Method of using photolithography and etching for forming a nozzle plate of an inkjet print head

Information

  • Patent Grant
  • 6773094
  • Patent Number
    6,773,094
  • Date Filed
    Wednesday, January 22, 2003
    21 years ago
  • Date Issued
    Tuesday, August 10, 2004
    19 years ago
Abstract
A method of forming a nozzle plate of an inkjet print head. A silicon chip is provided with an activated device and a first film is formed on the silicon chip, with a first opening corresponding to the activated device. Then, a second film is formed on the first film. Next, a photoresist layer is formed on the second film, such that the photoresist layer has a second opening corresponding to the first opening. Next, the second film under the second opening of the photoresist layer is etched to form a via in the second film passing through the first opening.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The invention relates to a method of forming a nozzle plate of an inkjet print head, and more particularly to a method of using photolithography and etching to form nozzle orifices in the nozzle plate of an inkjet print head.




2. Description of the Related Art




Inkjet printers, a major product for computer printing, accurately and rapidly drive ink droplets of precise volume in predetermined positions to print, and which satisfies trends and demands for automation, miniaturization, low costs, reduced-time procedures, and environmental concerns in the electronics industry. Particularly, thermal inkjet print heads employ a heater to vaporize ink droplets, and use high-pressure bubbles to drive the ink droplets through nozzle orifices to print on a paper. The inkjet print head comprises an ink cartridge, a nozzle plate having a plurality of nozzle orifices and a plurality of thin-film heaters, in which each thin-film heater is disposed under each nozzle orifice and provided with an ink channel wall to drive ink droplets from corresponding nozzle orifices.




Print quality of the inkjet printer mainly depends on physical characteristics of the nozzle orifice of the inkjet print head, such as the undercut profile and the opening profile of the nozzle orifice, which influence volume, track and jet speed of the ink droplets. Conventionally, the nozzle plate is a metal plate with a plurality of nozzle orifices formed by lithographic electroforming or other electrochemical shaping technologies. However, the metal nozzle plate using this lithographic electroforming encounter problems. First, the process conditions, such as stress and electroplating thickness, are difficult to control. Second, design choices of nozzle orifice shape and size are limited. Third, the process cost is high for mass production. Fourth, the metal plate is easily corroded by the ink droplets. Although this corrosion phenomenon can be eliminated by electroplating an extra gold layer on the metal nozzle plate, the process cost is concurrently increased.




Recently, an excimer laser treatment has been employed to form the nozzle orifices and solve the above-described problems, but other problems are encountered, such as misalignment, and bulky and expensive facilities.




Accordingly, a novel process of forming the nozzle plate for improved printing quality, simplified process, decreased process costs, and improved pattern precision, is called for.




SUMMARY OF THE INVENTION




Accordingly, an object of the invention is to provide a method of using photolithography and etching to form a nozzle plate of an inkjet print head. The position, diameter, and profile of the nozzle orifice are effectively controlled to achieve simplified procedure, reduced cost, and improved precision.




To achieve these and other advantages, the invention provides a method of forming a nozzle plate of an inkjet print head. First, a silicon chip is provided with at least one activated device. A first film is formed on the silicon chip, comprising a first opening corresponding to the activated device. Next, a second film is formed on the first film. Next, a photoresist layer is formed on the second film, comprising a second opening corresponding to the first opening. Next, the second film under the second opening of the photoresist layer is etched to form a via in the second film passing through the first opening. Finally, the photoresist layer is removed.











DESCRIPTION OF THE DRAWINGS




For a better understanding of the present invention, reference is made to a detailed description to be read in conjunction with the accompanying drawings, in which:





FIGS. 1A

to


1


F are sectional diagrams of a method of forming a nozzle orifice of an inkjet print head according to the present invention.











DETAILED DESCRIPTION OF THE INVENTION




The present invention provides a method of using photolithography and etching to form a nozzle plate of an inkjet print head. On a silicon chip, laminating, exposure, development, and etching are employed to form a plurality of nozzle orifices in a film, such that the position, diameter, and profile of the nozzle orifices are effectively controlled to simplify procedure, reduce costs, and improve precision. The amount, arrangement, and size of the nozzle orifices are design choices and not limited.




