Method of writing to an organic memory

Information

  • Patent Grant
  • 6903958
  • Patent Number
    6,903,958
  • Date Filed
    Wednesday, September 5, 2001
    23 years ago
  • Date Issued
    Tuesday, June 7, 2005
    19 years ago
Abstract
The invention relates to a memory, based on organic material and applied in combination with an organic integrated circuit (integrated plastic circuit). The invention particularly relates to a memory for a RFID-Tag (RFID-tags: radio frequency identification tags) and several methods for describing a memory.
Description
FIELD OF THE INVENTION

The invention relates to a memory, based on organic material and applied in combination with an organic integrated circuit (integrated plastic circuit). The invention particularly relates to a memory for an RFID tag (RFID tags: radio frequency identification tags) and a plurality of methods for writing to a memory.


BACKGROUND OF THE INVENTION

Organic integrated circuits based on organic field effect transistors (OFETs) are used for high-volume microelectronics applications and disposable products such as contactless readable identification and product tags, where the excellent operating characteristics of silicon technology can be sacrificed in favor of guaranteeing mechanical flexibility and very low manufacturing costs. The components such as electronic barcodes are typically disposable products.


For these organic integrated circuits, such as are known for example from WO 99/30432, there has hitherto been no solution to the problem as to how information can be stored in an identification tag and/or a low-cost IPC.


The solutions offered by semiconductor technology are over-qualified and above all too costly for the requirements of these mass-produced articles.


SUMMARY OF THE INVENTION

The object of the invention is therefore to create an organic memory for microelectronic mass-production applications and disposable products, which is based on organic material.


The invention relates to a memory which is based on organic materials. In addition, the invention relates to an identification tag (RFID tag) which is based on organic materials and which uses organic field effect transistors and an organic memory. The invention also relates to the use of an organic memory. Finally, the invention relates to a method for writing to an organic memory, in which with regard to an integrated circuit based on organic material either there is no transistor circuit present, it has been made non-conducting through manipulation of one or more conductor tracks, and/or single conductor tracks are conducting or non-conducting.


In this context, the term “organic material” encompasses all types of organic, metal-organic and/or inorganic plastics. It covers all types of material except for the semiconductors used for conventional diodes (germanium, silicon) and the typical metallic conductors. It is therefore not intended to restrict the term “organic material” to carbon-containing material in any dogmatic sense, rather having in mind also the widespread use of e.g. silicones. Furthermore, the term should not be subject to any restriction with regard to the molecule size, in particular with regard to polymeric and/or oligomeric materials, but the use of “small molecules” should certainly also be possible.


By preference, the organic memory is of the write-once type.


According to one embodiment, the organic memory consists of a transistor circuit which is comparable from the circuitry principle employed with the read-only storages known from semiconductor technology.


Writing to a memory of this type can be performed by way of mask programming in which the transistors or their gates are not present at the corresponding locations and/or the gate oxide of the transistors has different thicknesses (transistor conducting/non-conducting).


The write process can also be implemented by way of so-called “fusable links”, in other words by way of conductor tracks which can be interrupted by means of a current. “Fusable links” can be thin conductor tracks consisting of a conducting organic material such an Pani or Pedot or polypyrrole.


Furthermore, conducting and non-conducting conductor tracks can be provided within a transistor circuit, for example one conductor track can be present for each bit, whereby a closed conducting conductor track corresponds to a logical “0” and an open or non-conducting conductor track corresponds to a logical “1”.


A particularly forgery-proof variant provides two conductor tracks for at least one data bit and preferably for each data bit. During the write process, one of these conductor tracks is made non-conducting. Depending on which conductor track is non-conducting, the bit is permanently written to 1 or 0. As a result of the use of two conductor tracks, subsequent modification is no longer possible.


A further possible means of writing to the memory having an organic basis consists in modifying the dielectric constant of the gate oxide. In this situation, the isolating layer between gate and semiconductor is changed (by the effect of light for example) such that a change in the dielectric constant results, which has the effect that the gate either conducts (high dielectric constant) or isolates (low dielectric constant).


