Methods and apparatus for array based lidar systems with reduced interference

Information

  • Patent Grant
  • 12078756
  • Patent Number
    12,078,756
  • Date Filed
    Tuesday, September 28, 2021
    3 years ago
  • Date Issued
    Tuesday, September 3, 2024
    3 months ago
Abstract
An array-based light detection and ranging (LiDAR) unit includes an array of emitter/detector sets configured to cover a field of view for the unit. Each emitter/detector set emits and receives light energy on a specific coincident axis unique for that emitter/detector set. A control system coupled to the array of emitter/detector sets controls initiation of light energy from each emitter and processes time of flight information for light energy received on the coincident axis by the corresponding detector for the emitter/detector set. The time of flight information provides imaging information corresponding to the field of view. Interference among light energy is reduced with respect to detectors in the LiDAR unit not corresponding to the specific coincident axis, and with respect to other LiDAR units and ambient sources of light energy. In one embodiment, multiple array-based LiDAR units are used as part of a control system for an autonomous vehicle.
Description
FIELD OF THE INVENTION

The invention relates generally to determining presence and position in a surrounding space of objects that interact with propagating electromagnetic waves. More particularly, the present invention relates to non-scanning LiDAR systems using an array of emitter/detector sets to cover a given field of view that provides for reduced interference due to crosstalk among emitters within a given LiDAR unit and also among different LiDAR units.


BACKGROUND OF THE INVENTION

LiDAR (light detection and ranging) uses laser technology to make precise distance measurements over short or long distances. LiDAR units have found widespread application in both industry and the research community.


The predecessor technology to current LiDAR units were object detection systems that could sense the presence or absence of objects within the field of view of one or more light beams based on phase shift analysis of the reflect light beam. Examples of these kinds of object detection systems in the field of vehicle “blind spot” warning systems include U.S. Pat. Nos. 5,122,796, 5,418,359, 5,831,551, 6,150,956, and 6,377,167.


Current LiDAR units are typically scanning-type units that emit beams of light in rapid succession, scanning across the angular range of the unit in a fan-like pattern. Using a time of flight calculation applied to any reflections received, instead of just a phase shift analysis, the LiDAR unit can obtain range measurements and intensity values along the singular angular dimension of the scanned beam. LiDAR units typically create the scanning beam by reflecting a pulsed source of laser light from a rotating mirror. The mirror also reflects any incoming reflections to the receiving optics and detector(s).


Single-axis-scan LiDAR units will typically use a polygonal mirror and a pulsed laser source to emit a sequence of light pulses at varying angles throughout the linear field of view. Return signals are measured by a bandpass photoreceptor that detects the wavelength of light emitted by the laser. The field of view of the photoreceptor covers the entire one-dimensional scan area of the laser. Thus, each subsequent emitted pulse of laser light must occur only after the reflected signal has been received for the previous laser pulse. Dual-axis-scan LiDAR units produce distance-measured points in two dimensions by using, for instance, a pair of polygonal mirrors. The horizontal scan mirror rotates at a faster rate than the vertical scan mirror.


Flash LiDAR devices like those disclosed in U.S. Pat. No. 8,072,581 offer a way to acquire a 3D map of a scene via a solid state or mostly solid state approach. These devices illuminate an entire 2D field of view with a blanket of light and measure the return value time for each photoreceptor location in the field of view. These approaches are relegated to very close proximity applications due to the low incident laser power for each location in the field of view. For flash LiDAR at longer ranges, the usable field of view is typically too small for applications like autonomous vehicle navigation without the use of high performance cameras operating in the picosecond range for exposure times.


U.S. Pat. No. 7,969,558 describes a LiDAR device that uses multiple lasers and a 360-degree scan to create a 360-degree 3D point cloud for use in vehicle navigation. The disclosed system has two limitations. First, the rotating scan head makes the unit impractical for widespread use on autonomous vehicles and makes it unusable for inclusion in mobile devices like smart phones, wearable devices, smart glasses, etc. Second, multiple units cannot work effectively in the same relative physical space due to the potential of crosstalk.


Scanning LiDAR units typically utilize a single laser, or multiple lasers, all operating at the same wavelength. Care must be taken to ensure that signals received by the photoreceptor are reflected light from the desired emitted source. Two LiDAR units, call them A and B, operating with lasers at the same wavelength have the potential to experience crosstalk. Inbound signals at the A detector wavelength of, for example, 650 nm could be a reflected signal from an emitter for unit A, a reflected signal from unit B, or a signal directly from an emitter of unit B. In an application like autonomous vehicle navigation with multiple LiDAR sensors per vehicle on a busy roadway, the potential for crosstalk among pulsed-laser LiDAR units is quite high.


Crosstalk interference between individual LiDAR units can be reduced by utilizing time division synchronization between the units wherein the transmit times of one unit do not overlap with the transmit times of other units. This synchronization of individual units will lower the capture rate for each device and is impractical when the individual units are integrated with separate, independently-controlled systems.


The error mode for crosstalk interference among LiDAR units will typically be one or more distances being computed as lower than the actual distances or failure to find a signal, resulting in no value being reported for an individual point. For LiDAR units that utilize signal intensity from the target information, the recording intensity will typically be higher than the actual intensity of the returned signal.


U.S. Pat. No. 8,363,511 attempts to overcome the crosstalk interference problem in short range object detection systems by emitting and detecting a series of encoded pulses as part of the ultrasonic or microwave waves generated by the transducers. While this kind of encoding technique has the potential to reduce some occurrences of crosstalk interference, encoding techniques are still not sufficient for applications that may encounter an unknown and large numbers of devices that are simultaneously operating at the same or similar wavelength of emitter energy.


U.S. Pat. No. 7,830,532 also attempts to address the crosstalk interference problem in the context of short range object detection systems using infrared light for fixed location units such as garage door sensor detectors by various combinations of time division, frequency division, encoding and testing modes. While these kinds of solutions might work in the context of limited numbers of fixed object detection systems, they are not practical or effective in the context of current LiDAR technologies, especially when used in moving environments.


LiDAR units have the potential to be utilized extensively in applications like autonomous vehicle navigation, mobile computing and wearable devices. However, problems remain in developing effective LiDAR units that can address the interference challenges and operate reliably in an environment where hundreds or thousands of like devices are operating simultaneously.


SUMMARY OF THE INVENTION

LiDAR (light detection and ranging) systems in accordance with various embodiments of the invention use an array of emitter/detector sets to cover a given field of view where each emitter/detector set is configured to receive reflected light energy that is on a given coincident axis unique for that emitter/detector set and process time of flight information for that received light energy. The combination of an array of emitter/detector sets coupled with the on-coincident axis approach for each of the emitter/detector sets provides for reduced interference among emitters within a given LiDAR unit and also among different LiDAR units.


LiDAR systems in accordance with various embodiments of the invention may use a multi-bit sequence of emitter pulses for each emitter/detector cycle. The multi-bit sequence is locally unique to each emitter, wherein the bit sequence differs from the bit sequences for emitters whose coincident axis/vectors are in close proximity. By selecting locally unique bit patterns for each emitter, the interference from other emitters and other similar LiDAR devices is dramatically reduced. The use of multi-bit emitter sequences also results in reduced interference from non-LiDAR devices that are transmitting or reflecting energy at the target detector wavelength.


In various embodiments, the array comprises a non-scanning, solid-state device having a multitude of emitter/detector sets arranged on a generally planer surface. In some embodiments, each emitter/detector set is a single pair of an emitter and a detector. In other embodiments, a single emitter can be optically configured to provide on-coincident axis light energy to multiple different detectors, with each unique on-coincident axis combination of the single emitter and a different detector comprising a different emitter/detector set. In some embodiments, the number of emitter/detector sets can range from a 16×16 array of emitter/detector sets up to an array of 4096×4096 emitter/detector sets. In other embodiments, the number of emitter/detector sets and the configuration arrangement can be more or less, and can be planar or non-planar depending upon the specific application for which the LiDAR system is designed.


In various embodiments, a pulse generation controller is configured to transmit a sequence of pulses from each of the emitters and a control unit is configured to compute a time of flight measurement for radiation received at each of the corresponding on-coincident axis detectors. The control unit that is coupled to the detector output can be a software processing unit or a hardware circuitry for analyzing the light energy in order to extract information about objects within the field of view of the array-based LiDAR unit. In some embodiments, the output of the detector is coupled to a microprocessor unit (MPU) that is programmed to perform the analysis on the received light energy. In other embodiments, a pulse detection circuit is configured to analyze an output signal of the detector, such as an associated output signal of a detector shift register. While the timing of the sequence pulses is known within the LiDAR unit, coordination and advance knowledge of the timing and/or wavelength of emitted light energy from other LiDAR units is not required as in prior art LiDAR systems in order to reduce crosstalk and interference among different LiDAR units.


In various embodiments, the field of view of the LiDAR unit is predetermined based on the optic configuration associated with each of the sets of emitter/detectors for a unique on-coincident axis. In one embodiment, each emitter/detector set includes an optical waveguide through which the received light energy is directed for the on-coincident axis for that emitter/detector set. In another embodiment, each emitter/detector set in an array of emitter/detector sets includes a micro-lens through which the emitted light energy is directed for the on-coincident axis for that emitter/detector set. In some embodiments, an array of micro-lens optics includes a micro-lens unique for each emitter/detector set. In other embodiments, an array of micro-lens optics includes more than one micro-lens for each emitter. In other embodiments, a macro lens arrangement can be used to establish the unique on-coincident axis associated with each emitter/detector set. In some embodiments, such as the micro-lens array embodiment, the macro field of view of the LiDAR unit is effectively established upon fabrication of the micro-lens array together with the array of emitter/detector sets. In other embodiments, the macro field of view may be changed by a global lensing arrangement that is adjustable.


In various embodiments, each detector in the array-based LiDAR unit has a unique angle of coincidence relative to the optic configuration through which the reflected light energy is received. For purposes of the present invention, the angle of coincidence of a given detector is defined as the center of the area of the light beam received by the detector not including any modifications to the light beam due to optic elements internal to the LiDAR unit. In some embodiments, the light energy is emitted and received as collimated or coherent electromagnetic energy, such as common laser wavelengths of 650 nm, 905 nm or 1550 nm. In some embodiments, the light energy can be in the wavelength ranges of ultraviolet (UV)—100-400 nm, visible—400-700 nm, near infrared (NIR)—700-1400 nm, infrared (IR)—1400-8000 nm, long-wavelength IR (LWIR)—8 um-15 um, or far IR (FIR)—15 um-1000 um. The various embodiments of the present invention can provide reduction of interference at these various wavelengths not only among emitted and reflected light energy of LiDAR devices, but also emitted and reflected light energy from other ambient sources such as vehicle headlights and the sun that will also be sources of interference for typical LiDAR units.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a single-axis-scan device according to the prior art.



