1) Field of the Invention
This invention relates generally to the fabrication of semiconductor devices and particularly to the fabrication of variable work function gates for fully silicided (FUSI) devices.
2) Description of the Prior Art
In order to cater to different product applications, ultra large scale integrated (ULSI) circuits generally include a multitude of transistors with different threshold voltage, Vt values. This is true even for the same polarity devices, for e.g., for NMOSFETs, there is a need to fabricate high Vt, low Vt, and regular Vt devices on the same platform. Typically, the threshold voltages are tuned using Vt adjustment implants into the channel. However, excessive channel doping can degrade carrier mobility due to impurity scattering.
Relevant technical developments in the patent literature can be gleaned by considering the following.
J. H. Sim, H. C. Wen, J. P. Lu, and D. L. Kwong, Dual Work Function Metal Gates Using Full Nickel Silicidation of Doped Poly-Si, IEEE ELECTRON DEVICE LETTERS, VOL. 24, NO. 10, OCTOBER 2003 631-
Lahir S. Adam, Christopher Bowen, and Mark E. Law, On Implant-Based Multiple Gate Oxide Schemes for System-on-Chip Integration, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 50, NO. 3, MARCH 2003 589-600,
U.S. Pat. No. 6,589,866 Besser, et al. Jul. 8, 2003—Metal gate with PVD amorphous silicon layer having implanted dopants for CMOS devices and method of making with a replacement gate process.
U.S. Pat. No. 6,555,453—Xiang, et al. Apr. 29, 2003—Fully nickel silicided metal gate with shallow junction formed.
US Patent Application 20040106261 A1 Huotari, et al.—Method of forming an electrode with adjusted work function.
US Patent Application 20020008257—RNAK, et al. Jan. 24, 2002
The example embodiments of the present invention provide a structure and a method of fabrication of a variable work function gates in a FUSI device.
An example embodiment for a method of fabrication of a variable work function gates in a FUSI device comprising the steps of:
Other example embodiments are shown in the detailed description and in the claims as filed and amended.
The above and below advantages and features are of representative embodiments only, and are not exhaustive and/or exclusive. They are presented only to assist in understanding the invention. It should be understood that they are not representative of all the inventions defined by the claims, to be considered limitations on the invention as defined by the claims, or limitations on equivalents to the claims. For instance, some of these advantages may be mutually contradictory, in that they cannot be simultaneously present in a single embodiment. Similarly, some advantages are applicable to one aspect of the invention, and inapplicable to others. Furthermore, certain aspects of the claimed invention have not been discussed herein. However, no inference should be drawn regarding those discussed herein relative to those not discussed herein other than for purposes of space and reducing repetition. Thus, this summary of features and advantages should not be considered dispositive in determining equivalence. Additional features and advantages of the invention will become apparent in the following description, from the drawings, and from the claims.
The features and advantages of a semiconductor device according to the present invention and further details of a process of fabricating such a semiconductor device in accordance with the present invention will be more clearly understood from the following description taken in conjunction with the accompanying drawings in which like reference numerals designate similar or corresponding elements, regions and portions and in which:
Embodiments of the present invention can eliminate the problem of poly-depletion and excessive channel doping for threshold voltage adjustment by forming CMOS devices using FUSI gates with variable work functions. This can be achieved by implanting suitable dopants at desired dose into the poly-Si gates prior to the FUSI process. This invention is not limited to only NiSi metal gates and is applicable to any metal-silicide system.
An example embodiment of the present invention will be described in detail with reference to the accompanying drawings. The present invention provides a method of fabrication of a variable work function gates in a FUSI device.
Referring to
The substrate 10 preferably has isolation regions 20 that can separate the NMOS region 12 and the PMOS region 14.
The substrate 10 can be comprised of a crystalline silicon wafer, a silicon on insulator substrate (SOI), strained silicon or SiGe (silicon-germanium).