In addition to the possibility of constructing a memory based on organic material with transistor circuitry, there is a variant using single conductor tracks that are either conducting or non-conducting for constructing memories whereby in order to retrieve the stored information their resistance is read out. In this situation, for example, the “conducting” state corresponds to a logical “0” and the “non-conducting” state corresponds to a logical “1”. The read-out process can be carried out with the aid of transistors, for example.


By preference, the memories are of the write-once type, with the write process preferably but not exclusively being effected through manipulation of one or more conductor tracks. In this situation, the following processes can be used for writing to the memory:

    • A conductor track can be destroyed by means of laser light or specifically applied heat, and thus rendered non-conducting.
    • Chemical treatment such as base/acid stamp, for example (making conducting areas non-conducting or vice versa)
    • Mechanical processing, for example separating a conductor track by using a needle
    • An electrical voltage is used to locally short-circuit a conductor track and thereby destroy it by overheating.
    • The conductor track can be separated or closed on a mask/plate simply by omitting a structure during the production process.
    • The dielectric constant can be changed by means of laser light.


By using the aforementioned process steps the memory can be written to only on a single occasion. The write operation can take place during manufacture of the tag or of the product (anti-counterfeiting mechanism or electronic bar code for example, whereby a large number of tags have the same memory contents) or during assembly of the electronics (luggage label, electronic stamp, electronic ticket, whereby each ticket has different memory contents).


Since the organic materials can only rarely be differentiated from one another by analytical methods, corresponding codings are also forgery-proof to a large extent.


At the same time, this technology can also be used in order to selectively render unusable an electronic device, such as an electronic bar code or an electronic ticket for example, after it has been used by specifically impressing a particular bit arrangement or rendering the memory unreadable after use (when the ticket is cancelled, when payment is made at the till).


The memory can be used in combination with the following systems:

  • In an integrated plastic circuit, in other words in a circuit which is based on organic material
  • In an identification system (identification tags, RFID (radio frequency ident tags)), for example for
    • electronic bar code
    • electronic tickets
    • anti-counterfeiting mechanism
    • product information
  • In a sensor
  • In an organic display with integrated electronics





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will also be described in the following with reference to two drawings which show preferred embodiments of the invention. In the drawings:



FIG. 1 shows a memory matrix in different embodiments.



FIG. 2 shows an embodiment having a different thickness of gate oxide.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows a schematic circuit diagram of four embodiments of a memory matrix.


The circuit a) shows the programming through omission of the corresponding transistors of an integrated circuit for example;

  • b) shows a so-called fusable link, whereby several conductor tracks are interrupted by a current surge and/or laser light or in some other manner (see there, middle field);
  • c) shows the mask programming, whereby conductor tracks are either connected or not, in other words the transistor is connected or not connected, and
  • d) shows the embodiment having different gate thicknesses which are conducting or non-conducting.


The horizontal lines 1 and the vertical lines 2 represent the electrical lines of the circuit. The points 3 serve to mark the fact that two crossing conductor tracks are in electrical contact with one another. The circuit symbol 7 represents a field effect transistor and shows the three terminals: source, drain and gate. The “T pieces” 4 represent the earth connection for the individual transistors in the circuit.


In section b) of the figure, two zigzag conductor tracks 6 can be recognized which represent thin conductor tracks and/or conductor tracks with a fuse which can be easily interrupted.


The interrupted conductor track 5 in the middle section in part b) of the figure shows that the electrical line has been interrupted at this location at a point 3 for example by means of short-circuiting or laser light.


In part d) of the circuit diagram, the middle transistor has a thicker gate oxide 8, as a result of which the current channel of the transistor becomes non-conducting.



FIG. 2 shows a cross-sectional representation of a transistor with thick and thin gate oxide. On a carrier (not shown) is located the first semiconducting layer with source and drain electrodes 10,11 which are connected by way of a semiconducting layer 12. Above the semiconducting layer 12 is located the isolating layer 13a, 13b. Above this layer 13 is located the gate electrode 14. In case a) with the isolating layer 13a, the isolator is so thick that the gate voltage is not sufficient to make the current channel conducting and in case b) it is sufficiently narrow to make the current channel conducting. The result is accordingly a blocking transistor in case a) and a conducting transistor in case b).