FIG. 2 illustrates a dual-axis-scan device according to the prior art.



FIG. 3 illustrates a functional block diagram of a measurement system according to an embodiment.



FIG. 4 illustrates the geometry of multiple emitters according to an embodiment.



FIGS. 5a and 5b illustrate the functional layers of a vertical emitter with a micro lens according to an embodiment.



FIG. 6 illustrates the functional layers of vertical emitters with a device emitter lens according to an embodiment.



FIG. 7 illustrates the beam profiles for emitted light according to an embodiment.



FIG. 8 illustrates the geometry of receptors with directional waveguides according to an embodiment.



FIG. 9 illustrates the functional layers of a receptor with a directional waveguide according to an embodiment.



FIG. 10 illustrates the functional layers multiple receptors with a device detector lens according to an embodiment.



FIGS. 11a and 11b illustrates two device layout options according to an embodiment.



FIG. 12 illustrates a pulse timing sequence for multiple emitters according to an embodiment.



FIG. 13 illustrates the timing of a detector signal and how it is compared to the emitted pulse sequence according to an embodiment.



FIG. 14 illustrates the functional block diagram for the emitter and detector circuitry according to an embodiment.



FIG. 15 illustrates the emitter and detector timing for one measurement sequence according to an embodiment.



FIG. 16 illustrates the functional block diagram for the emitter and detector circuitry for target intensity measurements according to an embodiment.



FIG. 17 illustrates the functional block diagram for the detector circuitry for MPU detector processing.



FIGS. 18a and 18b illustrate a pattern utilized for emitted ray angle adjustments according to an embodiment.



FIG. 19 illustrates a dense detector array according to an embodiment.



FIG. 20 illustrates an orthogonal dense detector array according to an embodiment.



FIG. 21 illustrates the operational flowchart of the device according to an embodiment.



FIG. 22 illustrates the use of the device in a vehicle navigation application.



FIG. 23 illustrates the use of the devices in an airborne data acquisition application.





DETAILED DESCRIPTION OF THE DRAWINGS

Single-axis-scan LiDAR (light detection and ranging) units will typically use a polygonal mirror and a pulsed laser source to emit a sequence of light pulses at varying angles throughout the linear field of view. Return signals are measured by a bandpass photoreceptor that detects the wavelength of light emitted by the laser. The field of view of the photoreceptor covers the entire scan area of the laser. Thus, each subsequent emitted pulse of laser light must occur only after the reflected signal has been received for the previous laser pulse. FIG. 1 shows some essential elements of a typical single-axis-scan LiDAR unit. The laser source is pulsed multiple times as each face of the polygonal mirror rotates past the laser axis. Each rotation of a mirror face corresponds to a single linear scan of locations. For each point of a scan, the distance and angle are recorded. Many LiDAR applications also include return signal intensity, thus encoding more information about the object that produced the reflected the return signal. Two dimensional scans of objects and/or scenes are created by affixing a single-axis-scan LiDAR to an object in motion, with the scan axis of the LiDAR roughly perpendicular to the travel direction of the vehicle.


Dual-axis-scan LiDAR units produce distance-measured points in two dimensions by using, for instance, a pair of polygonal mirrors. The horizontal scan mirror rotates at a faster rate than the vertical scan mirror. FIG. 2 shows some of the essential elements of a typical dual-axis scan LiDAR unit. Other methods can be used to achieve laser scans in two dimensions. These methods, for the most part, rely on mechanical or electromagnetic movement of one or more objects to achieve the laser scan in two dimensions.


LiDAR units will utilize a single laser, or will utilize multiple lasers all operating at the same wavelength. Care must be taken to ensure that signals received by the photoreceptor are reflected light from the desired emitted source. Two LiDAR units, call them A and B, operating with lasers at the same wavelength have the potential to experience crosstalk. Inbound signals at the A detector wavelength of, for example, 650 nm could be a reflected signal from an emitter for unit A, a reflected signal from unit B, or a signal directly from an emitter of unit B. In an application like autonomous vehicle navigation with multiple LiDAR sensors per vehicle on a busy roadway, the potential for crosstalk interference among pulsed-laser LiDAR units is quite high. Crosstalk interference between individual units can be reduced by utilizing synchronization between the devices wherein the transmit times of one device do not overlap with the transmit times of other devices. This synchronization of individual units will lower the capture rate for each device and is impractical when the individual devices are integrated with separate, independently-controlled systems.


Referring to FIG. 3, a block diagram of an optoelectronic LiDAR device in accordance with an embodiment is depicted. According to an embodiment, optoelectronic LiDAR device 300 can comprise an emitter/detector array 10, a pulse generation circuit 22, a sampling circuit 12 and a control unit 20. Emitter/detector array 10 can comprise a plurality of emitter elements 100 and detector elements 200 symmetrically arranged in rows and columns. Each emitter of emitter elements 100 of emitter/detector array 10 can comprise vertically-constructed laser diodes that can be configured to project beams of light at known angles relative to a vector of the device normal to a plane of the array 10. Detector elements 200 of emitter/detector array 10 can comprise a bandpass photodetector that can be configured to generate waveguides at known angles relative to a vector of the device normal to a plane of the array 10. For each emitter/detector set of elements 100/200, the emitter and detector vectors are coincident and form a common on-coincident axis that is at an angle relative to a vector normal to the plane of the array that is unique for that emitter/detector set.


For purposes of the present invention, the terminology “on-coincident axis” will be used to refer to the common known angle of both the emitted and reflected electromagnetic energy for a given set of emitter/detector elements. It will be understood that “on-coincident axis” includes energy emitted or reflected on the specific vectors that define the coincident axis, as well as energy emitted or reflected at angles that are relatively close to the same angle, such as angles within the surface area of the received light beam as defined by the edges of the light beam entering the LiDAR unit that will be received at the detector.


In embodiments, pulse generation circuit 22 can comprise a series of logic devices such as a sequence of shift registers configured to generate an output signal, such as pulse, to activate an emitter of emitter elements 100. Pulse generation circuit 22 utilizes at least one first clock signal generated by a timer 24 to initiate the propagation of data through each of the sequence of shift registers. In some embodiments, each individual emitter of emitter elements 100 has a dedicated shift register in the pulse generation circuit 22. In other embodiments, unique control signals, multiplexed control signals or control signals received over a parallel or serial bus connection may be used to initiate the propagation of the emitter elements.


In an embodiment, sampling circuit 12 can comprise an analog-to-digital converter and/or other electronic components such as transistors or capacitors to process an output signal from each of the plurality of detector elements 200. Each detector of detector elements 200 can be configured as a photoreceptor such as a photodiode or phototransistor which converts light into an electrical signal. The electrical signal is then converted to a discrete-time digital signal (i.e., sampled) by sampling circuit 12, whereby the sampled digital signals are accumulated (i.e., summed or averaged) and stored by detector shift register 14 or other type of digital memory element. Detector shift register 14 can utilize a second clock signal generated by timer 24 to trigger accumulation of the digital signals based on an oscillation event of the second clock signal. In embodiments, the frequency of the second clock signal generated by timer 24 for detector shift register 14 should be greater than twice the frequency of the first clock signal generated by timer 24 for the pulse generation circuit 22:

fdetector>2*femitter


where fdetector=the frequency of the detector shift register clock; and

    • femitter=the frequency of the pulse generation circuit clock.


      In operation, for example, the detector frequency will be eight to 32 times the emitter frequency when hardware detection is used, and will be eight to 128 times the emitter frequency when software detection is used.


In other embodiments, optoelectronic device 300 can further comprise a pulse detection unit 16 that can be configured to analyze the output signal of pulse generation circuit 22 in comparison to the output signal of detector shift register 14 to identify a match between the output signals. Pulse detection unit 16 utilizes a third clock signal generated by timer 24 to determine a time at which a match in the output signals is detected. In embodiments, pulse detection unit 16 can comprise computer readable media (not shown) such as RAM, ROM, or other storage devices to store the time at which a match was detected for each detector of detector elements 200. At the end of a sampling sequence the control unit 20 will read the match time for each detector of detector elements 200 and compute the distance to the reflected object based on a time of flight calculation. The distance for each emitter of emitter elements 100 and detector of detector elements 200 is stored in an image memory 18. Each emitter of emitter elements 100 has a vector associated with it that corresponds to the axis of the beam from the emitter of emitter elements 100 relative to the normal vector of the device. All emitter element 100 vectors are stored in a vector memory 26. All information is transferred to/from the device via the input/output (I/O) 28 connection.


Referring to FIG. 4, an illustration of a perspective view of emitter unit 102 according to an embodiment is shown. In embodiments, emitter unit 102 can comprise emitter elements 100 arranged symmetrically about a top surface of emitter unit 102. Each emitter of emitter elements 100 is configured to emit a beam of light 110. The normal vector is shown as the z-axis 134 in the right-hand-rule coordinate system. The field of view may vary with each optoelectronic device depending upon the application. A long range device, for example, will have a narrow field of view for both the horizontal and vertical dimensions. The maximum horizontal field of view for a flat device, measured in alignment with an x-axis 130, is 180 degrees, and the maximum vertical field of view for a flat device, measured in alignment with a y-axis 132, is 180 degrees. Fields of view greater than 180 degrees along both the x-axis and y-axis are achievable by utilizing 3D semiconductor fabrication techniques or by including additional optics that allow a flat semiconductor device to project incident radiation into the negative z-axis space.


For a device where the angular spacing of successive emitter elements 100 is equivalent across the horizontal and vertical fields of view, each emitter of emitter elements 100 projection angle beam of light 110 is expressed as a emitter vector 120 utilizing uvw nomenclature, where u corresponds to the x-axis 130, v corresponds to the y-axis 132, and w corresponds to a z-axis 134:

uvwij=[tan(FOVhoriz*(½−m/(M−1))),tan(FOVvert*(½−n/(N−1))),1]  (eq. 2)


where FOVhoriz is the horizontal field of view expressed in degrees

    • FOVvert is the vertical field of view expressed in degrees
    • M is the number of horizontal elements in the emitter array
    • m signifies the horizontal element number, ranging from 0 to M−1
    • N is the number of vertical elements in the emitter array
    • n signifies the vertical element number, ranging from 0 to N−1


      Various other methods are available for the selection of emitter vector 120 for emitter elements 100. Some device applications may require a higher point density at or near the center of the field of view and a sparser distribution of points toward the edges of the field of view.


