Methods and apparatus for determining the integrity of a bodily cavity

Information

  • Patent Grant
  • 11331037
  • Patent Number
    11,331,037
  • Date Filed
    Tuesday, February 21, 2017
    7 years ago
  • Date Issued
    Tuesday, May 17, 2022
    2 years ago
Abstract
A method and system of providing therapy to a patient's uterus is provided, which can include any number of features. The method can include the steps of inserting a uterine device into the uterus and performing a uterine integrity test to determine that the uterus is intact and not perforated. Systems for performing these methods with monitored flow rate and independent of patient height relative to the pressure source are also disclosed.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD OF THE DISCLOSURE

The present disclosure generally relates to uterine procedures incorporating a distension media such as a fluid or a gas that could be used with endoscopic procedures or other visualization systems such ultrasound or fluoroscopy. The present disclosure is particular suited for endometrial ablation of the uterine lining but can be used for the treatment and inspection of system integrity would be useful in other bodily cavities such as the lung, urethra, bladder, and bodily lumens such as the esophagus, GI system, ureter, nasal airway, stomach, and arterial/venous/lymph systems. More specifically, the present disclosure relates to endometrial ablation with a heated vapor and specifically integrity and patency test systems that provide the physician user information on both the integrity of the bodily cavity being treated and the reliability of the initial integrity test result.


BACKGROUND

Endometrial ablation (i.e., the removal or destruction of the endometrial lining of the uterus) is used as an alternative to hysterectomy for treating menorrhagia, or other uterine diseases. One prior technique for performing endometrial ablation employs a resectoscope (i.e., a hysteroscope with a built-in wire loop or other ablative devices) that is inserted transcervically into the uterus, and uses radio-frequency electrical current (RF current) to remove or coagulate the endometrial tissue. These standard techniques typically are performed in a hospital setting and importantly utilize hysteroscopy for visualization of the procedure while treating the uterine lining.


Some approaches make use of heated fluid to ablate the endometrium. For example, early journal articles describe the use of steam to treat uterine hemorrhage. The use of steam for this purpose was later discredited, apparently due to patient morbidity and mortality. See, e.g., Fuller U.S. Pat. No. 6,139,571. More recent descriptions of the use of injecting hot fluid into the uterus have been described. Uterine therapies employing a contained fluid have also been described.


In an effort to simplify the procedure, approaches have been developed that do not require concurrent hysteroscopic visualization. In practice, many of these techniques recommend that the physician or user employ hysteroscopy to visualize and inspect the uterine cavity prior to performing the endometrial ablation procedure. In addition, hysteroscopy may be employed at the conclusion of the endometrial ablation procedure as a method to inspect the uterine cavity post treatment. During this hysteroscopic inspection, the physician is verifying that the uterine cavity is not perforated although perforations may not be readily apparent even with hysteroscopic visualization. In general, a physician seeks to avoid perforations for many reasons including the potential for unintended injuries to neighboring organs and maintaining or confining the treatment area to specifically the uterine cavity in the case of endometrial ablation procedures.


Endometrial ablation techniques that do not require active hysteroscopic visualization during treatment operation are commonly referred to as “blind” techniques since the physician is using tactile feel, or markers and indicia on the endometrial ablation device to indicate proper placement of the device in the uterine cavity. One of these particular devices utilizes a balloon-based system using ultrasound as the energy source. High frequency, or radiofrequency (RF), energy has also been used to perform thermal ablation of endometrial tissue. Current products for performing endometrial ablation include the NOVASURE® procedure and a system marketed under the trade name THERMACHOICE®, by Ethicon, Inc. of Somerville, N.J. Cryogenic ablation, or “cryoablation,” such as HER OPTION® from American Medical Systems, Inc., is another endometrial treatment approach. All of the products above are characterized as “blind” or not requiring direct hysteroscopic visualization during the treatment.