Next we form a gate dielectric layer 21 and a gate layer 25 preferably comprised of poly crystalline silicon (poly-Si) over the substrate. Gate layer 25 can also be made of poly crystalline silicon-germanium (poly-SiGe).
The gate layer 25 preferably has a thickness between 50 and 80 nm.
In this step, we perform a (polysilicon) gate layer pre-dope (gate Vt adjust) implant process in both the NMOS and PMOS gate regions to implant impurities such as P+, As+, B+, BF2+, N+, Sb+, In+, C+, Si+, Ge+ or Ar+ into the gate layer 25 prior to gate patterning, according to Vt requirements.
Referring to
The NMOS gate pre-dope implant process 27 preferably comprises forming a NMOS gate pre-dope mask 16 over the PMOS region 14 and implanting gate dopant ions 27 into the gate layer 25 in the NMOS region 12. We remove the NMOS gate pre-dope mask 16.
Referring to
The PMOS gate pre-dope gate layer implant process 29 preferably comprises forming a PMOS gate pre-dope mask 18 over the NMOS region 12 and implanting gate dopant ions 29 into the gate layer 25 in the PMOS region 14.
We remove the PMOS gate pre-dope mask 18.
For the gate dopant ion implantation process, the implantation dose for the impurities is in the range of 5×1014/cm2 and 1×1016/cm2, with implantation energies of between 3 keV and 100 keV. The resulting impurity concentration in the gate layer is in the range of 1E18 atoms/cm3 and 3E20 atoms/cm3.
We can include co-dopants to modulate the Vt such as P+, As+, B+, BF2+, N+, Sb+, In+, C+, Si+, Ge+ or Ar+. Co-dopants refer to any combination of the impurity species listed above that is to be implanted into the gate layer 25. The advantage is that sometimes there may not exist a single type of dopant that can modify the gate work function to meet the Vt requirements. Hence, by the implantation of different dopants into the gate, we can tailor the work function more easily since different dopants can have different effects on the work function. Another advantage is that we can make use of the different ions for stress engineering in the gate. Different amount of stress in the gate can result in different Vt of the devices.
This ion implantation process is the main doping of the poly-Si for Vt setting. Preferably the source/drain extension (SDE) ion implantation does not dope the poly-Si because there will be a nitride cap layer over the poly-Si.
Next, we form a cap layer over the gate layer 25. The cap layer is preferably comprised of SiN and has a thickness between 300 and 800 angstroms.
As shown in
Referring to
The NMOS SDE implant process 35 preferably comprises forming a NMOS SDE mask 34 over the PMOS region 14 and implanting N type impurity ions 35 into the substrate 10 in the NMOS region 12 and the NMOS cap 30.
We remove the NMOS SDE mask 34.
Preferably the NMOS SDE ion implantation does not dope the poly gate layer.
The NMOS SDE implant is performed with P or As ions at a dose between 5×1014/cm2 and 3×1015/cm2 and an energy between 0.5 keV and 15 keV.
Referring to
The PMOS SDE implant process 39 comprises forming a PMOS SDE mask 37 over the NMOS region 12 and implanting P type impurity ions 39 into the substrate 10 in the PMOS region 14 and the PMOS cap 32.
The PMOS SDE implant is performed with B or BF2 ions at a dose between 5×1014/cm2 and 3×1015/cm2 and an energy between 0.2 keV and 10 keV.
We remove the PMOS SDE mask 37.
Referring to
The NMOS spacers 42 and the PMOS spacers 44 preferably comprised of silicon oxide or silicon oxynitride or nitride and preferably of oxide with a thickness between 300 and 800 Å.
We preferably perform a NMOS S/D implant process 47 to form NMOS S/D regions 48 in the NMOS region 12.
The NMOS S/D implant process comprises forming a NMOS S/D mask 46 over the PMOS region 14 and implanting N type impurity ions 47 into the substrate 10 in the NMOS region 12 and the NMOS gate 26.
The NMOS S/D implant is performed with P or As ions at a dose between 1×1015/cm2 and 1×1016/cm2 and an energy between 2 keV and 30 keV.
