1. Field of the Invention
The present invention relates generally to an automotive engine coolant temperature determination method. More particularly, the present invention relates to a method using a cylinder head temperature sensor to infer such a temperature.
2. Disclosure Information
It is well known that malfunctions of engine cooling systems, such as a leak, will generally cause damage to the engine due to excessive engine overheating. To indicate such an event, a temperature sensing system for an internal combustion engine may include an engine coolant temperature (ECT) sensor, a cylinder head temperature (CHT) sensor, or a combination of the two. The temperature sensors record a temperature and relay the information to an electronic engine controller, which, in turn, relays the information to an operator, typically via an instrument display panel.
In ECT sensor equipped vehicles the sensor typically communicates with a coolant passage in a cylinder head. The problem with ECT sensor equipped vehicles is that an accurate reading of the CHT can not be obtained. Having an accurate CHT reading is important with respect to fuel economy and emissions.
In CHT sensor equipped vehicles the sensor typically communicates with the cylinder head at a location adjacent the combustion chamber of the engine. A problem with CHT sensor equipped vehicles is that the ECT can not be accurately calculated. For example, the CHT can be up to 70 degrees Fahrenheit hotter than the ECT and the temperature gauge would read hot when the system is really operating within a normal temperature range, thereby giving a “false reading”.
To combat these problems many vehicles are equipped with both ECT and CHT sensors. A problem with a two sensor system is that it is more costly than the single sensor systems. A further problem is that the algorithm programmed into the engine controller is more complex because of the need to receive information from two sensors.
It would therefore be desirable to provide a method of accurately inferring ECT in CHT sensor equipped vehicles that overcomes the deficiencies associated with previous systems.
The present invention overcomes the disadvantages of the prior art approaches by providing a method of inferring ECT in CHT sensor equipped vehicles including the steps of measuring the CHT, calculating the ECT from the measured CHT as a function of at least one vehicle operational state, generating a signal for the calculated ECT, and sending the generated signal to a display.
It is an object and advantage of the present invention to calculate ECT as a function of the vehicle operational state. Calculation in this fashion prevents “false readings” which may arise when CHT is running hotter then ECT, but still within an acceptable operational range.
A feature of the present invention is to filter the calculated ECT to prevent inaccurate display readings resulting from sudden changes in vehicle operational states, the filter step being performed prior to the step of generating a signal.
These and other advantages, features and objects of he invention will become apparent from the drawings, detailed description and claims which follow.
Referring now to the drawings,
A temperature sensing system 11, shown in
According to the present invention, a temperature sensor 42having a threaded portion, 40, communicates with the insulation deck 30 in the cylinder head 24 adjacent the combustion chamber 28. Preferably, the temperature sensor 42 is a thermistor as is known in the art. The temperature sensor 42 senses the cylinder head 24 temperature and relays the information to an electronic engine controller (EEC) 44 having a keep alive memory (KAM) storage device 46.
Referring now to
If a valid CHT is available, then at step 56, it is determined whether the initial pass through this process has been completed (INIT FLG). The initial pass completed is indicated by a 1 as discussed below.
If the initial pass was completed, then at step 58, a temporary ECT value is determine. This temporary value is equal to the CHT value minus a first function (F1(RPM, LOAD)) plus a second function (F2(CHT)). The first function is derived from a calibratible look up table showing the deviation of ECT from CHT as a function of revolutions per minute (RPM) and cylinder air charge temperature (LOAD). Both RPM and LOAD values may be derived from the EEC. The second function is to account for the difference between ECT and CHT increases for very high values of CHT.
At step 60, the engine temperature signal generated and sent to the display 16 (ECT DISPLAY) is set equal to a rolling average function (ROLAV) used to filter out noise. The rolling average function is determined as a function of the temporary ECT value and a calibratible time constant (RUN TC) and takes into consideration the fact that CHT heats faster than the engine coolant.
At step 62, the temperature difference (DELTA) is determined and stored. The DELTA is the difference between the CHT and the engine temperature signal generated. The DELTA is sent to the display 16 and is stored in KAM, so that the DELTA at power-down is available during the next power-up. At step 64, the process ends.
If the pass at step 56 was not completed, then the process flow moves to step 66, where DELTA is determined as a function of the last DELTA stored in KAM multiplied by an exponential decay function (EXP). The EXP is a function of the number of minutes the engine 12 has been powered down (SOAKTIME) divided by a calibratible time constant (SOAK TC), which determines the rate at which DELTA decays during a soak. This information is available from the EEC 44. The EXP is equal to 1 if SOAKTIME equals zero and decays to zero as SOAKTIME approaches infinity. At step 68, the engine temperature signal generated and sent to the display 16 is equal to the difference between the CHT and the DELTA from step 66. At step 70, INIT FLG is registered as 1 indicating that the initial pass has been completed. At step 64, the process ends.
The present invention is advantageous for a number of reasons. First, because ECT is calculated as a function of the vehicle operational state “false readings” are avoided. For example, “false readings” which may arise when CHT is running hotter than ECT, but still within an acceptable operational range. Further, filtering the calculated ECT prevents inaccurate display readings resulting from sudden changes in vehicle operational states. More specifically, because ECT is being inferred by CHT as a function of RPM and LOAD, anomalous readings for RPM and LOAD need to be taken out of the calculation as they tend to change faster than actual CHT and ECT. In other words, if ECT is being inferred at a time when there is a sudden spike in RPM, with the RPM then returning to normal running, without filtering, the ECT calculation would indicate being out of control limits when that is not actually the case. It is an important aspect of the invention, therefore, that not only is ECT inferred from CHT as a function of vehicle operational states, but also that the ECT sent to the display is filtered to eliminate noise resulting from the various operational states.
Various other modifications to the present invention will, no doubt, occur to those skilled in the art to which the present invention pertains. It is the following claims, including all equivalents, which define the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
4393365 | Kondo et al. | Jul 1983 | A |
4984454 | Feller et al. | Jan 1991 | A |
5020007 | Wu et al. | May 1991 | A |
5201840 | Sausner et al. | Apr 1993 | A |
5669337 | Drouillard | Sep 1997 | A |
5931140 | Maloney | Aug 1999 | A |
Number | Date | Country | |
---|---|---|---|
Parent | 09037508 | Mar 1998 | US |
Child | 09835926 | US |