In utilizing an endometrial ablation technology that does not require hysteroscopic visualization, it would be beneficial to employ a test to verify that the uterine cavity is intact or unperforated prior to performing the treatment. Such tests are referred to as uterine integrity tests and these tests can be performed with endometrial ablation procedures and any procedure of the uterus or hollow body cavity or organ. In addition, these tests can be used with hysteroscopic procedures since a perforation may not be readily detected even under direct vision.


Integrity tests employ saline or gas, preferably saline and specifically carbon dioxide gas, as agents to verify if the uterine cavity is intact in regards to holding fluid or gas pressure. The gas or fluid is supplied under pressure to the uterine cavity and a leak in the uterine cavity, whether it is a perforation, an unsealed cervical canal, or the effect of excess fluid exiting the fallopian tubes, can be discerned. Stern et al. (U.S. Pat. No. 5,562,720) and Sampson et al. (U.S. Pat. Nos. 6,554,780, 6,743,184, 6,872,183, and 7,063,670) describe such pressure techniques while other approaches check for fluid imbalances between an input source and output collection using volume measurements. Other approaches mention using flow rate and pressure measurements.


SUMMARY OF THE DISCLOSURE

A further improvement to the patency test is the real time control of the fluid flow rate. As an example, if the initial patency test result demonstrates a low or near threshold fluid flow rate, the fluid flow rate can be instantaneously increased in an attempt to unclog the lumen of the uterine ablation device. The lumen could be clogged with blood, tissue, or debris and this burst of increased fluid flow would be done in an attempt to free the lumen of the materials that are interfering with the patency test. If the increased fluid flow does not improve the flow rate in the patency test assessment, the uterine ablation device is removed from the patient and the device is inspected for clogging materials, and the entire process of the device insertion, with integrity and subsequent patency testing, is initiated. However, if the increased fluid flow is successful in removing the clogging materials in situ, the uterine cavity integrity test can repeated, with a subsequent confirmatory patency test, without the need for device removal and reinsertion. In this instance, the successful application of increased fluid flow resulted in less procedure time, less risk to the procedure, and patient discomfort by removing the need for device removal and reinsertion.


In practice, the integrity and patency tests can be improved by the incorporation of additional mechanisms that would remove the requirement for specifying or establishing the height differential between the height of an elevated saline bag above the uterus to supply a saline irrigation source. Especially as it relates to the changing water level as the source of irrigation fluid becomes depleted during a procedure.


Further improvement to the accuracy and ease of applying the integrity system would be a benefit to the physician user, or making the entire system less expensive by the removal of accessory components that have been required in previously disclosed systems. The described systems demonstrate an improved integrity and patency test systems that either remove the requirement of an internal pressure sensor or an integrated flow meter within the system.


Also in practice, a system in which controlling the actual flow rate within the integrity and patency test system provides new benefits to the system that make the entire test more robust and accurate.


In another embodiment, the system utilizes a pressurized fluid reservoir within a handle of a uterine insertion device that is configured for delivering a therapeutic agent to the uterine cavity, such as a handle for delivering vapor independent of patient height relative to the fluid source and thus requires no patient height measurement prior to performing the integrity test. An air pressure regulator is used to set the fluid or liquid pressure within a small reservoir, and the fluid level in the reservoir is controlled or kept at the appropriate level or threshold by a fluid supply system. One or more sensors in the reservoir is used to measure a fluid level. As the fluid level in the reservoir goes down, the fluid supply system injects more fluid into the reservoir and ceases to place fluid in the reservoir when the threshold or fluid level is reached. The fluid supply system measures the flow rate as it supplies fluid into the reservoir.


Alternatively, the time to reach a threshold is monitored to estimate the flow rate. Fluids used are liquids such as saline, water, distilled water, etc.


In one embodiment the fluid supply system is a stepper motor, syringe pump, or gear pump that drives a syringe plunger to create a syringe pump and the one or more sensors are an infrared sensor(s) that monitor the fluid level in the small reservoir.


Additional embodiments and system elements that can be used separately or in combination for performing both an integrity and a subsequent patency test are described herein.


