
Child 14102411 US
Parent 12483193 Jun 2009 US
Child 13246776 US
Continuation in Parts (1)
Number Date Country
Parent 11955331 Dec 2007 US
Child 12483193 US