Referring to FIG. 5a a cross section of a side view of an emitter of emitter elements 100 fabricated with a semiconductor laser is shown according to an embodiment. In embodiments, emitter elements 100 can be fabricated to emit a light beam in the direction of the semiconductor layer stack. Utilizing a vertical transmission layer stack allows for small spacing between individual emitters on a device and allows for simpler optics.


The semiconductor laser comprises a substrate 50, a lower reflector 52, an active layer 54, a high-resistance region 56, an upper reflector 58 and an electrode 60 which are sequentially stacked on the substrate 50. In an embodiment, each of the lower reflector 52 and the upper reflector 58 is a distributed Bragg reflector which is formed by alternately stacking material layers having different refractive indexes and having opposite doping type.


The light emitted from a vertical semiconductor laser will be a diverging beam. An emitter lens 66 is fabricated on the top of the laser stack to create a collimated beam of light 68. A directional lens 70 directs the collimated beam of light 68 along a desired emitter vector 120.


For high-precision applications emitter vector 120 of each emitter of emitter elements 100 may require minute adjustments. In embodiments, emitter elements 100 can comprise directional lens electrodes 62, 64 to provide a voltage differential laterally across the directional lens 70. In a preferred embodiment each directional lens 70 will have an electrode pair in both the x-axis and y-axis, with each electrode pair controlling emitter vector 120 along the x-axis and y-axis. The directional lens electrodes 62, 64 values are addressable and are modified by the control unit 20.


One skilled in the art will understand that alternate constructions of micro-lenses are possible. In accordance with various embodiments of the invention, such alternate constructions should result in independently-controlled emitters that produce beams at known or characterizable vectors 120 relative to the device's normal vector 134. Constructions for adjustable emitter micro lenses can include, but are not limited to, electro-optic materials that change refractive index in response to an electric field, piezoelectric materials that experience a modification of their shape in response to an electric field, or transparent encapsulated liquid lenses. FIG. 5b shows the same vertical semiconductor laser as FIG. 5a, with the exception of the emitter lens 66. The dual directional lens 70 in FIG. 5b has two distinct transmission surfaces. Roughly 50% of the collimated beam of light 68 is directed along emitter vector 120, while most of the remaining light from beam of light 68 is directed along vector 121. Since both beams are created from the same emitter of emitter elements 100, they will have the same transmitted pulse waveform. Each reflected beam, however, will have a different coincident axis and will be detected by a separate waveguide detector or by a separate detector or group of detectors in the dense detector array. In an embodiment, the number of distinct transmission surfaces on a multi-directional lens can vary from two to 64 provided the coincident axis of each unique surface is sufficiently different from the coincident axis of the other lens surfaces.


Referring to FIG. 6, a cross section side view of emitter elements 100 with a macro lens 80 according to an embodiment is shown. In embodiments, each emitter of emitter elements 100 and emitter lens 66 produces a converging beam 84. The macro lens 80 is configured to diverge to produce a plurality of beams 82 along a multitude of emitter vectors (coincident axes) 120 throughout the device's field of view.


Emitter directional lens electrodes 86, 88 may be added to provide a voltage differential laterally across the macro lens 80. In an embodiment, the macro lens 80 will have an electrode pair in both the x-axis and y-axis, with each electrode pair controlling emitter vector (coincident axis) 120 along the x-axis and y-axis. The emitter directional lens electrodes 86, 88 values are addressable and are modified by the control unit 20.


Referring to FIG. 7, a beam profile for multiple emitters according to an embodiment is shown. The top diagram shows a perfectly collimated beam 92 that produces a round spot 94 on the surface of the reflecting object. The beam intensity is uniform throughout the round spot 94, and the intensity of the light transitions sharply at the edge of the round spot 94. In precision LiDAR systems, a beam such as collimated beam 92 has advantages. First, a smaller round spot 94 size will result in fewer locations within the device field of view being illuminated. Since the goal of LiDAR is to measure the distance to a point at a known coincident angle, reducing the number of points that generate a return signal will increase the device's precision. Second, a smaller round spot 94 will generally reduce or remove crosstalk with detectors that are near the on-coincident axis matched detector for this emitter 90. The bottom diagram in FIG. 7 shows a more typical beam profile. The beam 96 diverges as it travels through space. The spot 98 on the surface of the reflected object is elliptical in shape. The light intensity is non-uniform throughout the surface of the spot 98. Depending on emitter construction, the spot will typically have a two-dimensional Gaussian profile or a second-order profile. The point of greatest intensity will not always be the center point of the spot 98.


Referring to FIG. 8, a top view of detector elements 200 geometry on the emitter/detector array 10 surface is shown according to an embodiment. Light 210 is received at each detector of detector elements 200. Each detector of detector elements 200 has an optimal receive detector vector (coincident axis) 220 along which the maximum optical energy will be transferred. Inbound optical energy that is slightly non-parallel to the detector vector 220 will be partially reduced in intensity due to waveguide blocking or due to the macro lens. Inbound optical energy that is more than slightly-non-parallel to the receive detector vector (coincident axis) 220 will be substantially blocked by the detector waveguide or directed elsewhere by the macro lens. For purposes of the present invention, the coincidence axis of a given detector is defined as the center of the area of the light beam 210 as received by the detector not including any modifications to the light beam due to optic elements internal to the LiDAR unit.


Referring to FIG. 9, a cross section of a side view of a detector of detector elements 200 element fabricated with an angular waveguide is shown according to an embodiment. The detector of detector elements 200 is fabricated to receive light transmitted substantially opposite to the direction detector vector 220 of the waveguide axis. The waveguide detector comprises a substrate 50, a photoreceptor 224, a bandpass filter layer 226, a protective layer 228 and the waveguide material 215. A waveguide 222 shall be an air gap or shall consist of a material that is substantially transparent to the wavelength of emitted light. The waveguide wall shall consist of a material that is substantially non-reflective for the wavelength or range of wavelengths of the emitted light. The waveguide 222 geometry is a slightly-diverging trapezoidal cone. The amount of divergence will depend on the minimum range of the device, the lateral distance on the device between the detector vector 220 and the axis of its associated emitter of emitter elements 100, and the depth of the waveguide.


Referring to FIG. 10 a cross section side view of a detector element with a macro detector lens 230 is shown according to an embodiment. In embodiments, detector elements 200 comprise a substrate 50, a photoreceptor 224, a bandpass filter layer 226 and a protective layer 228. In other embodiments, light can be received from a diverging field of view at a macro detector lens 230 that directs in-bound light to the surface of detector elements 200.


In embodiments, macro detector lens 230 comprises detector directional lens electrodes 232, 234 positioned on the x-axis and y-axis, whereby the electrodes 232, 234 are configured to control a detector vector 220 along the x-axis and y-axis. The directional lens electrodes can be configured to provide a voltage differential laterally across macro detector lens 230. The directional lens electrode 232, 234 values are addressable and are modified by the control unit 20.


Referring to FIG. 11a, a physical device layout according to an embodiment is shown. In an embodiment, emitter elements 100 and detector elements 200 can be symmetrically arranged in an electro-optical section 242 of the device 240. The number of emitter elements 100 can be equal to the number of detector elements 200, and each detector of detector elements 200 is “paired” with a designated emitter of emitter elements 100. The pulse sequence transmitted by an emitter of emitter elements 100 will be sensed and detected only by its paired detector of detector elements 200. In embodiments, a single global lens can be utilized for both emitter elements 100 and detector elements 200. When single global lens are used for emitter elements 100 and detector elements 200 optics, the distance between the emitter/detector pair must be minimal. In other embodiments, for example, where micro lens are used for emitter elements 100, the distance between each emitter/detector is not as important and can vary according to embodiments. Larger distances between micro-lens emitter elements and waveguide detector elements will require slightly larger diverging waveguides according to FIG. 9. Device circuitry is located in an electronic section 244 of the device 240.


Referring to FIG. 11b a physical device layout according to an embodiment is shown. In embodiments, emitter elements 100 can be arranged in an emitter electro-optical section 248 and detector elements 200 can be arranged in a detector electro-optical section 246 of device 240. The number of detector elements 200 can be equal to or greater than the number of emitter elements 100. In embodiments, for example, each emitter/detector array will comprise K detector elements 200 for each emitter of emitter elements 100, where K is an integer value from 1 to 25.


In other embodiments, each waveguide detector of detector elements 200 is “paired” with a designated emitter of emitter elements 100, whereby the pulse sequence transmitted by an emitter of emitter elements 100 will be sensed and detected only by its paired detector of detector elements 200. For global lens detectors the number of detector elements 200 will be typically 7 to 25 times the number of emitter elements 100, and the paired detector of detector elements 200 that corresponds to each emitter of emitter elements 100 will be determined during device 240 characterization. For embodiments that utilize waveguide detectors, the larger distances between emitter elements 100 and detector elements 200 will require slightly larger diverging waveguides according to eq. 3. Device circuitry is located in the electronic section 244 of the device 240.


Electronic section 242 and electro-optical sections 242, 246, 248 sections for device 240 in FIGS. 11a and 11b can be implemented on the same semiconductor die or on separate die that are placed together and interconnected on a common substrate with common packaging.



FIG. 12 illustrates a timing sequence for multiple emitters. A high level 250 indicates the emitter is energized or turned on by the emitter control circuitry. The energizing level is shown for six emitters that have coincident axes similar to one-another. The bit sequences utilize a rotating primes pulse train and 38-bit sequences, and the emitter levels are shown for a time period 252 ranging from 0 through 37. Since the vectors are similar, emitted energy from one emitter will possibly be received at a detector that is not its pair. To accommodate detection of pulse sequences from a detector's paired emitter the pulse sequences shown in FIG. 12 are sparsely populated. The circuitry for each paired detector is configured to detect the pulse sequence from its paired emitter.


Various methods exist for the selection and detection of pulse sequences that are locally distinct or differentiable and detectable relative to each detector's spatial neighbors. Bit encoding schemes that can be utilized include but are not limited to unordered list of primes, random numbers, pseudo-random numbers, random sequences and pseudo-random sequences. Bit generation schemes can include any encoding scheme which produces non-repeating, distinct values. Potential bit encryption schemes include but are not limited to one time pad, Hash, DES, MDS, and AES. One skilled in the art can select the bit encoding or bit encryption scheme that best fits the computational power of the device and the non-repetitiveness requirements.