A method of performing an integrity test for a uterus of a patient is provided, comprising the steps of inserting a uterine ablation device into the uterus of the patient, activating a fluid supply system to deliver fluid into a reservoir disposed on or in the uterine ablation device, deactivating the fluid supply system when a fluid level in the reservoir reaches an upper threshold, pressurizing the fluid in the reservoir with a pressure source acting through a pressure regulator to deliver fluid from the reservoir of the uterine ablation device into the uterus, monitoring the fluid level of the fluid in the reservoir with one or more sensors of the reservoir, re-activating the fluid supply system when the fluid level in the reservoir reaches a lower threshold, and determining if there is a leak in the uterus based on a flow rate of the fluid supply system.


In one embodiment, the reservoir is opened to atmosphere prior to the activating step.


In another embodiment, the reservoir is closed to atmosphere after the deactivating step.


In some embodiments, it is determined that there is not a leak in the uterus if the flow rate of the fluid supply system falls below a flow rate threshold for a predetermined time. In one embodiment, the flow rate threshold is 5 mL/min and the predetermined time is 15 seconds.


In another embodiment, it is determined that there is a leak in the uterus if the flow rate of the fluid supply system does not fall below a flow rate threshold for a predetermined time over the course of an integrity testing time limit. In one embodiment, the flow rate threshold is 5 mL/min, the predetermined time is 15 seconds, and the integrity testing time limit is 60 seconds.


In some embodiments, the one or more sensors comprise infrared sensors, contact sensors, magnetic sensors, or ion sensors.


In one embodiment, the pressure source is pressurized to 55 mmHg.


In another embodiment, a pressure in the uterine cavity is independent of a patient height relative to the pressure source.


A uterine treatment device is provided, comprising a shaft sized and configured for insertion into a uterus of a patient, inflow and outflow lumens disposed along a length of the shaft, at least one inflow port disposed at a distal end of the inflow lumen, at least one outflow port disposed at a distal end of the outflow lumen, a fluid reservoir operatively coupled to the inflow and outflow lumens, one or more sensors configured to monitor a fluid level in the fluid reservoir, a fluid supply system connected to the fluid reservoir, the fluid supply system being configured to deliver fluid into the fluid reservoir, a pressure source connected to the fluid reservoir, the pressure source being configured to pressurize fluid in the fluid reservoir to deliver fluid from the reservoir into the uterus of the patient, a pressure regulator disposed between the pressure source and the fluid reservoir, the pressure regulator being configured to reduce a pressure from the pressure supply to a predetermined pressure value, and a controller configured to activate the fluid supply system to deliver fluid into the fluid reservoir and deactivate the fluid supply system when the fluid level reaches an upper threshold, the controller being further configured to determine if there is a leak in the uterus based on a flow rate of the fluid supply system.


In one embodiment, the controller is configured to determine that there is not a leak in the uterus if the flow rate of the fluid supply system falls below a flow rate threshold for a predetermined time. In another embodiment, the flow rate threshold is 5 mL/min and the predetermined time is 15 seconds.


In one embodiment, the controller is configured to determine that there is a leak in the uterus if the flow rate of the fluid supply system does not fall below a flow rate threshold for a predetermined time over the course of an integrity testing time limit. In one embodiment, the flow rate threshold is 5 mL/min, the predetermined time is 15 seconds, and the integrity testing time limit is 60 seconds.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1B illustrate one embodiment of a uterine ablation device.



FIG. 2 illustrates an integrity test of the uterine ablation device.



FIG. 3 illustrates one configuration of an apparatus during a uterine integrity test.



FIG. 4 illustrates one configuration of an apparatus during a uterine patency test.



FIG. 5 illustrates one configuration of a uterine ablation device during a vapor treatment operation.



FIG. 6A illustrates one configuration of an apparatus during a uterine integrity test.



FIG. 6B illustrates another configuration of an apparatus during a uterine integrity test.