We remove the NMOS S/D mask 46.
Referring to
The PMOS S/D implant process 51 preferably comprises forming a PMOS S/D mask 49 over the NMOS region 12 and implanting P type impurity ions 51 into the substrate 10 in the PMOS region 14 and the PMOS gate 28; and removing the PMOS S/D mask 49.
B+ or BF2+ is implanted into the PMOS gate, As+ or P+ is implanted into the NMOS gate.
The PMOS S/D I/I could dope the poly gate layer. Depending on the thickness of the nitride cap over the poly and the energy of the S/D I/I, the PMOS S/D I/I may dope the poly gate layer. However, the doping of the gate by the S/D I/I is preferably not the main doping for Vt modulation.
The PMOS S/D implant is performed with B or BF2 ions at a dose between 1×1015/cm2 and 1×1016/cm2 and an energy between 2 keV and 20 keV.
The S/D I/I could be used in co-doping process to dope the gate and affect the work function and get the desired work function or Vt.
Next, we anneal the substrate to activate the impurities in the substrate such as the S/D regions, and the NMOS and PMOS gates. Preferably we use an RTA process with a temperature between 1000 and 1300 C for a time between 500 microsec and 5 sec.
Referring to
The NMOS silicon layer 54 and a PMOS silicon layer 58 preferably have a thickness between 30 and 60 nm.
We remove the NMOS cap 30 and the PMOS cap 32 using a selective etch process.
The silicon layers 54 and 58 are formed to a thickness to prevent excessive amounts of the source and drain (S/D) regions from being consumed by the subsequent silicide processes to form the completely fully silicide gates. Hence, the silicidation of the gate (FUSI) and the S/D regions can be done simultaneously. This is different to the conventional way of forming FUSI gates where the gates and the S/D regions are formed separately. Usually, the thin silicide at the S/D regions is formed first, followed by the deposition of more metal to react with the gate to form a thicker silicide at the gates (full silicidation).
As shown in
We deposit a metal, such as essentially Ni, Pt, NiPt, NiPd or Co and most preferably Ni. The advantages of using an alloy of Ni such as NiPt or NiPd as an alternative metal are that the silicides formed from these alloys with silicon have higher thermal stability than pure nickel silicides. Hence, there is less agglomeration and less undesired growth/formation of NiSi on regions where there should not have any silicide.
The theoretical ratio of the amount of Ni needed to form NiSi is Ni:Si:NiSi=1:1.84:2.22 with ˜10% range limits. For e.g., for the FUSI of a 70 nm poly-Si gate 26 and 28, threshold thickness of Ni 62 to provide sufficient amount of Ni to ensure fully silicidation is 38 nm.
As shown in
Fully silicided means that essentially all of the poly gates 26 and 28 are reacted to form silicide 70 and 78.
Preferably, between 0 and 500 Angstroms of the substrate below the NMOS silicon layer 54 and PMOS silicon layer 58 are consumed.
Layers 68 and 74 preferably have a thickness of between about 55 and 100 nm.
The fully silicided NMOS gate 70 and fully silicided PMOS gate 78 preferably have a thickness between 55 and 100 nm.
If there is any unreacted metal left, we can remove the unreacted metal (e.g., Ni) with an optional selective metal etch process. It is preferably a wet etch.
Thus, FUSI gates with variable work functions are formed. This in turn forms transistors with different threshold voltages.
The embodiment's FUSI gates have many advantages. The advantages of FUSI include: tunable gate work functions with suitable doping, elimination of the poly-Si depletion effect while compatible with conventional semiconductor materials and processes; for e.g. no new etch process is required for gate pattern definition since the poly-Si is first etched to form gate electrodes followed by full silicidation. This is different from the conventional metal gates where the metals are first deposited and etched to form gate electrodes. Also, for conventional metal gates, there is a concern of metallic contamination into the gate dielectric.