FIG. 13 illustrates a detector input signal 260 received by a detector of detector elements 200 in response to an emitter pulse sequence 264. The detector input signal 260 will increase according to reflected light emitted from emitter m, n and reflected off an object. The detector circuitry and the control unit will determine the distance of the object that reflected the signal by measuring the time of flight of the photons in the emitter pulse sequence 264.


The detector input signal 260 will be sampled at a frequency in accordance with eq. 1. In practice the sampling frequency will be considerably greater and will be a multiple of the emitter pulse frequency. In FIG. 13 the sampling frequency for detector m, n is four times the emitter frequency and the sampling times 266 are shown for t0 through t61.


Each detector has a dedicated shift register into which the sampled detector states are stored. A “one” is stored for each sampling time where the detector voltage is greater than a threshold value 262. At each sampling times 266 the bits in the shift register are transferred one location to the left according to the shift direction 284. The control unit clears all shift registers prior to the start of the emitter pulse sequence 264. The initial state of the shift register at t0 268 is shown with all bits being set to zero. At t0—when the emitter pulse sequence is initiated—the pulse compare circuitry will begin looking for a “match” between the emitter pulse sequence 264 and the sampled sequence. The values transmitted in the emitter pulse sequence 264 are stored by the control unit in the detector compare register 286 for use by the compare circuitry.


The compare circuitry performs a comparison at every sampling time. After eleven sampling periods the shift register at t11 270 contains sampled values from the first portion of the received waveform. At t76 the compare circuitry detects a match 274 for emitter bit 0, bit 7 and bit nine, but does not detect a match 276 for bit 4. Therefore, the sampled waveform does not correspond to the emitted waveform. At t90 the compare circuitry detects a match 280 at bit 0, bit 7 and bit 9 as well as a match 282 at bit 4. Since all of the “ones” from a compare register 272 have a corresponding match in the detector shift register 278, the compare circuitry will flag and record the time at which the match occurred.



FIG. 14 illustrates functional blocks used for sending a bit sequence to an emitter of emitter elements 100 and processing the sensed signal from an associated detector of detector elements 200. The timer 24 produces synchronized clocks—an emitter clock that controls the timing of the pulses in the pulse generation circuit 22 and a detector clock that governs the processing of information throughout the detection functional blocks. The frequency of the detector clock will typically be an integer multiple of the emitter clock. The integer multiple for the detector clock will depend on the bit sequence encoding scheme.


The output bit of the pulse generation circuit 22 produces the voltage level that will drive an individual emitter of emitter elements 100. Once the emitter sequence has started, the detector circuitry begins collecting information from the detector of detector elements 200. The sampling circuit 12 produces a multi-bit value that is continuously compared to the value in the threshold register 30. For sampled values greater than the value in the threshold register 30, a threshold compare circuitry 32 produces a true value or “1” in a positive logic system. The output of the threshold compare circuitry 32 is the input value for the detector shift register 14. A new value is shifted into the detector shift register 14 on each transition of the detector clock. The detector counter 36 is set to zero at the start of the emitter pulse sequence and will increment its count on each detector clock pulse.


The detector compare register 35 contains the multi-bit value for the emitter pulse sequence. This register is typically a copy of the initial value loaded into the pulse generation circuit 22. A sequence detect circuitry 38 will continuously compare the results of the detector compare register 35 and the detector shift register 14. When the sequence detect circuitry 38 detects a match between its inputs, it signals a detector hit register 42 to record the value of the detector counter 36. This detector hit register 42 value signifies the number of detector clock pulses from the start of the emitter sequence to the sensing of a proper detection sequence.


Advanced LiDAR systems will sometimes measure secondary return signals. For example, light rays will typically reflect off a closer object—otherwise known as the foreground object—and a farther-away object—the background object—as a result of the same emitter pulse or series of pulses. An embodiment of the present invention provides multiple detector hit registers 42 to account for multiple return sequences. After the detector counter 36 value for the first return sequence has been stored, subsequent matches detected by the sequence detect circuitry 38 will be recorded in the next detector hit register 42 in the sequence.


The FIG. 14 blocks represent the circuitry for one emitter and its matched detector. For a device with M×N emitters and detectors with all detectors operating simultaneously, M×N circuits like those represented in FIG. 14 are desired. In devices where K detectors operate simultaneously, where K is less than M×N, there will be K detector circuits desired. Each detector circuit will require mapping circuitry that maps a detector output to the appropriate detector circuitry for the current emitter pulse sequence.


In embodiments, the functional blocks in FIG. 14 are implemented in dedicated circuitry. One skilled in the art may replace many of the functional blocks in FIG. 14 with processes implemented with CPUs, microcontrollers, parallel processors, embedded reduced instruction set computing (RISC) machines, programmable logic array, or some other local computing circuitry that takes the place of many dedicated circuit blocks.


Referring to FIG. 15 illustrates a timing diagram of elements depicted in the functional blocks of the detector circuitry according to an embodiment. A detector clock 310 frequency is four times the emitter clock 302 frequency. The load pulse generation circuit signal 315 initiates the loading of the shift register of pulse generation circuit 22 with the bit sequence to be transmitted from the emitter. Incoming bits will be stored in the detector shift register, so this register must be cleared prior to the detector being enabled. The clear detector shift register signal 320 sets all of the detector shift register bits to zero.


The detector counter will serve as the timing sequence throughout the detection cycle. The counter must be cleared prior to the start of the detector sequence. The clear detector counter signal 325 sets the all of the detector counter bits to zero. The detector hit registers will store the detector counter values at which the primary and any secondary detected pulses are sensed. A zero value in these registers signifies that a match sequence was not detected, so these registers must be cleared prior to the start of the detector sequence. The clear detector hit register signal 330 sets all of the bits in all of the detector hit registers to zero.


The output from each emitter 345 is enabled by a logic one appearing at the output of the pulse generation circuit 22 only when the emitter enable signal 335 is active. The detector enable signal 340 will activate at the same time as the emitter enable signal 335. The detector enable signal 340 will activate the detector counter, the detector shift register and the sequence detect circuitry.


Upon completion of the shifting of all of the sequence bits out of the pulse generation circuit 22, the emitter enable signal 335 is deactivated, signifying the end of the emitting portion of the emitter/detector sequence. At the end of the detector sequence the detector enable signal 340 will be deactivated, which in turn will discontinue the incrementing of the detector counter, disable the sequence detect circuitry, and disable any further capturing of data in the detector hit registers. The control unit will then activate the read detect hit register signal(s) 355 to process the flight time(s) for the detected pulse sequence(s).


The timing shown in FIG. 15 utilizes synchronous electronics where all components are driven with a common clock source. One skilled in the art could produce control circuitry that operates with multiple asynchronous clocks or in a completely asynchronous fashion. The only element that requires a clock is the counter unit that will mark the time duration between the emitted pulses leaving the emitter and the detected pulses arriving at the detector circuitry.


Upon completion of the emitter detector sequence and the reading of the detector hit registers for element m,n, the control unit will compute the time of flight for sequence m,n;

t(flight)m,ndetector*(km,n−Km,n)−temitter−tdetector  (eq. 3)


where λdetector is the period of the detector clock

    • km,n is the detector counter value for detector m,n when the detector match circuitry is triggered for element m,n
    • K is the number of bits in the detector m,n shift register
    • temitter is the delay from the energizing of the emitter clock to the energizing of the emitter
    • tdetector is the delay from the photons reaching the detector to the energizing of the circuitry at the input of the detector shift registers.


      The values of temitter and tdetector can be theoretical values determined from the design of the circuitry or they can be characterized values based on measurements made with the manufactured circuitry from known distances.


      The distance to the target that provided the reflected return signal for element m,n is:










d

m
,
n


=

-



v
light

*


t


(
flight
)



m
,
n



2






(

eq
.




4

)







where vlight is the velocity of light in the medium (atmosphere, water, oceans, space, etc.)


where the device is used


LiDAR systems will utilize time of flight to determine the distance to the object that reflected the light. These systems will typically report a distance at a known angle for every data point. Advanced LiDAR systems will also report an intensity value for each data point, whereby the intensity value conveys information about the object creating the reflected signal. FIG. 16 illustrates a functional diagram of a preferred embodiment of the present invention where signal intensity is collected and reported.


Referring to FIG. 16, a functional block used for sending a bit sequence to an emitter of emitter elements 100 and processing the sensed signal from an associated detector of detector elements 200 is depicted according to an embodiment. In embodiments, the timer 24 produces synchronized clocks—an emitter clock that controls the timing of the pulses in the pulse generation circuit 22 and a detector clock that governs the processing of information throughout the detection functional blocks. The frequency of the detector clock will typically be an integer multiple of the emitter clock. The integer multiple for the detector clock will depend on the bit sequence encoding scheme.


The output bit of the pulse generation circuit 22 produces the voltage level that will drive the individual emitter. Once the emitter sequence has started, the detector circuitry begins collecting information from the detector of detector elements 200. The sampling circuit 12 produces a multi-bit value that is captured in the intensity shift register 44. Each subsequent transition of the detector clock will capture a new value from the sampling circuit 12, with all previous values being shifted to the right by one location. For sampled values greater than the value in the threshold register 30, the threshold compare circuitry 32 produces a true value or “1” in a positive logic system. The output of the threshold compare circuitry 32 is the input value for the detector shift register 14. A new value is shifted into the detector shift register 14 on each transition of the detector clock. A detector counter 36 is set to zero at the start of the emitter pulse sequence and will increment its count on each detector clock pulse.


The detector compare register 35 contains the multi-bit value for the emitter pulse sequence. This register is typically a copy of the initial value loaded into the pulse generation circuit 2240. The sequence detect circuitry 38 will continuously compare the results of the detector compare register 35 and the detector shift register 14. When the sequence detect circuitry 38 detects a match between its inputs, it signals the detector hit register 42 to record the value of the detector counter 36. This detector hit register 42 value signifies the number of detector clock pulses from the start of the emitter sequence to the sensing of a proper detection sequence.


The functional blocks in FIG. 16 support two methods for sequence detection. The first method is based on the output of the sequence detect circuitry 38, which compares the binary values generated by the threshold compare circuitry 32 to the detector compare register 35. The second method ignores the hardware threshold value in the threshold register 30 and does not utilize the detector hit register (s) 42. This second method analyzes all of the data in the intensity shift register 44 to determine the time at which the first return pulse train was received. This circuitry can utilize noise cancellation techniques to extract secondary pulse times and intensity values for all detected pulse sequences.