FIGS. 7A-7B illustrate an algorithm for one configuration of a uterine integrity and patency tests.



FIG. 8 illustrates a system that removes the requirement for a specific height requirement for the irrigation source during an integrity and patency test.



FIG. 9 illustrates an embodiment that utilizes a ball or bladder to facilitate detection in the air-liquid interface.



FIG. 10 illustrates a system that utilizes a manometer that determines the height of the endometrial ablation device in relation to the patient.



FIG. 11 illustrates a further embodiment utilizing a pressure relief valve.



FIG. 12A-B illustrate graphs of flow versus intrauterine pressure.



FIG. 13 illustrates a system with a refillable syringe delivering fluid through a vapor probe for performing the integrity and patency test, and for providing the fluid to create vapor.



FIG. 14 illustrates a process for improving the patency test by increasing the fluid flow rate when a failed patency test is encountered.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1A illustrates a uterine ablation device 100 sized and configured to access the endometrium of a uterus and to deliver a heated vapor to the uterus to ablate uterine tissue. The device can be configured to ablate and treat the endometrial lining of the uterus as an alternative to hysterectomy for treating menorrhagia or other uterine diseases. In some embodiments, the device 100 can be configured to gain access to the uterus by being inserted through a cannula or hysteroscope. The device 100 can include shaft 102, handle 104, distal tip 106, vapor ports 107, distal anchor or distal balloon 108, central or sealing balloon 110, proximal or positioning balloon 112, and connection lumens 118, which can couple the uterine ablation device to a control system (not shown) comprising a computer, a vapor generation system, and mechanisms configured to inflate and deflate the balloons as well as control the delivery and removal of integrity gas/fluid and vapor from the device. Additionally, connection lumens 118 can connect device 100 to a gas/fluid source 122, pressure regulator 124, and flow meter(s) 126. Vapor ports 107 near the distal tip 106 of the device can be fluidly coupled to the connection lumens 118 via inflow and outflow lumens (not shown). The vapor ports, inflow and outflow lumens, connection lumens, gas/fluid source, pressure regulator, and flow meters can be configured for testing the integrity of the patient's uterus, proper placement of the device, and verifying the presence of flow between the inflow and outflow lumens of the device.


The flow meter can be any flow meter as known in the art, including a thermal mass flow meter, an ultrasonic flow meter, a paddlewheel, or a variable area flow meter. In one embodiment, an ultrasonic flow meter that utilizes transit time and Doppler flow readings is advantageous since it is a non-contact system that does not need to physically interact with the fluid or gas media being employed in the integrity test. An ultrasonic flow meter can be easily adaptable to the exterior dimensions of an inflow lumen. In addition, a drip chamber within the inflow lumen can be used to manually visualize or record drips or flow from the fluid source as the integrity test indicates a sealed uterine cavity. In some uterine procedures, it may be advantageous to use other types of fluid besides saline including Lactated Ringers, non-isotonic solutions for certain electrosurgical procedures, gels, foams, fluids of varying viscosity for some ultrasonographic procedures, or other fluids used in uterine procedures.


In one embodiment, a one way valve can be placed in the inflow lumen just distal or past the flow meter from the gas/fluid source. The one way valve can allow for the flow of gas/fluid (e.g., saline) from the gas/fluid source to the device and uterine cavity. The one way should not interfere with the operation of the flow meter and its readings. In operation, the uterine cavity is a muscle that can undergo significant contractions in the presence of uterine distension or when the uterine cavity is filled with gas/fluid, and in particular a fluid such as saline. These contractions can push the fluid retrograde back through the saline lumen and past the flow meter. In doing so, flow meter measurements can become difficult to interpret or may produce sinusoidal waves in the output readings. The placement of the one way valve in this location can eliminate retrograde fluid flow and stabilize readings for the flow meter during episodes of uterine contractions.