A preferred embodiment of the present invention is now described with reference to a method of forming a nozzle orifice over an activated device (for example, a thin-film heater) of a silicon chip.





FIGS. 1A

to


1


F are sectional diagrams of a method of forming a nozzle orifice of an inkjet print head according to the present invention. In

FIG. 1A

, a silicon chip


10


is provided with at least one activated device


12


, such as a thin-film heater, and then covered with a first film


14


by laminating or any other deposition type. Preferably, the first film


14


is a photosensitive macromolecular material, such as epoxy, novolak, arcylate, polyimide, polyamide, or photosensitive polymer. Next, in

FIG. 1B

, using exposure and development on a predetermined area of the first film


14


, a first opening


16


is formed in the first film


14


corresponding to the activated device


12


. Next, in

FIG. 1C

, the first film


14


is covered with a second film


18


by laminating or other deposition type, and a photoresist layer


20


is coated thereon. Preferably, the second film


18


is a photosensitive macromolecular material, such as epoxy, novolak, arcylate, polyimide, polyamide, or photosensitive polymer.




Subsequently, in

FIG. 1D

, using exposure and development, a second opening


22


is formed in the photoresist layer


20


corresponding to the first opening


16


. Preferably, the diameter of the second opening


22


is smaller than the first opening


16


. Then, in

FIG. 1E

, using plasma dry etching with oxygen as the main etching gas, the second film


18


under the second opening


22


is removed to form a via


24


in the second film


18


, passing through the via


24


to reach the first opening


16


. Finally, in

FIG. 1F

, the photoresist layer


20


is removed to complete a nozzle plate. The via


24


serves as a nozzle orifice


24


of the present invention.




Compared with conventional nozzle plates formed using electroforming, the present invention employs laminating, photolithography and etching to form the nozzle orifice


24


in the second film


18


. The diameter of the nozzle orifice


24


can be narrowed to approximately 1 μm and the number of the nozzle orifices


24


in one row can reach more than 10000, thus increasing the density of the nozzle orifice pattern. Also, the undercut profile of the nozzle orifice


24


and the arrangement of adjacent nozzle orifices


24


can be effectively controlled to provide high-resolution inkjet performance. Moreover, since photolithography and etching are directly performed on the silicon chip


10


, process procedure is simplified, process costs are lowered, and commercialized mass production is enabled.




While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.



Claims
  • 1. A method of forming a nozzle plate of an inkjet print head, comprising the steps of:providing a silicon chip having at least one activated device thereon; forming a first film on the silicon chip, in which the first film comprises a first opening corresponding to the activated device; forming a second film on the first film; forming a photoresist layer on the second film, in which the photoresist layer comprises a second opening corresponding to the first opening; and etching the second film under the second opening of the photoresist layer to form a via in the second film, passing through the first opening.
  • 2. The method of forming a nozzle plate of an inkjet print head as claimed in claim 1, wherein the step of forming the first opening comprises:forming the first film to cover the silicon chip; and using photolithography and etching on the first film to form the first opening corresponding to the activated device.
  • 3. The method of forming a nozzle plate of an inkjet print head as claimed in claim 1, wherein the step of forming the second opening comprises:forming the photoresist layer on the second film; and using photolithography and etching on the photoresist layer to form the second opening corresponding to the first opening.
  • 4. The method of forming a nozzle plate of an inkjet print head as claimed in claim 1, further comprising a step of removing the photoresist layer after forming the via.
  • 5. The method of forming a nozzle plate of an inkjet print head as claimed in claim 1, wherein the step of etching the second film uses plasma dry etching.
  • 6. The method of forming a nozzle plate of an inkjet print head as claimed in claim 5, wherein the plasma dry etching uses oxygen as the main etching gas.
  • 7. The method of forming a nozzle plate of an inkjet print head as claimed in claim 1, wherein the first film is a macromolecular material.
  • 8. The method of forming a nozzle plate of an inkjet print head as claimed in claim 1, wherein the second film is a macromolecular material.
  • 9. The method of forming a nozzle plate of an inkjet print head as claimed in claim 1, wherein the activated device is a thin-film heater.
Priority Claims (1)
Number Date Country Kind
91101783 A Feb 2002 TW
US Referenced Citations (1)
Number Name Date Kind
6409931 Shimomura et al. Jun 2002 B1