In FIG. 16, a block diagram of circuitry for an emitter element and its matched detector is shown according to an embodiment. In embodiments, an optoelectronic device comprising M×N emitters and detectors with all detectors operating simultaneously, M×N circuits like those represented in FIG. 16 are desired. In optoelectronic devices where K detectors operate simultaneously, where K is less than M×N, there will be K detector circuits desired. Each detector circuit will require mapping circuitry that maps a detector output to the appropriate detector circuitry for the current emitter pulse sequence. In embodiments, the functional blocks in FIG. 16 can be implemented in dedicated circuitry. In other embodiments, the functional blocks in FIG. 16 with processes can be implemented with CPUs, microcontrollers, parallel processors, embedded reduced instruction set computing (RISC) machines, programmable logic arrays, or some other local computing circuitry that takes the place of many dedicated circuit blocks.



FIG. 17 shows detector circuitry wherein each detector utilizes a microprocessor unit (MPU) to determine the times at which reflected signals are received and the associated intensities of the reflected signals. FIG. 17 depicts detector circuitry for an M×N array of detectors, where individual detectors are denoted as m, n where m varies from 0 to M−1 and n varies from 0 to N−1. The number of detectors can be equal to the number of emitters, or can be many times greater than the number of emitters.


The input signal from each detector is digitized by an A/D converter 12 and the digitized signal is presented to the intensity shift register 44. Every intensity shift register 44 captures a new multi-bit intensity value on the leading edge of the detector clock. Values are shifted into the intensity shift registers 44 throughout the entire detection cycle. At the end of the detection cycle each MPU will begin processing the captured and presented information to determine the clock sequences at which valid reflected signals were received. All activated intensity shift registers 44 are clocked for the same number of clock cycles throughout the detection cycle.


The timer 24 will control the clocking of data into all of the intensity shift registers 44. Each element in the detector shift registers is a multi-bit value, and the number of required elements in each intensity shift register will depend on the range of the device, the desired accuracy of the distance measurements, the number of bits in each emitter sequence, and the rate multiplier of the detector clock to the emitter clock. The number of elements for each detector shift register elements is:

# of detector shift register elements>E*L+(2*R*femitter*L)/vlight  (eq. 5)


where E is the number bits in each emitter shift register

    • L is the clock multiplier signifying L detector clock pulses for each emitter clock pulse
    • R is the specified range of the device, signifying the maximum distance that can be measured
    • femitter is the frequency of the emitter clock
    • vlight is the velocity of light in the medium (atmosphere, water, oceans, space, etc.) where the device is used


The circuitry blocks for MPU m,n 450 are shown in FIG. 17. The intensity shift registers 44 are addressable and readable over the intensity shift register bus 452 by the controller 20 and by each MPU. Upon the completion of the detection cycle, MPU m, n 450 reads the value from intensity shift register m, n 454 and the value from the detector compare register m, n 456. For algorithms that utilize only single detector information, these two lone data elements are used by the MPU to process the received waveform and determine how many return signals were detected and the associated intensity for each return signal. The number of elapsed clock pulses for each detected signal is stored by MPU m, n 450 in the detector hit registers m, n 458, and their associated intensities are stored in the intensity registers m, n 460.


Many algorithms for signal analysis and detection utilize information from neighboring detectors and/or emitters. The detector bus 452 allows each MPU to access captured return signals from neighboring detectors. In addition, each MPU can access the detector compare register 456 for every detector via the detector bus to determine if an on-coincident axis emitter was activated for that detector during the previous emitter sequence. A null value in a neighboring detector compare register 456 will signify to other MPUs that an on-coincident axis emitter was not active during the previous emitter cycle.



FIG. 17 shows two other MPUs in the detector circuitry—MPU 0,0 462 and MPU M−1,N−1 464. For a device that has M×N detectors, there will be M×N MPUs, with each MPU having its own dedicated detector hit registers and intensity registers, and having access to all intensity shift registers and all detector compare registers via the detector bus.


The device MPUs are dedicated microcontroller units that have reduced instruction sets specifically tailored to signal processing. Each MPU contains a dedicated ALU (arithmetic logic unit), control store, processing registers, instruction memory, and configuration memory. Upon power up of the device, each MPU is configured to establish its associated on-coincident axis emitter. According to an embodiment, not every MPU will be associated with an on-coincident axis emitter.


High-speed applications require one MPU for each detector. One skilled in the art will understand that conventional multiplexing techniques can be applied to devise a system wherein one MPU could service multiple detectors. The functionality of all of the MPUs could be replaced by a controller 20 with sufficient resources.


Referring to FIG. 18a, a grid 365 showing an ideal location 370 for emitted beams is depicted according to an embodiment. Such a grid could be used for device characterization, whereby the transmission vector of each emitter is determined and stored in the vector memory. Prior to characterization, micro lenses can be modified for more precise aiming. A misaligned emitter beam 360 misses the ideal location 370 on the grid 365 in both the horizontal and vertical dimensions. FIG. 18b depicts an expanded view of a beam aligned on grid 365 and a misaligned emitter beam 360. The horizontal offset 375 is reduced by making changes to the voltages to the horizontal lens control for the lens that corresponds to this emitter. The vertical offset 380 is reduced by making changes to the vertical lens control for the lens that corresponds to this emitter. The voltages used to align each micro lens are stored in the vector memory. These voltage values are saved during power down of the device. During the power up sequence, the control unit will load the values for the micro lenses into the lens control circuitry for each micro lens.


The grid 365 shown in FIG. 18a can also be used for device characterization. For each emitter, the as-built emitter vector (coincident axis) must be determined. In embodiments, characterization includes measuring the point at which each emitter beam contacts the grid 365 and determining the vector of the beam, where the beam vector is described relative to a known vector on the device. A typical way of expressing the emitter vector is to utilize uvw vector nomenclature where the vector is relative to the normal vector of the device. The characterized vector for each emitter is stored in the vector memory and saved when the device is powered off.


Referring to FIG. 19 a dense detector array 290 according to an embodiment is depicted. In embodiments, dense detector array 290 comprises a plurality of detector elements for each emitter element. The dense detector array 290 can be utilized with waveguide detectors or with macro lens detectors. When used with macro lens detectors, the detector characterization is performed after the macro lens is permanently attached to the device, thus accounting for any alignment tolerances between the dense detector array 290 and the lens. Characterization of dense detector array 290 can be used to determine which detector element has the greatest signal strength for each emitter element. In FIG. 19, primary detector 292 has been established as the best on-coincident axis match for an emitter. Characterization information for detectors can be saved in vector memory.


In embodiments, detector elements in a first concentric ring surrounding a primary detector 292 are designated as secondary detectors 294. In some embodiments, secondary detectors 294 are adjacent neighboring detectors that form the first concentric ring. Each primary detector 292 in FIG. 19 can comprise three or more secondary detectors 294. The secondary detectors can be utilized to sample data to enhance the signal strength of the primary waveform. In embodiments, sampled waveforms from the secondary detectors can be utilized in a post-processed mode to perform noise suppression and/or noise cancellation on the primary waveform. Detectors in the second concentric ring surrounding the primary detector 292 can be designated as a tertiary detector 296.


In embodiments, each primary detector 292 in FIG. 19 can comprise three or more tertiary detectors 296. The tertiary detectors can be utilized to sample data to enhance the signal strength of the primary waveform. In other embodiments, sampled waveforms from the tertiary detectors can be utilized in a post-processed mode to perform noise suppression and/or noise cancellation on the primary waveform. In addition to noise suppression and noise cancellation, the primary, secondary and in some cases tertiary detector information can be utilized to perform one or more of the following techniques including but not limited to time domain methods like FFT, DFT and largest common point, statistical methods like least squares, gradient following, projection kernels and Bayesian, and pattern matching techniques like Boyer-Moore, Kuth-Morris-Pratt, finite state neural networks and Graham's. In operation, for example, the optical center of the inbound signal may not coincide precisely with the center of a detector. For each emitter, floating point values can be used to designate a primary detector. By expressing the row and column of the primary detector as floating point numbers, the neighboring detectors can be weighted accordingly when multiple detectors are used to receive incoming sampled waveforms.



FIG. 20 portrays an orthogonal detector layout for a dense array in a preferred embodiment. A detector designated as a primary detector 292 is shown near four secondary detectors 294 and four tertiary detectors 296.


Referring to FIG. 21, a functional flowchart for the operation of the optoelectronic device according to an embodiment is shown. Upon power up at 400, the control unit 20 will determine the type of device 240. When the device 240 has micro lens emitters, the control unit 20 at 404 will read the lens voltages from vector memory and store the appropriate values in the lens control circuitry foe each micro lens. Circuitry used for transmission and receipt of light are cleared, including sampling circuit 12 at 406 and detector shift registers 14 at 408. These operations are performed on emitter elements 100 and detector elements 200 on the device 240.


When the device 240 is enabled at 410, the control unit 20 determines the pulse patterns for each emitter of emitter elements 100 and will load shift registers of the pulse generation circuit 22 at 412, clear detector counters at 414 and enable emitter elements 100 and detector elements 200 at 416 that will be utilized in the ensuing emitter/detector sequence. At the completion of the detector sequence at 418, the resultant values are retrieved for each detector of detector elements 200 that was activated for the sequence. At 420, for devices that utilize hardware matches, the detector hit register 4 and intensity registers are read for each enabled detector. For devices that utilize software matches the intensity shift registers are read for each primary, secondary and tertiary shift register at 426.


Having collected the appropriate information for all enabled detectors, the control unit will compute flight times at 428, write the vectors at 430 to image memory, write a distance at 432 to image memory, and write the time stamp at 434 to image memory that marks the beginning of the emitter transmission for each emitter of emitter elements 100. Upon completion of the computations and storage for all detectors, the contents of image memory are transmitted via the I/O interface at 436 to the upstream control unit 20.



FIG. 22 depicts the use of a group of LiDAR units in accordance with one embodiment of the present invention. A passenger vehicle 470 has a long-range device 472 used for real-time mapping and forward obstacle identification. Two shorter-range, wider-field-of-view front-facing devices 474 are used for mapping of adjacent lanes, road edges, and connector roadways in addition to the identification of obstacles not aligned with the direction of travel. Each side of the vehicle 470 has two wide-angle devices 476 used for object identification and velocity determination of neighboring vehicles. Two outboard rear-facing devices 478 are used for blind spot detection in human-operated vehicles or for object identification in autonomous vehicles. A rear-facing device 480 is used for object identification and velocity determination of approaching vehicles. All of the devices 472, 474, 476, 478, 480 can be identical devices with a single field of view, or they can be application specific, each with a separate field of view, emitter/detector wavelength, detection and measurement distance operating range, and number of emitters.