Handle 104 can be an ergonomic handle and can include features and controls for using the device (e.g., buttons, levers, indicia for providing feedback for depths of insertion, valves, etc.), including features for controlling inflation of balloons 108, 110, and 112, and for controlling the delivery and removal of integrity test gas/fluid and heated vapor from the device. The handle can also include features and controls for testing the integrity of the patient's uterus, proper placement of the device and verifying the presence of flow between the inflow and outflow lumens of the device.


The balloons described herein can be any type of flexible balloon, such as rubber, latex, urethane, silicone, PET, LDPE, parylene, nylon, PE, combinations of these polymers, or can be manufactured from any other suitable material as known in the art. It should be noted that in some embodiments, the distal anchor comprises a balloon, but in other embodiments, the distal anchor comprises an expandable anchor or expansion mechanism, such as expandable frames, filters, nets, or cages, or non-expandable components that increase the diameter of the shaft of the uterine ablation device. For purposes of this disclosure, however, the distal anchor may be referred to as a distal anchor or as a distal balloon.


Shaft 102 can be configured to deliver a heated vapor from a remote boiler (not shown) through the device and out of vapor ports 107 in distal tip 106. The shaft can also be configured to return vapor that has exited the device, including bodily fluids, uterine materials, and condensate back through the vapor ports and into the shaft. In FIG. 1A, vapor ports 107 are illustrated as including both the vapor delivery and vapor return ports. However, in other embodiments, the vapor delivery ports can be separate and distinct from the vapor return ports. For example, vapor delivery ports are intended to provide an even distribution of heated vapor through a cavity, and may comprise small lumens or holes on the end of the shaft. The vapor return ports, in contrast, are intended to return used vapor and condensate, and may comprise larger slots to prevent blood, tissue, etc. from blocking or clogging the return lumen. The device comprises inflow and outflow gas and/or fluid delivery channels to conduct uterine integrity and patency tests. In some embodiments, the lumens to deliver and return vapor are the same as the channels to deliver and return gas and/or fluid for the uterine integrity and patency tests.


Referring still to FIG. 1A, uterine ablation device 100 is shown in a collapsed delivery configuration, with distal balloon 108, sealing balloon 110, and positioning balloon 112 deflated to reduce the cross sectional diameter of the device and can be 6 mm in diameter during insertion or smaller. When the device is in the delivery configuration, the reduced profile allows for easier access through the vagina, cervical canal, and cervix to gain access to the uterus, and provides reduced patient discomfort during insertion. In some embodiments, the outer dimensions of the uterine ablation device are such that introduction of the device into the uterine cavity can be achieved without the need for mechanical or pharmacological dilation of the internal cervical os prior to device introduction.



FIG. 1B illustrates the uterine ablation device 100 of FIG. 1A with all three balloons inflated, including distal balloon 108, central sealing balloon 110, and positioning balloon 112. The central balloon can be inflated with a fluid, such as saline, or alternatively, can be inflated with air. Although three balloons are depicted in FIG. 1B, in other variations one, two, four, or more balloons may be provided, and other balloon shapes may be used. The positioning balloon can be inflated with a room temperature medium, a cooled medium, or alternatively, a heated medium. In some embodiments, the central sealing balloon comprises a length along shaft 102 of approximately 15 mm to 25 mm. The central balloon can be disposed on the shaft between the distal balloon or anchor and the proximal balloon. In some embodiments, the central balloon is adjacent to both the distal balloon and the proximal balloon. In other embodiments, there is a small gap or space between one or more of the balloons. The length and position of the central balloon on the shaft ensures that when inflated, the central balloon seals the cervix off from the uterus near the internal cervical os, but the balloon does not extend into the uterus or into the vagina of the patient. The central and proximal balloons can comprise any diameter, but preferably should have a diameter large enough to be able to engage the walls of the cervix in the average female patient. For instance, the central balloon may have an inflated outer diameter of 10 mm and accommodate 9.5 psi of pressure in actual use. The proximal balloon can have a larger diameter, such as 17 mm and a lower inflation pressure of 7 psi.