A particularly forgery-proof variant of the organic memory is achieved with duplicated conductor track implementation. In this situation, the second conductor track contains the complementary information of the first, in other words if the first is conducting (“1” bit) then the second is non-conducting (“0” bit). Subsequent modification of the memory information is no longer possible.


Use of the invention makes it possible to store information in integrated circuits based on organic materials. This can be exploited cost-effectively in particular for use in RFID tags employed in anti-counterfeiting, as an electronic ticket, as a luggage label etc. No memories for so-called “plastic circuits” are known up until now.

Claims
  • 1. Method for writing to an organic memory, comprising the steps of: providing at least one integrated circuit comprising a plurality of transistors each based on organic material wherein a transistor active element comprises mainly organic material; and selectively setting each said transistor to be one of conductive and non conductive; wherein said selective setting is accomplished by at least one of controlling the presence or absence of one or more selected transistors within the integrated circuits such that the one or more selected transistors are made nonconducting through manipulation of one or more conductor tracks, and single conductor tracks are arranged to be conducting or non-conducting.
  • 2. Method according to claim 1, wherein the selective setting is performed by mask programming in which the selected transistors or gate of the selected transistors are not present at corresponding locations.
  • 3. Method according to claim 2, wherein a change in a dielectric constant in the integrated circuit is implemented by laser light.
  • 4. Method according to claim 2, wherein the write process is implemented by fusible links.
  • 5. Method according to claim 2, wherein the transistors each include a conductor track, and a conductor track is destroyed by means of one of laser light and specifically applied heat, and thus rendered non-conducting.
  • 6. Method according to claim 2, wherein the transistors each include a conductor track, and mechanical processing is used to manipulate a conductor track.
  • 7. Method according to claim 1, wherein the selective setting is implemented using fusible links.
  • 8. Method according to claim 7, wherein the transistors each include a conductor track, and a conductor track is destroyed by means of one of laser light and specifically applied heat, and thus rendered non-conducting.
  • 9. Method according to claim 7, wherein the transistors each include a conductor track, and mechanical processing is used to manipulate a conductor track.
  • 10. Method according to claim 1, wherein the transistors each include a conductor track, and the conductor track is destroyed by means of one of laser light and specifically applied heat, and thus rendered non-conducting.
  • 11. Method according to claim 10, wherein the transistors each include a conductor track, and mechanical processing is used to manipulate a conductor track.
  • 12. Method according to claim 1, wherein chemical treatment is used to change conductivity of selected areas of the one or more selected transistors.
  • 13. The method of claim 12, wherein the chemical treatment comprises use of a base/acid stamp.
  • 14. Method according to claim 12, wherein the transistors each include a conductor track, and mechanical processing is used to manipulate a conductor track.
  • 15. Method according to claim 1, wherein the transistors each include a conductor track, and mechanical processing is used to manipulate a conductor track.
  • 16. Method according to claim 1, wherein the transistors each include a conductor track, and an electrical voltage is used to locally short-circuit a conductor track.
  • 17. Method according to claim 1, wherein the transistors each include a conductor track, and a conductor track is separated or closed on a mask by omitting a structure during the providing.
  • 18. Method according to claim 1, wherein the method is used in order to impress a particular bit arrangement.
  • 19. The method of claim 1, wherein each transistor has a gate oxide, selective setting being performed by mask programming to control conductivity of the selected one or more transistors by adjusting a dielectric constant of the gate oxide of each said selected transistor.
  • 20. The method of claim 1, wherein the transistors each include a conductor track, and electrical voltage is used to destroy a conductor track through overheating.
Priority Claims (1)
Number Date Country Kind
100 45 192 Sep 2000 DE national
CROSS REFERENCE TO RELATED APPLICATIONS