FIG. 23 depicts the use of a group of LiDAR units in accordance with another embodiment of the present invention. A data acquisition aircraft 484 utilizes a single wide-field-of-view device 486 for terrain 496 mapping, pixel depth acquisition, or remote sensing. Alternately, the aircraft 484 implements a higher-resolution, wider-field-of-view apparatus 488 that utilizes multiple devices 492. The exploded view 490 of the apparatus 488 depicts devices 492 oriented in a geodesic pattern so the combined fields-of-view 494 for all devices 492 yields a higher-resolution acquisition path than could be realized with a single device 492.


In various embodiments of the present invention the emitters are constructed using 650 nanometer lasers. One skilled in the art can utilize other wavelengths for emitter and detector construction as long as the emitted radiation maintains its directionality while transmitting though the medium and as long as the selected wavelength is not highly absorptive by the objects contained in the medium. In some embodiments, the light energy is emitted and received as collimated or coherent electromagnetic energy, such as common laser wavelengths of 650 nm, 905 nm or 1550 nm. In some embodiments, the light energy can be in the wavelength ranges of ultraviolet (UV)—100-400 nm, visible—400-700 nm, near infrared (NIR)—700-1400 nm, infrared (IR)—1400-8000 nm, long-wavelength IR (LWIR)—8 um-15 um, or far IR (FIR)—15 um-1000 um. The various embodiments of the present invention can provide reduction of interference at these various wavelengths not only among emitted and reflected light energy of LiDAR devices, but also emitted and reflected light energy from other ambient sources such as vehicle headlights and the sun that will also be sources of interference for typical LiDAR units.


Various embodiments of devices and methods have been described herein. These embodiments are given only by way of example and are not intended to limit the scope of the invention. It should be appreciated, moreover, that the various features of the embodiments that have been described may be combined in various ways to produce numerous additional embodiments. Moreover, while various materials, dimensions, shapes, configurations and locations, etc. have been described for use with disclosed embodiments, others besides those disclosed may be utilized without exceeding the scope of the invention.


Persons of ordinary skill in the relevant arts will recognize that the invention may comprise fewer features than illustrated in any individual embodiment described above. The embodiments described herein are not meant to be an exhaustive presentation of the ways in which the various features of the invention may be combined. Accordingly, the embodiments are not mutually exclusive combinations of features; rather, the invention can comprise a combination of different individual features selected from different individual embodiments, as understood by persons of ordinary skill in the art. Moreover, elements described with respect to one embodiment can be implemented in other embodiments even when not described in such embodiments unless otherwise noted. Although a dependent claim may refer in the claims to a specific combination with one or more other claims, other embodiments can also include a combination of the dependent claim with the subject matter of each other dependent claim or a combination of one or more features with other dependent or independent claims. Such combinations are proposed herein unless it is stated that a specific combination is not intended. Furthermore, it is intended also to include features of a claim in any other independent claim even if this claim is not directly made dependent to the independent claim.


Any incorporation by reference of documents above is limited such that no subject matter is incorporated that is contrary to the explicit disclosure herein. Any incorporation by reference of documents above is further limited such that no claims included in the documents are incorporated by reference herein. Any incorporation by reference of documents above is yet further limited such that any definitions provided in the documents are not incorporated by reference herein unless expressly included herein.


For purposes of interpreting the claims for the present invention, it is expressly intended that the provisions of Section 112, sixth paragraph of 35 U.S.C. are not to be invoked unless the specific terms “means for” or “step for” are recited in a claim.

Claims
  • 1. An array-based light detection and ranging (LiDAR) unit comprising: an array of emitter/detector sets configured to cover a field of view for the unit, each emitter/detector set configured to emit and receive light energy on a specific coincident axis unique for that emitter/detector set; anda control system coupled to the array of emitter/detector sets to control initiation of light energy from each emitter and to process time of flight information for light energy received on the coincident axis by the corresponding detector for the emitter/detector set, the control system including:a pulse generation controller configured to transmit a sequence of pulses from each of the emitters; anda control unit configured to compute a time of flight measurement for light energy received at each of the corresponding on-coincident axis detectors, wherein the control unit includes a microprocessor unit (MPU) coupled to an output of at least one detector, the MPU being configured to analyze the light energy based on the output of the at least one detector; andeach emitter/detector set has a corresponding MPU unique to the emitter/detector set, wherein the control system further comprises a processor coupled to each MPU to analyze information from the array of emitter/detector sets,wherein time of flight information for light energy corresponding to the array of emitter/detector sets provides imaging information corresponding to the field of view for the unit and interference among light energy corresponding to an emitter of the specific coincident axis of an emitter/detector set is reduced with respect to detectors in the LiDAR unit other than the detector of the emitter/detector set corresponding to the specific coincident axis.
  • 2. The array-based LiDAR unit of claim 1, wherein the array comprises a non-scanning, solid-state device having a multitude of emitter/detector sets arranged on a generally planer surface.
  • 3. The array-based LiDAR unit of claim 2, wherein a number of emitter/detector sets ranges from a 16×16 array of emitter/detector sets to an array of 4096×4096 emitter/detector sets.
  • 4. The array-based LiDAR unit of claim 1, wherein each emitter/detector set is a single pair of an emitter and a detector.
  • 5. The array-based LiDAR unit of claim 1, wherein an output signal of the detector comprises an output signal of a detector shift register.
  • 6. The array-based LiDAR unit of claim 1, wherein the field of view of the LiDAR unit is predetermined based on the optic configuration associated with each of the sets of emitter/detectors.
  • 7. The array-based LiDAR unit of claim 1, wherein the MPU is configured to analyze the light energy based on an output of the detector of a given emitter/detector set and at least one secondary detector corresponding to the given emitter/detector set.
  • 8. The array-based LiDAR unit of claim 7, wherein the at least one secondary detector includes a plurality of detectors in a concentric ring surrounding the given emitter/detector set in the array.
  • 9. The array-based LiDAR unit of claim 8, wherein the MPU is further configured to analyze the light energy based on an output of at least a plurality of tertiary detectors corresponding to detectors in a second concentric ring surrounding the concentric ring formed by the at least one secondary detector.
  • 10. The array-based LiDAR unit of claim 1, wherein the pulse generation circuit initiates generation of the emitted light energy as a pulse train for each emitter of the emitter/detector sets.
  • 11. The array-based LiDAR unit of claim 10 wherein the pulse generation circuit includes at least one emitter shift register coupled to an input of each emitter, the emitter shift register being configured to activate at least one emitter based on an output of the at least one emitter shift register in response to an emitter clocking signal.
  • 12. The array-based LiDAR unit of claim 11 wherein at least one detector shift register coupled to an output of each detector, the detector shift register being configured to be read by the control unit in response to a detector clocking signal.
  • 13. The array-based LiDAR unit of claim 12, wherein the array comprises a non-scanning, solid-state device having m x n emitter/detector sets, and wherein the control unit will compute the time of flight for a given sequence m,n upon completion of a sequence of emitting and detecting the pulse train and reading of the shift registers for element m,n, as; t(flight)m,n=λdetector*(km,n−Km,n)−temitter−tdetector where λdetector is a period of the detector clocking signal km,n is a detector counter value for detector m,n when a detector match circuitry is triggered for element m,nK is a number of bits in the detector shift register for element m,n temitter is a delay from energizing of the emitter clock signal to energizing of the emitter tdetector is a delay from photons reaching the detector to energizing of the circuitry at an input of the detector shift register.
RELATED APPLICATION

This application is a continuation of application Ser. No. 16/272,822 filed Feb. 11, 2019, now U.S. Pat. No. 11,131,755 issued Sep. 28, 2021, which in turn is a continuation of application Ser. No. 14/078,001 filed Nov. 12, 2013, now U.S. Pat. No. 10,203,399 issued Feb. 12. 2019, each of which is hereby fully incorporated herein by reference.