The embodiments are intended module the gate work function in the broadest sense. Hence the embodiments can be applied to make 2, 3 or more different work function FUSI gates and it is not limited to “dual work function metal gates”. Present day devices can have multiple gates with different work functions (and Vt) requirements, the embodiments can be used to make 2 or more gates with different work functions (and Vt). Even for the same polarity devices, for e.g., NMOSFETs there is a need to fabricate high Vt, low Vt, and regular Vt NMOS devices.
The embodiments of the invention can have any combination of the following features:
1. use of selective epitaxial growth (SEG) of Si over the source/drain (S/D) regions to form raised S/D structures.
2. The embodiments form NiSi and other metal/silicide fully silicided (FUSI) gates. The advantages of FUSI include: tunable gate work functions with suitable doping, elimination of the poly-Si depletion effect while compatible with conventional semiconductor materials and processes; for e.g. no new etch process is required for gate pattern definition since the poly-Si is first etched to form gate electrodes followed by full silicidation. This is different from the conventional metal gates where the metals are first deposited and etched to form gate electrodes. Also, for conventional metal gates, there is a concern of metallic contamination into the gate dielectric.
3. We can include co-dopants to modulate the Vt such as P+, As+, B+, BF2+, N+, Sb+, In+, C+, Si+, Ge+ or Ar+.
4. Gate electrodes with three or more work functions can be formed on the same chip.
5. The Source/Drain implants can be used to dope the PMOS and/or NMOS gates (co-doping) to achieve the desired work function.
In the above description numerous specific details are set forth such as flow rates, pressure settings, thicknesses, etc., in order to provide a more thorough understanding of the present invention. It will be obvious, however, to one skilled in the art that the present invention may be practiced without these details. In other instances, well known process have not been described in detail in order to not unnecessarily obscure the present invention.
Unless explicitly stated otherwise, each numerical value and range should be interpreted as being approximate as if the word about or approximately preceded the value of the value or range.
Given the variety of embodiments of the present invention just described, the above description and illustrations show not be taken as limiting the scope of the present invention defined by the claims.
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention. It is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Name | Date | Kind |
---|---|---|---|
6281064 | Mandelman et al. | Aug 2001 | B1 |
6313505 | Yu | Nov 2001 | B2 |
6331458 | Anjum et al. | Dec 2001 | B1 |
6365446 | Chong et al. | Apr 2002 | B1 |
6555453 | Xiang | Apr 2003 | B1 |
6589866 | Besser et al. | Jul 2003 | B1 |
6613624 | Wurzer | Sep 2003 | B2 |
6756255 | Thuruthiyil et al. | Jun 2004 | B1 |
6902994 | Gong et al. | Jun 2005 | B2 |
6905922 | Lin et al. | Jun 2005 | B2 |
7078278 | Pan et al. | Jul 2006 | B2 |
7112847 | Yu et al. | Sep 2006 | B1 |
7122410 | Kammler et al. | Oct 2006 | B2 |
20020008257 | Barnak et al. | Jan 2002 | A1 |
20030020125 | Mandelman et al. | Jan 2003 | A1 |
20040097041 | Mandelman et al. | May 2004 | A1 |
20040106261 | Huotari et al. | Jun 2004 | A1 |
20050070062 | Visokay et al. | Mar 2005 | A1 |
20050189599 | Lu | Sep 2005 | A1 |
20050258468 | Colombo et al. | Nov 2005 | A1 |
20050269635 | Bojarczuk et al. | Dec 2005 | A1 |
20050280104 | Li | Dec 2005 | A1 |
20060019437 | Murto et al. | Jan 2006 | A1 |
20060084247 | Liu | Apr 2006 | A1 |
20060105557 | Klee et al. | May 2006 | A1 |
20060118890 | Li | Jun 2006 | A1 |
20060131652 | Li | Jun 2006 | A1 |
20060134844 | Lu et al. | Jun 2006 | A1 |
20060134870 | Luan et al. | Jun 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060160290 A1 | Jul 2006 | US |