Not applicable.
Not applicable.
Not applicable.
The present invention relates generally to an automatic brightness regulation method for a liquid crystal display (LCD). More particularly, the invention comprises an image brightness regulating unit, an image brightness ratio computing and output controlling unit and an ambient light detection and brightness adaptation regulating unit as well as an image gray level expanding unit.
Flat panel displays are a future-oriented trend for the display industry. In particular, the liquid crystal display (LCD) attracts more attention thanks to its thin-profile, lightweight, lower radiation, lower power consumption and higher resolution and brightness. LCDs are now widely used in various applications from PCs, commercial display panels to home theaters.
The LCD is optimally suited for commercial display panels (rather than home theaters) thanks to its high brightness. This is owing to the fact that the brightness of an LCD is generated from backlit modules, which may change the light permeability by controlling the torsion of LCD, thus identifying the image brightness (gray level). If the images are displayed on an 8 bit LCD, the maximum brightness is observed at an image gray level of 255, or minimum brightness observed at image gray level of 0. At present, the brightness of an LCD TV is about 400 cd/m2˜600 cd/m2 at a gray level of 255, or 0.5 cd/m2˜1.4 cd/m2 at gray level of 0.
In order to adjust the quantity of light entering the human eyes, the pupil will zoom in/out, depending upon the strength of ambient light. When large-area high-gray level images (e.g. snow) are displayed on TV, the pupils of human eyes will zoom out to reduce the quantity of light entering the human eyes. When low-gray level night scenes are displayed in TV, the pupil will zoom in to increase the quantity of light entering the human eye. In practice, brightness or darkness of images varies alternatively, coupling with zoom in/out of pupil. Thus, a high-brightness LCD enables continuous zoom-in/out of a pupil, leading to easy fatigue of human eyes.
As illustrated in
Furthermore, the strength of ambient light has influence upon the comfort of the audience, especially for enjoying opera (e.g. Cat) that allows reduction in the brightness to create a suitable environment and better visual effect. With the decline of brightness of indoor light, the pupil will zoom in. If the brightness of the LCD TV is not properly reduced, the higher brightness of images will dazzle. So, the brightness of TV images must be properly regulated with the variation of ambient light for an optimum visual effect.
Thus, to overcome the aforementioned problems of the prior art, it would be an advancement in the art to provide an improved structure that can significantly improve the efficacy.
To this end, the inventor has provided the present invention of practicability after deliberate design and evaluation based on years of experience in the production, development and design of related products.
The features and the advantages of the present invention will be more readily understood upon a thoughtful deliberation of the following detailed description of a preferred embodiment of the present invention with reference to the accompanying drawings.
The image brightness regulating unit 10 comprises a memory unit 11 and a multiplier 12. Based on ambient light and images, the unit 10 enables the gray level of output image to be regulated in such a manner so as to store the images in the memory unit. After completion of statistics of image brightness ratio and identification of brightness gains (gT), the images in the memory unit are output with red, green and blue gray levels of the images being multiplied by corresponding brightness gains (gTR, gTG, gTB), thereby regulating the image brightness by changing image gray level.
The image brightness ratio computing and output controlling unit 20 applies the images only for statistical analysis of image brightness, rather than calculation of output images. Thus, it is possible to considerably simplify the circuit structure without any influence of the details of the output image. For example, maximum 6-bit statistical brightness is enough to process 8-bit original image signal, thereby saving both hardware resources and circuit cost. The image brightness ratio computing and output controlling unit 20 comprises the following units:
In another embodiment of the present invention for lightness calculation, the color space of perceptual uniformity is applied for lightness control. In 1976, a color space L*a*b* in compliance with perceptual uniformity was prepared by CIE. Given the fact of equal sense of lightness in L*a*b* color space, perceptual uniformity of L*a*b* color space can be applied to control the lightness of an LCD TV, showing a better perceptual sense than RGB color space. The lightness L* in L*a*b* is obtained from the following formula:
The brightness statistics is performed by L* in lieu of Y.
When the brightness gain of neighboring image has a change rate lower than a threshold Th, the output brightness gain shall be a mean value of brightness gain output by K-1 images and current brightness gain, namely:
The ambient light detection and brightness adaptation regulating unit 30 has an optical sensor used to detect the change of ambient light. With a reference to LUT after low pass filtering (averaging) of the change of ambient light, it is possible to determine the brightness gain GA of ambient light. This sensor of ambient light is available in monocolor or multicolor type. For a multicolor light sensor, the gains GAR, GAG, GAB will be properly regulated with the color change of ambient light. When an opera film is enjoyed by the audience, an indoor fluorescence lamp of color temperature 7000K shall be converted into a tungsten lamp of color temperature 4000K. The gains are GAR>GAB, such that TV images with lower color temperature will contribute to create a more comfortable environment.
The gray level expanding unit 40 is aimed to avoid false contour of images arising from lower gray level after brightness gain gT operation. Given the fact of commonly designed 8-bit displays, only 256 gray levels can be presented, and brightness gain gT will reduce the gray level of images. If image gray level subjected to brightness gain operation is directly output, false contour will take place at lower gray level due to insufficient gray level. The images of gray level become more apparent in the case of lower or smaller brightness gains. For this reason, Spacial Error Diffusion or Time Dithering technology shall be applied to improve the hierarchical images of lower gray level.
The innovative method of the present invention allows automatic control of the optical flux of a LCD TV with the change of LCD images and ambient light, thus alleviating overburdening of human eyes and improving the contrast and comfort of images for a better visual effect.
Furthermore, measured data is used to describe how LCD's brightness control method of the present invention controls the brightness of LCD according to brightness ratio. As illustrated in
The innovative method to automatically regulate brightness of liquid crystal displays of the present invention has an integrated image brightness regulating unit 10, image brightness ratio computing and output controlling unit 20, ambient light detection and brightness adaptation regulating unit 30 and image gray level expanding unit 40. This makes it possible to automatically control the optical flux of a LCD TV with the change of LCD images and ambient light, thus alleviating overburdening of human eyes and improving the contrast and comfort of images for a better visual effect.
According to another preferred embodiment of the present invention, an innovative LED optical module 50 is located nearby a LCD TV. This module comprises red, green and blue LEDs, so the ambient light detection and brightness adaptation regulating unit can be used to control the LED optical module and to automatically change the color of light source to create a better environment in the case of change of ambient light.
A memory unit 11 can be omitted in the image brightness regulating unit 10, while the brightness of prior image is applied for regulation of image brightness, thereby saving the cost of a memory unit.
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
Number | Name | Date | Kind |
---|---|---|---|
7050074 | Koyama | May 2006 | B1 |
7446779 | Ikeda et al. | Nov 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20070222730 A1 | Sep 2007 | US |