Placement of the ablation device of FIGS. 1A-1B will now be described. The distal tip of the ablation device can be inserted past an external os into the cervical canal of the patient, and past an internal os of the patient to gain access to the uterus. In one embodiment, the distal balloon can be positioned within the uterus distal to the internal os, the sealing balloon can be positioned at or proximal to the internal os and extending into the cervical canal, and the positioning balloon can be positioned within the cervical canal and extending proximally into or towards the vagina.


Once the distal tip of the ablation device is disposed within the uterus, just distal to the internal os, the distal balloon can be inflated to the desired pressure. In some embodiments, the balloon can be inflated to a pressure of up to approximately 20 to 30 psi so as to prevent accidental withdrawal of the ablation device from the uterus. It should be noted that at this point, the distal balloon is positioned slightly past the internal os of the cervix. Inflation of the distal balloon can later serve as an anchor to prevent the device from sliding proximally out of the uterus.


After inflating the distal balloon, the proximal balloon can be inflated to cause the device to assume a positioned configuration, with the distal balloon fully seated against the internal os and the positioning or proximal balloon expanded within the cervix and extending past the external os into the vagina. As the proximal balloon is inflated, the balloon can expand outwardly from the cervix into the relatively unconstrained space of the vagina, which creates a compression force that pulls the device and the distal balloon proximally to engage against the interior portion of the internal os (also known as the cervical ostium or cervical os). FIG. 2 illustrates ablation device 100 inserted into the uterus of a patient with balloons 108, 110, and 112 inflated as described above.


After positioning the ablation device but prior to delivery of vapor, it can be advantageous to assess the integrity of the uterus to test that the vapor delivery tip of the device is positioned within a sealed uterus and to test that there is flow between the inflow and outflow lumens, by performing an integrity test and a patency test. The amount of fluid and rate in which it flows into the uterine cavity can provide the physician an indication of the size of the uterine cavity and whether the device is in a false passage. An integrity test can assess that the uterus is sealed, and determine leaks originating from 1) perforations to the uterine wall, or 2) leaks from inadequate sealing at the cervix or leaks from the fallopian tubes.


A second test that made an assessment for patency, referred to as the device lumens patency test or patency test, could provide an indication to the physician whether the device was clogged with debris or within a false passage. This additional information to the physician, in conjunction with the integrity test, could provide greater assurance to the physician of device location during “blind” endometrial ablation procedures.


In clinical use, a uterine integrity and patency test could be useful for additional uterine procedures besides uterine ablation procedures such as the implantation of a device, implant, or a diagnostic or therapeutic agent. In these cases, a separate unit or module that can conduct a uterine integrity and patency test, sequentially, separately, or individually, with a separate uterine cavity introducer can be employed without a uterine ablation device or system.


In one embodiment, a uterine integrity test can contain the following elements and steps. Referring to FIGS. 1A-1B and FIG. 2, gas/fluid source 122 can be connected to pressure regulator 124 comprising either one regulator or an additional back pressure regulator. The gas/fluid source can contain a gas, such as CO2, or inert gases, or a fluid, such as saline, Ringer's Lactate, non-isotonic solutions, glycerine, sterile water, and mineral oil for example. The regulator 124 is configured to keep the pressure of the external gas source below a safety threshold value. In one embodiment, the safety threshold value can be approximately 70 mm Hg. The actual pressure amount or graduation may not be monitored and may not need to be. The fluid or gas from gas/fluid source 122 can be driven at a constant pressure bounded by the safety threshold value (e.g., can be bounded by the maximum pressure the uterus will see during treatment, such as 70 mm Hg). In addition, it can be useful to operate a uterine integrity test at a pressure equal to higher than the pressure required for conducting the endometrial ablation or other uterine procedure.