US Referenced Citations (409)
Number Name Date Kind
3971065 Bayer Jul 1976 A
4185891 Kaestner Jan 1980 A
4739398 Thomas et al. Apr 1988 A
4935616 Scott Jun 1990 A
5006721 Cameron et al. Apr 1991 A
5026156 Bayston et al. Jun 1991 A
5054911 Ohishi et al. Oct 1991 A
5081530 Medina Jan 1992 A
5084895 Shimada et al. Jan 1992 A
5090245 Anderson Feb 1992 A
5122796 Beggs et al. Jun 1992 A
5212706 Jain May 1993 A
5400350 Galvanauskas Mar 1995 A
5418359 Juds et al. May 1995 A
5420722 Bielak May 1995 A
5446529 Stettner et al. Aug 1995 A
5465142 Krumes et al. Nov 1995 A
5485009 Meyzonnetie et al. Jan 1996 A
5497269 Gal Mar 1996 A
5619317 Oishi et al. Apr 1997 A
5675326 Juds et al. Oct 1997 A
5682229 Wangler Oct 1997 A
5793491 Wangler et al. Aug 1998 A
5805275 Taylor Sep 1998 A
5831551 Geduld Nov 1998 A
5870180 Wangler Feb 1999 A
5892575 Marino Apr 1999 A
5940170 Berg et al. Aug 1999 A
6054927 Brickell Apr 2000 A
6057909 Yahav et al. May 2000 A
6118518 Hobbs Sep 2000 A
6133989 Stettner et al. Oct 2000 A
6150956 Laufer Nov 2000 A
6181463 Galvanauskas et al. Jan 2001 B1
6212480 Dunne Apr 2001 B1
6323942 Bamji Nov 2001 B1
6327090 Rando et al. Dec 2001 B1
6370291 Mitchell Apr 2002 B1
6373557 Megel et al. Apr 2002 B1
6377167 Juds et al. Apr 2002 B1
6396397 Bos et al. May 2002 B1
6448572 Tennant et al. Sep 2002 B1
6456368 Seo Sep 2002 B2
6480265 Maimon et al. Nov 2002 B2
6512892 Montgomery et al. Jan 2003 B1
6522396 Halmos Feb 2003 B1
6535275 McCaffrey et al. Mar 2003 B2
6619406 Kacyra et al. Sep 2003 B1
6646725 Eichinger et al. Nov 2003 B1
6654401 Cavalheiro Vieira et al. Nov 2003 B2
6665055 Ohishi et al. Dec 2003 B2
6674878 Retterath et al. Jan 2004 B2
6683727 Göring et al. Jan 2004 B1
6711280 Stafsudd et al. Mar 2004 B2
6717972 Steinle et al. Apr 2004 B2
6774988 Stam et al. Aug 2004 B2
6828558 Arnone et al. Dec 2004 B1
6843416 Swartz et al. Jan 2005 B2
6873640 Bradburn et al. Mar 2005 B2
6881979 Starikov et al. Apr 2005 B2
6906302 Drowley Jun 2005 B2
6967569 Weber et al. Nov 2005 B2
6975251 Pavicic Dec 2005 B2
6987447 Baerenweiler et al. Jan 2006 B2
7016519 Nakamura et al. Mar 2006 B1
7148974 Schmitt et al. Dec 2006 B1
7149613 Stam et al. Dec 2006 B2
7171037 Mahon et al. Jan 2007 B2
7224384 Iddan et al. May 2007 B1
7227459 Bos et al. Jun 2007 B2
7236235 Dimsdale Jun 2007 B2
7248342 Degnan Jul 2007 B1
7248344 Morcom Jul 2007 B2
7294863 Lee et al. Nov 2007 B2
7319777 Morcom Jan 2008 B2
7348919 Gounalis Mar 2008 B2
7362419 Kurihara et al. Apr 2008 B2
7436494 Kennedy et al. Oct 2008 B1
7453553 Dimsdale Nov 2008 B2
7474821 Donlagic et al. Jan 2009 B2
7521666 Tsang Apr 2009 B2
7534984 Gleckler May 2009 B2
7542499 Jikutani Jun 2009 B2
7544945 Tan et al. Jun 2009 B2
7551771 England, III Jun 2009 B2
7560680 Sato et al. Jul 2009 B2
7579593 Onozawa et al. Aug 2009 B2
7607509 Schmiz et al. Oct 2009 B2
7623248 Laflamme Nov 2009 B2
7649654 Shyu et al. Jan 2010 B2
7663095 Wong et al. Feb 2010 B2
7689032 Strassenburg-Kleciak Mar 2010 B2
7697119 Ikeno et al. Apr 2010 B2
7733932 Faybishenko Jun 2010 B2
7755743 Kumahara et al. Jul 2010 B2
7755809 Fujita et al. Jul 2010 B2
7787105 Hipp Aug 2010 B2
7787511 Jikutani et al. Aug 2010 B2
7830442 Griffis et al. Nov 2010 B2
7830532 De Coi Nov 2010 B2
7873091 Parent et al. Jan 2011 B2
7881355 Sipes, Jr. Feb 2011 B2
7888159 Venezia et al. Feb 2011 B2
7894725 Holman et al. Feb 2011 B2
7900736 Breed Mar 2011 B2
7911617 Padmanabhan et al. Mar 2011 B2
7940825 Jikutani May 2011 B2
7944548 Eaton May 2011 B2
7945408 Dimsdale et al. May 2011 B2
7957448 Willemin et al. Jun 2011 B2
7957639 Lee et al. Jun 2011 B2
7960195 Maeda et al. Jun 2011 B2
7961328 Austin et al. Jun 2011 B2
7969558 Hall Jun 2011 B2
7979173 Breed Jul 2011 B2
7983817 Breed Jul 2011 B2
7986461 Bartoschewski Jul 2011 B2
7991222 Dimsdale et al. Aug 2011 B2
7994465 Bamji et al. Aug 2011 B1
8027029 Lu et al. Sep 2011 B2
8045595 Ma Oct 2011 B2
8054203 Breed et al. Nov 2011 B2
8054464 Mathur et al. Nov 2011 B2
8072581 Breiholz Dec 2011 B1
8072663 O'Neill et al. Dec 2011 B2
8077294 Grund et al. Dec 2011 B1
8089498 Sato et al. Jan 2012 B2
8094060 Beard et al. Jan 2012 B2
8098969 Tolstikhin et al. Jan 2012 B2
8102426 Yahav et al. Jan 2012 B2
8111452 Butler et al. Feb 2012 B2
8115158 Buettgen Feb 2012 B2
8120754 Kaehler Feb 2012 B2
8125367 Ludwig Feb 2012 B2
8125620 Lewis Feb 2012 B2
8139141 Bamji et al. Mar 2012 B2
8159598 Watanabe et al. Apr 2012 B2
8194712 Müller et al. Jun 2012 B2
8198576 Kennedy et al. Jun 2012 B2
8199786 Gaillard et al. Jun 2012 B2
8212998 Rindle Jul 2012 B2
8213479 Doerfel et al. Jul 2012 B2
8229663 Zeng et al. Jul 2012 B2
8235416 Breed et al. Aug 2012 B2
8235605 Kim Aug 2012 B2
8238393 Iwasaki Aug 2012 B2
8242428 Meyers et al. Aug 2012 B2
8242476 Memeault et al. Aug 2012 B2
8249798 Hawes et al. Aug 2012 B2
8259003 Song Sep 2012 B2
8280623 Trepagnier et al. Oct 2012 B2
8301027 Shaw et al. Oct 2012 B2
8310654 Weilkes et al. Nov 2012 B2
8319949 Cantin et al. Nov 2012 B2
8325256 Egawa Dec 2012 B2
8338900 Venezia et al. Dec 2012 B2
8340151 Liu et al. Dec 2012 B2
8354928 Morcom Jan 2013 B2
8355117 Niclass Jan 2013 B2
8363156 Lo Jan 2013 B2
8363511 Frank et al. Jan 2013 B2
8364334 Au et al. Jan 2013 B2
8368005 Wang et al. Feb 2013 B2
8368876 Johnson et al. Feb 2013 B1
8378287 Schemmann et al. Feb 2013 B2
8378885 Cornic et al. Feb 2013 B2
8380367 Schultz et al. Feb 2013 B2
8391336 Chiskis Mar 2013 B2
8401046 Shveykin et al. Mar 2013 B2
8401049 Sato et al. Mar 2013 B2
8422148 Langer et al. Apr 2013 B2
8426797 Aull et al. Apr 2013 B2
8437584 Matsuoka et al. May 2013 B2
8442084 Ungar May 2013 B2
8451432 Crawford et al. May 2013 B2
8451871 Yankov May 2013 B2
8456517 Spektor et al. Jun 2013 B2
8477819 Kitamura Jul 2013 B2
8487525 Lee Jul 2013 B2
8494687 Vanek et al. Jul 2013 B2
8503888 Takemoto et al. Aug 2013 B2
8508567 Sato et al. Aug 2013 B2
8508720 Kamiyama Aug 2013 B2
8508721 Cates et al. Aug 2013 B2
8520713 Joseph Aug 2013 B2
8531650 Feldkhun et al. Sep 2013 B2
8538636 Breed Sep 2013 B2
8558993 Newbury et al. Oct 2013 B2
8570372 Russell Oct 2013 B2
8587637 Cryder et al. Nov 2013 B1
8594455 Meyers et al. Nov 2013 B2
8599363 Zeng Dec 2013 B2
8599367 Canham Dec 2013 B2
8604932 Breed et al. Dec 2013 B2
8605262 Campbell et al. Dec 2013 B2
8619241 Mimeault Dec 2013 B2
8633989 Okuda Jan 2014 B2
8640182 Bedingfield, Sr. Jan 2014 B2
8655513 Vanek Feb 2014 B2
8675184 Schmitt et al. Mar 2014 B2
8681255 Katz et al. Mar 2014 B2
8687172 Faul et al. Apr 2014 B2
8717417 Sali et al. May 2014 B2
8717492 McMackin et al. May 2014 B2
8723689 Mimeault May 2014 B2
8724671 Moore May 2014 B2
8736670 Barbour et al. May 2014 B2
8736818 Weimer et al. May 2014 B2
8742325 Droz et al. Jun 2014 B1
8743455 Gusev et al. Jun 2014 B2
8754829 Lapstun Jun 2014 B2
8760499 Russell Jun 2014 B2
8767190 Hall Jul 2014 B2
8773642 Eisele et al. Jul 2014 B2
8781790 Zhu et al. Jul 2014 B2
8797550 Hays et al. Aug 2014 B2
8804101 Spagnolia et al. Aug 2014 B2
8809758 Molnar et al. Aug 2014 B2
8810647 Niclass et al. Aug 2014 B2
8810796 Hays et al. Aug 2014 B2
8811720 Seida Aug 2014 B2
8820782 Breed et al. Sep 2014 B2
8836921 Feldkhun et al. Sep 2014 B2
8836922 Pennecot et al. Sep 2014 B1
8854426 Pellman et al. Oct 2014 B2
8855849 Ferguson et al. Oct 2014 B1
8864655 Ramamurthy et al. Oct 2014 B2
8885152 Wright Nov 2014 B1
8908157 Eisele et al. Dec 2014 B2
8908159 Mimeault Dec 2014 B2
8918831 Meuninck et al. Dec 2014 B2
8928865 Rakuljic Jan 2015 B2
8933862 Lapstun Jan 2015 B2
8934087 Stobie et al. Jan 2015 B1
8947647 Halmos et al. Feb 2015 B2
8963956 Latta et al. Feb 2015 B2
8988754 Sun et al. Mar 2015 B2
8995577 Ullrich et al. Mar 2015 B2
9032470 Meuninck et al. May 2015 B2
9066087 Shpunt Jun 2015 B2
9069060 Zbrozek et al. Jun 2015 B1
9098931 Shpunt et al. Aug 2015 B2
9102220 Breed Aug 2015 B2
9103715 Demers et al. Aug 2015 B1
9113155 Wu et al. Aug 2015 B2
9119670 Yang et al. Sep 2015 B2
9131136 Shpunt et al. Sep 2015 B2
9137463 Gilboa et al. Sep 2015 B2
9137511 LeGrand, III et al. Sep 2015 B1
9142019 Lee Sep 2015 B2
9158375 Maizels et al. Oct 2015 B2
9185391 Prechtl Nov 2015 B1
9186046 Ramamurthy et al. Nov 2015 B2
9186047 Ramamurthy et al. Nov 2015 B2