This is the 35 U.S.C. 371 National Stage of International Application PCT/DE01/03400 filed on Sep. 5, 2001, which designated the United States of America.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/DE01/03400 9/5/2001 WO 00 3/13/2003
Publishing Document Publishing Date Country Kind
WO02/23553 3/21/2002 WO A
US Referenced Citations (36)
Number Name Date Kind
4340657 Rowe Jul 1982 A
4937119 Nickles et al. Jun 1990 A
5206525 Yamamoto et al. Apr 1993 A
5321240 Takahira Jun 1994 A
5347144 Garnier et al. Sep 1994 A
5364735 Akamatsu et al. Nov 1994 A
5486851 Gehner et al. Jan 1996 A
5574291 Dodabalapur et al. Nov 1996 A
5625199 Baumbach et al. Apr 1997 A
5691089 Smayling Nov 1997 A
5705826 Aratani et al. Jan 1998 A
5854139 Kondo et al. Dec 1998 A
5883397 Isoda et al. Mar 1999 A
5970318 Choi et al. Oct 1999 A
5973598 Belgel Oct 1999 A
5998805 Shi et al. Dec 1999 A
6045977 Chandross et al. Apr 2000 A
6072716 Jacobsen et al. Jun 2000 A
6087196 Sturm et al. Jul 2000 A
6133835 De Leeuw et al. Oct 2000 A
6150668 Bao et al. Nov 2000 A
6197663 Chandross et al. Mar 2001 B1
6207472 Calligari et al. Mar 2001 B1
6221553 Wolk et al. Apr 2001 B1
6321571 Themont et al. Nov 2001 B1
6329226 Jones et al. Dec 2001 B1
6330464 Colvin et al. Dec 2001 B1
6362509 Hart Mar 2002 B1
6384804 Dodabalapur et al. May 2002 B1
6498114 Amundson et al. Dec 2002 B1
6555840 Hudson et al. Apr 2003 B1
6593690 McCormick et al. Jul 2003 B1
6603139 Tessler et al. Aug 2003 B1
6621098 Jackson et al. Sep 2003 B1
20020053320 Duthaler May 2002 A1
20040084670 Tripsas et al. May 2004 A1
Foreign Referenced Citations (47)
Number Date Country
4243832 Jun 1994 DE
198 16 860 Nov 1999 DE
198 51703 May 2000 DE
19933757 Jan 2001 DE
199 35 527 Feb 2001 DE
199 37 262 Mar 2001 DE
100 12204 Sep 2001 DE
100 43204 Apr 2002 DE
0 108 650 May 1984 EP
0 108650 May 1984 EP
0 418 504 Mar 1991 EP
0 418504 Mar 1991 EP
0 442123 Aug 1991 EP
0460242 Dec 1991 EP
0 511807 Nov 1992 EP
0 528662 Feb 1993 EP
0685985 Dec 1995 EP
0716458 Jun 1996 EP
0 786820 Jul 1997 EP
0962984 Dec 1999 EP
0 979715 Feb 2000 EP
0981165 Feb 2000 EP
1 048 912 Nov 2000 EP
1 103916 May 2001 EP
2793089 Nov 2000 FR
05152560 Jun 1993 JP
05259434 Oct 1993 JP
WO 93 16491 Aug 1993 WO
WO 9417556 Aug 1994 WO
WO 9718944 May 1997 WO
WO 9840930 Sep 1998 WO
WO 9907189 Feb 1999 WO
WO 9910929 Mar 1999 WO
WO 99 10939 Mar 1999 WO
WO 99 21233 Apr 1999 WO
WO 99 30432 Jun 1999 WO
WO 99 39373 Aug 1999 WO
WO 99 40631 Aug 1999 WO
WO 99 54936 Oct 1999 WO
WO 0036666 Jun 2000 WO
WO 01 15233 Mar 2001 WO
WO 0127998 Apr 2001 WO
WO 01 47045 Jun 2001 WO
WO 02 19443 Mar 2002 WO
WO 0247183 Jun 2002 WO
WO 02065557 Aug 2002 WO
WO 00 79617 Dec 2004 WO
Related Publications (1)
Number Date Country
20040026690 A1 Feb 2004 US