In use, gas/fluid pressure can be achieved by elevating the gas/fluid source a height distance above the uterine cavity to create pressure. This height elevation can be verified by a measuring stick, tape or laser. An example of a clinically used height for a saline bag would be 32 inches above the height of a patient's uterus. At this height, the pressure would be between 50 and 70 mmHg. This pressure is low enough to be below the reported opening pressure of the fallopian tubes. In addition, a pressure sensor within the uterine cavity can verify that the appropriate amount of pressure is being applied for the integrity test and patency tests. A self-adjusting feedback mechanism can be employed to raise or lower the pressure of the saline source in response to pressure measurements taken from within the uterine cavity before the integrity and patency tests are run. As an example, this feedback mechanism can raise or lower the height of the saline source in response to the pressure measurements taken from within the uterine cavity.


Alternatively, the uterine integrity test can be conducted by detecting a flow rate of the distal lumen of the uterine device or uterine ablation device under known conditions to determine the proper pressure or height of the gas/fluid source. For instance, flow rate readings can be taken while the gas/fluid source is at a certain height and the uterine device maintained within a known condition or in free space. As the height of the gas/fluid source is raised or lowered, the flow rate of the gas/fluid will respond accordingly until the gas/fluid source is placed at a height at the desired flow rate, or is pressurized to the desired amount. Likewise, the gas/fluid source can be raised or lowered by a self-adjusting feedback mechanism in response to the measured flow rate.


In some embodiments, the uterine ablation device can further include a flow meter 126 having a read out mechanism (not shown) to the end user. In some embodiments, the flow meter is disposed near distal tip 106 of the device. In other embodiments, the flow meter can be disposed within an outflow lumen of the device (not shown). In yet another embodiment, the flow meter can be disposed external to the device but along the flow path between gas/fluid source 122 and the ablation device. The flow meter can be configured to measure and report a flow rate of fluid/gas or vapor through the uterine ablation device. The read out mechanism can be numerical, graphical, or icon based. Other variations include various audio and visual signals, indicia, qualitative indicia, alarms, and color identifiers. A filter may or may not be attached to the flow meter.


Referring to FIGS. 2 and 3, to perform a uterine integrity test, gas, such as CO2, or a fluid, such as saline, can be delivered from the gas/fluid source 122, through the pressure regulator 124, and through the flow meter 126 into the uterine ablation device 100. As shown in FIG. 3, the gas/fluid can be delivered into the uterus via both inflow lumen 129 and outflow lumen 131.


In one embodiment, a one way valve 127 as seen in FIG. 3 can be located between the flow meter 126 and the uterine ablation device 100. In other variations the one way valve 127 can be located in the handle of the uterine ablation device 100 as well as other components such as the flow meter 126 and valves 903. The one way valve can reduce or eliminate retrograde flow of saline during uterine contractions. The one way valve is characterized as providing low resistance to flow in one direction (towards the uterine cavity) and high resistance to flow in the retrograde direction (towards the gas/fluid source). Advantageously the one way valve can stabilize flow values because retrograde flow values are eliminated. By reducing the sinusoidal wave patterns that can be caused by uterine contractions or relaxations, movements by the patient, or inadvertent manipulations of the inflow line or the patient herself by the physician or medical staff, the procedure time is reduced. This filtering out of negative flow values isolates positive components of flow, reduces noise in flow rate values, thereby accelerating the interpretation of flow rate data and reducing procedural time.


A controller of the uterine ablation device (not shown) can be configured to open and close valves 128a, 128b, and 128c to allow gas or fluid to flow from source 122 into the inflow and outflow lumens 129 and 131 of the ablation device 100. During a uterine integrity test, the controller can be configured to open valves 128a and 128b and close valve 128c. This allows gas or fluid to flow from source 122, through flow meter 126, through one way valve 127 and valves 127a and 128b, and into inflow lumen 129 and outflow lumen 131. As the gas or fluid enters the uterus, the flow meter can measure an integrity flow rate of the gas or fluid. If the flow rate decreases below an integrity flow rate threshold value, the controller can determine that the uterus is sealed. In some embodiments, this integrity flow rate threshold value can be approximately 5 ml/min.