9191582 Wright et al. Nov 2015 B1
9201501 Maizels et al. Dec 2015 B2
9204121 Marason et al. Dec 2015 B1
9228697 Schneider et al. Jan 2016 B2
9237333 Lee et al. Jan 2016 B2
9239264 Demers Jan 2016 B1
9360554 Retterath et al. Jun 2016 B2
9612153 Kawada et al. Apr 2017 B2
9723233 Grauer et al. Aug 2017 B2
9866816 Retterath Jan 2018 B2
10036801 Retterath et al. Jul 2018 B2
10203399 Retterath et al. Feb 2019 B2
10585175 Retterath et al. Mar 2020 B2
11131755 Retterath et al. Sep 2021 B2
11226298 Kappler et al. Jan 2022 B2
20020179708 Zhu et al. Dec 2002 A1
20030043364 Jamieson et al. Mar 2003 A1
20030063775 Rafii Apr 2003 A1
20030085867 Grabert May 2003 A1
20030155513 Remillard et al. Aug 2003 A1
20040133380 Gounalis Jul 2004 A1
20060132752 Kane Jun 2006 A1
20060157643 Bamji et al. Jul 2006 A1
20060268265 Chuang et al. Nov 2006 A1
20060279630 Aggarwal et al. Dec 2006 A1
20070182949 Niclass Aug 2007 A1
20070279615 Degnan et al. Dec 2007 A1
20080180650 Lamesch Jul 2008 A1
20090045359 Kumahara et al. Feb 2009 A1
20090076758 Dimsdale Mar 2009 A1
20090128802 Treado et al. May 2009 A1
20090232355 Minear et al. Sep 2009 A1
20100020306 Hall Jan 2010 A1
20100045966 Cauquy et al. Feb 2010 A1
20100046953 Shaw et al. Feb 2010 A1
20100128109 Banks May 2010 A1
20100231891 Mase Sep 2010 A1
20100265386 Raskar et al. Oct 2010 A1
20100277713 Mimeault Nov 2010 A1
20100301195 Thor et al. Dec 2010 A1
20110007299 Moench et al. Jan 2011 A1
20110037849 Niclass et al. Feb 2011 A1
20110101206 Buettgen May 2011 A1
20110131722 Scott et al. Jun 2011 A1
20110134220 Barbour et al. Jun 2011 A1
20110205521 Mimeault et al. Aug 2011 A1
20110216304 Hall Sep 2011 A1
20110285980 Newbury et al. Nov 2011 A1
20110285981 Justice et al. Nov 2011 A1
20110285982 Breed Nov 2011 A1
20110295469 Rafii et al. Dec 2011 A1
20110313722 Zhu et al. Dec 2011 A1
20120001463 Breed et al. Jan 2012 A1
20120002007 Meuninck et al. Jan 2012 A1
20120002025 Bedingfield, Sr. Jan 2012 A1
20120011546 Meuninck et al. Jan 2012 A1
20120023518 Meuninck et al. Jan 2012 A1
20120023540 Meuninck et al. Jan 2012 A1
20120051383 Stern Mar 2012 A1
20120062705 Ovsiannikov et al. Mar 2012 A1
20120086781 Iddan et al. Apr 2012 A1
20120098964 Oggier et al. Apr 2012 A1
20120154784 Kaufman et al. Jun 2012 A1
20120249998 Eisele et al. Oct 2012 A1
20120261516 Gilliland et al. Oct 2012 A1
20120262696 Eisele et al. Oct 2012 A1
20120274745 Russell Nov 2012 A1
20120287417 Mimeault Nov 2012 A1
20120299344 Breed et al. Nov 2012 A1
20130044129 Latta et al. Feb 2013 A1
20130060146 Yang et al. Mar 2013 A1
20130070239 Crawford et al. Mar 2013 A1
20130076861 Sternklar Mar 2013 A1
20130083310 Ramamurthy et al. Apr 2013 A1
20130085330 Ramamurthy et al. Apr 2013 A1
20130085331 Ramamurthy et al. Apr 2013 A1
20130085333 Ramamurthy et al. Apr 2013 A1
20130085334 Ramamurthy et al. Apr 2013 A1
20130085382 Ramamurthy et al. Apr 2013 A1
20130085397 Ramamurthy et al. Apr 2013 A1
20130090528 Ramamurthy et al. Apr 2013 A1
20130090530 Ramamurthy et al. Apr 2013 A1
20130090552 Ramamurthy et al. Apr 2013 A1
20130188043 Decoster Jul 2013 A1
20130201288 Billerbeck et al. Aug 2013 A1
20130215235 Russell Aug 2013 A1
20130242283 Bailey et al. Sep 2013 A1
20130242285 Zeng Sep 2013 A1
20130278917 Korekado et al. Oct 2013 A1
20130300740 Snyder et al. Nov 2013 A1
20130300838 Borowski Nov 2013 A1
20130300840 Borowski Nov 2013 A1
20130321791 Feldkhun et al. Dec 2013 A1
20140035959 Lapstun Feb 2014 A1
20140152971 James Jun 2014 A1
20140152975 Ko Jun 2014 A1
20140160461 Van Der Tempel et al. Jun 2014 A1
20140168362 Hannuksela et al. Jun 2014 A1
20140211194 Pacala et al. Jul 2014 A1
20140218473 Hannuksela et al. Aug 2014 A1
20140240464 Lee Aug 2014 A1
20140240469 Lee Aug 2014 A1
20140240809 Lapstun Aug 2014 A1
20140241614 Lee Aug 2014 A1
20140253993 Lapstun Sep 2014 A1
20140292620 Lapstun Oct 2014 A1
20140313339 Diessner Oct 2014 A1
20140313376 Van Nieuwenhove et al. Oct 2014 A1
20140340487 Gilliland et al. Nov 2014 A1
20140347676 Velten et al. Nov 2014 A1
20140350836 Stettner et al. Nov 2014 A1
20150002734 Lee Jan 2015 A1
20150060673 Zimdars Mar 2015 A1
20150077764 Braker et al. Mar 2015 A1
20150082353 Meuninck et al. Mar 2015 A1
20150116528 Lapstun Apr 2015 A1
20150131080 Retterath et al. May 2015 A1
20150145955 Russell May 2015 A1
20150192677 Yu et al. Jul 2015 A1
20150201176 Graziosi et al. Jul 2015 A1
20150213576 Meuninck et al. Jul 2015 A1
20150245017 Di Censo et al. Aug 2015 A1
20150256767 Schlechter Sep 2015 A1
20150269736 Hannuksela et al. Sep 2015 A1
20150292874 Shpunt et al. Oct 2015 A1
20150293226 Eisele et al. Oct 2015 A1
20150293228 Retterath et al. Oct 2015 A1
20150296201 Banks Oct 2015 A1
20150304534 Kadambi et al. Oct 2015 A1
20150304665 Hannuksela et al. Oct 2015 A1
20150309154 Lohbihler Oct 2015 A1
20150319344 Lapstun Nov 2015 A1
20150319355 Lapstun Nov 2015 A1
20150319419 Akin et al. Nov 2015 A1
20150319429 Lapstun Nov 2015 A1
20150319430 Lapstun Nov 2015 A1
20150378241 Eldada Dec 2015 A1
20150379362 Calmes et al. Dec 2015 A1
20160003946 Gilliland et al. Jan 2016 A1
20160007009 Offenberg Jan 2016 A1
20160047901 Pacala et al. Feb 2016 A1
20160049765 Eldada Feb 2016 A1
20160161600 Eldada et al. Jun 2016 A1
20160259038 Retterath et al. Sep 2016 A1
20160356881 Retterath et al. Dec 2016 A1
20170084176 Nakamura Mar 2017 A1
20170103271 Kawagoe Apr 2017 A1
20170176578 Rae et al. Jun 2017 A1
20170257617 Retterath Sep 2017 A1
20170259753 Meyhofer et al. Sep 2017 A1
20180131924 Jung et al. May 2018 A1
20180295344 Retterath Oct 2018 A1
20190079165 Retterath et al. Mar 2019 A1
20190285732 Retterath et al. Sep 2019 A1
20200319317 Retterath et al. Oct 2020 A1
Foreign Referenced Citations (5)
Number Date Country
1764835 Mar 2007 EP
1912078 Apr 2008 EP
WO 1998010255 Mar 1998 WO
WO 2013081984 Jun 2013 WO
WO 2013127975 Sep 2013 WO
Non-Patent Literature Citations (17)
Entry
Harvey-Lynch, Inc., “Multibeam and Mobile LIDAR Solutions,” 2014, 2 pages.
Hussman et al., “A Performance of 3D TOF Vision Systems in Comparison to Stereo Vision Systems,” Stereo Vision, 2008, 20 pages.
Al-Khafaji et al., “Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images,” IEEE Transactions on Image Processing, vol. 27, Issue 2, Feb. 2018, 14 pages.
Krill et al., “Multifunction Array LIDAR Network for Intruder Detection, Tracking, and Identification,” IEEE ISSNIP, 2010, pp. 43-48.
Levinson et al., “Unsupervised Calibration for Multi-Beam Lasers,” Stanford Artificial Intelligence Laboratory, 2010, 8 pages.
Ling et al., “Deformation Invariant Image Matching,” Center for Automation Research, Computer Science Department, University of Maryland, College Park, 2005, 8 pages.
Lindeberg et al., “Scale Invariant Feature Transform,” Scholarpedia, 7(5):10491, May 2012, 19 pages.
Webpage http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan/specifications, Jul. 2015, 2 pages.
Webpage, 3D LADAR & LIDAR Focal Planes and Instruments, Voxtelopto, 2007-2015, 3 pages.
ASC 3D Bringing 3D Alive!, Advanced Scientific Concepts, Inc., Feb. 9, 2010, 14 pages.
Albota et al., “Three-Dimensional Imaging Laser Radar with a Photo-Counting Avalanch Photodiode Array and Microchip Laser,” Dec. 20, 2002, 8 pages.
Brazzel et al., “FLASH LIDAR Based Relative Navigation,” 2015 IEEE Aerospace Conference, 2014, 11 pages.
Love et al., “Active Probing of Cloud Multiple Scattering, Optical, Depth, Vertical Thickness, and Liquid Water Content Using Wide-Angle Imaging LIDAR,” 2002, 11 pages.
Itzler, “Focal-Plane Arrays: Geiger-Mode Focal Plane Arrays Enable SWIR 3D Imaging,” 2011, 8 pages.
Superior Signal-to-Noise Ratio of a New AA1 Sequence for Random-Modulation Continuous-Wave LIDAR, Optics Letters, 2004, vol. 29, No. 15.
Frequency-Modulated Continuous-Wave LIDAR Using I/Q Modulator for Simplified Heterodyne Detection, Optics Letters, 2012, vol. 37, No. 11.
Moller et al., “Robust 3D Measurement with PMD Sensors,” Proceedings of the First Range Imaging Research Day at ETH Zurich, 2005, 14 pages.
Related Publications (1)
Number Date Country
20220128663 A1 Apr 2022 US
Continuations (2)
Number Date Country
Parent 16272822 Feb 2019 US
Child 17488018 US
Parent 14078001 Nov 2013 US
Child 16272822 US