“Highly Pathogenic Avian Influenza”—USDA, Animal and Plant Health Inspection Service, Veterinary Service, February 2002.
“NC228: Avian Respiratory Diseases: Pathogenesis, Surveillance, Diagnosis and Control. Available from the web: http://www.lgu.umd.edu/proiect/home.cfm?trackID=1514. Dated: Jul. 29, 2004.
The invention refers to detection of ultrasonic radiation that is being emitted by creatures of animate nature, and more particularly to early and non-contact, infectiously safe detection of typical ultrasound signs of respiratory diseases in fowls and mammals, which are being bred at farms, cared inside open-air cages and enclosures, or watched in wild nature.
There are specific conditions involving the breeding of fowls and mammals where a random illness of a creature may raise an epidemic and therefore devastate the efficiency and profitability of a breeding farm. In the case of disease of the respiratory organs of these creatures, there exists the evident danger of spreading a disease throughout the entire breeding farm. It is necessary therefore to find a sick or diseased creature as early as possible. However, the use of traditional stethoscopes for examining each creature in the mode of contact listening to their respiratory organs is impossible due to the design of such farms and arrangement of creatures in current breeding processes. Therefore, the acquisition in proper time and in non-contact manner of all the typical acoustic signs of respiratory diseases should be of great anti-epidemic and commercial importance. This problem may be solved on the basis of the phenomena that at the early stage of said illness its acoustic signs cannot be heard audibly, but can be heard, detected and recorded in the ultrasound range either automatically by a stationary 3-D array of ultrasonic transducers or by an examiner, equipped with a hand-held ultrasonic device. Since ultrasound waves propagate in air from sickly breathing creature to the remote examiner's position, this phenomenon enables a veterinary to avoid the present diagnosis difficulties and infectious threat, caused by the mentioned above epidemic hazards. The small-scale farm breeding of fowls and mammals assumes the absence of their chaotic movement inside farm building. Such spatially restricted arrangement of creatures enables the examiner to review and watch them systematically, in particular diagnosing their bodies by direct contact. The regular industrial farm breeding of large flocks of fowls and some kinds of mammals also assumes prevention of their movement inside farm building in chaotic manner, but at the same time the arrangement of these creatures in a tight adjacency hinders the examiners from accessing each creature's body separately either for observing this body visually or for diagnosing their respiratory organs by regular direct hearing with stethoscope for finding any signs of illness. Besides, the constant audible noise inside the farm building prevents the ability to hear any signs of respiratory disease in acoustic range available for human hearing. In such conditions, it is reasonable to use the advantages of ultrasound, which is created through the breathing of creatures with respiratory disease. These advantages of ultrasound include, in particular, the ability to propagate through air for enough long distances for detection and to not be influenced by surrounding audible “white noise”. So, in accordance with the present invention, ultrasound non-contact diagnosing is the new method of early detection of respiratory diseases in fowls and mammals. The nearest ancestor of the said method is the method that has been discovered by U.S. Pat. No. 6,189,384 B1, where ultrasonic monitoring is used for a progressive surveying of machines' degradation development until the permissible wear rate, and where this ultrasound monitoring is based on the predicted spatio-temporal routing, which is being planned by central processing system in dependence on the results of previously and later acquired data comparison. Such a methodology couldn't be applied in terms of unpredictable spatio-temporal parameters of the mentioned above respiratory diseases occurrence and spread. The operating regime of entire system and its functional components must be submitted to the terms of urgent detection of area and sequent pinpointing of place where random appearance of alarm ultrasound signs of respiratory illness have occurred.
The suggested by the present invention method of ultrasound diagnosing of respiratory diseases in fowls and mammals, and other breathing creatures of animate nature has been made free of the mentioned above disadvantages, since there are being purposefully used as innovative techniques of non-contact early ultrasound detection of respiratory diseases of said creatures, as novel interrelation among those 3-D surveying, 2-D inspection and 1-D pinpointing techniques. The successful putting this method into practice should help to avoid annual loss of scores of millions dollars in poultry husbandry of the United States of America.
The present invention provides for a novel method of ultrasound non-contact early detection of respiratory disease in fowls and mammals, and other creatures of animate nature wherein the operating regime of entire system and of each component of this system must be devoted to:
It is the principle object of the present invention to provide a relevant interrelation of ultrasound techniques for non-contact detecting of non-audible signs of respiratory disease for creating a method of distinguishing sick creatures from healthy creatures, e.g. in a large-size flock at the breeding farm.
Another object of the invention is to provide a technique for sampling the typical acoustic signs of respiratory illness of fowls, mammals and other creatures in the form of ultrasound waves that propagate in air over numerous flocks and that pertain to the early beginning stage of an illness.
A further object of the invention is to provide a technique of sequential procedures that enable the examiner to distinguish the sick creature, including:
Still another object of the invention is to provide a schedule of operating interrelation among the procedures of acquisition of running ultrasound signals for comparison with said preliminary sampled ultrasound signals, where such comparison should result in moving away the infected unit group or even a few sick creatures from an entire flock.
Predominant embodiment of the present invention will be described herein with reference to the figures by way of graphical illustration, in which fundamental arrangement of the suggested innovative method is represented, and in which explanations of said arrangement are given.
The preferable embodiments of the present invention are the interrelated techniques of the novel method of ultrasound non-contact diagnosing of respiratory organs of fowls, mammals and other creatures with the aim of early detection of diseases thereof. The following description is expected to deliver the apt explanation of embodiments, advantages and benefits of the method claimed herein.
The ultrasonic signs for the mentioned above purpose may be defined as the following high frequency acoustic evidences of the early stage of respiratory illness:
According to the method of the present invention, the sampling of these acoustic evidences is being accomplished in the form of combined ultrasonic images that:
In compliance with the method of the present invention, the technology of distinguishing a unit group (or even a few) of sick creatures is being carried out with interacting techniques that provide for narrowing of search zone in consecution: direction to suspected section of an entire creatures' inhabiting area/—direction to suspected sector of a suspected section/—place of suspected unit group.
In accordance with the method of the present invention, the processing of signals, that were acquired during diagnosing, and signals, retrieved from a preliminary formed data base of ultrasound images, is being fulfilled basically as follows:
The present invention is not to be confined to the precise details herein described, nevertheless changes and modifications may be made so far as such changes and modifications indicate no significant deviations from the sense and art of the claims.
| Number | Date | Country | |
|---|---|---|---|
| 60494830 | Aug 2003 | US |