The gas/fluid can exit vapor ports 107 of the device and enter the uterine cavity. These exit vapor ports can also be referred to as the fluid infusion tip and fluid outflow tip. As described above, for the integrity test, both the inflow and outflow lumens of the uterine ablation device can be utilized to provide fluid/gas to the uterine cavity. As the pressure in the uterus increases, the flow of fluid or gas through the uterine ablation device should decrease to a value of zero or to a value below an integrity flow rate threshold value, which occurs when the pressure in the uterus equals the drive pressure of the system. Utilizing both the inflow and outflow lumens for the flow of the gas/fluid during insertion of the device into the patient can help prevent the vapor ports from becoming clogged or blocked during insertion.


For the patency test, the inflow lumen can be utilized for gas/fluid flow into the uterus while the outflow lumen is used for the return of gas/fluid from the uterus.


For the integrity test, by measuring the flow of gas or fluid into the uterus with flow meter 126, and more specifically, by measuring a declining flow rate of gas/fluid into the uterus or a steady state flow rate in the uterus, the system or a user can determine the state of the uterus and correct positioning of the device in the uterus. For example, 1) if the flow rate does not decrease or decreases to a flow rate higher than a threshold flow rate, for example 5 ml/min, then there is either a leak in the uterus or the device, or the device is not positioned properly within the uterus; 2) if the flow rate drops to zero immediately, then the distal tip of the uterine ablation device may be clogged or embedded in the tissue; 3) if the flow rate drops to a level above zero and stays there (e.g., ˜30 mL/min), then a small leak may be present. The size of the leak can be proportional to the measured flow rate; 4) if the flow rate oscillates between a low level and a high level, then a hole or leak may be present which is sealed or closed at lower pressures but opens at higher pressures; and 5) if the flow rate drops below a threshold value or to zero within a certain time limit, bounded by both min and max time, then the device is positioned correctly within a sealed uterus. In one embodiment, a min and max time to determine proper positioning within a sealed uterus can occur within a test window of 10 to 60 seconds with a 15 second window being preferred. The flow rate threshold can be set at a numerical value of 5 ml/min wherein flow rates dropping below 5 ml/min within the time window can be used as the threshold for a sealed uterine cavity and greater than or equal to 5 ml/min as the threshold for detecting a leak or an unsealed uterine cavity. The numerical value of 5 ml/min as a sealed or unsealed threshold for integrity testing has been shown to be effective for the uterine ablation device utilizing vapor. Intentionally made perforations in test uteri were demonstrated to not allow vapor to traverse the perforation at values less than 5 ml/min. The establishment of a threshold value for sealed or unsealed uterine cavity must take into account the resolution limitations of the flow sensors and meters, and the rate of saline absorption in the uterine cavity.


In analyzing integrity test data for leak or non-intact thresholds, empirical testing demonstrated that there is a statistically significant difference between tests determined as “pass” (flow <5 ml/min) or “fail” (flow >5 ml/min). The average minimum change in saline flow rate and maximum saline flow rate are significantly different, indicating that the integrity test can effectively discern between leaks and absence of leaks in a test environment where perforations are intentionally applied to a test uterine cavity as shown in the table below. This statistically significant difference improves further when negative flow values are eliminated with the use of a one way valve (p<0.001 for Min Δ flow and p<0.001 for Max flow). Based on this analysis, a 5 ml/min integrity test threshold for leak detection can be established and applied for clinical use. In addition, an algorithm to analyze the data automatically can be developed for its ability to determining uterine integrity.









TABLE 1







Uterine Cavity Integrity Test Results in Test Uteri with


Intentionally Created Perforations:










Flow data as recorded
No negative flow values












Min Δ flow
Max flow
Min Δ flow
Max flow











Uterine Cavity Integrity Tests Declared as


“NOT SEALED” (n = 12)











Average
10.42
8.75
10.42
11


Standard
4.38
15.55
4.3
12.64


Deviation


Maximum
17
38
17
38


Minimum
2
−15
2
0







Uterine Cavity Integrity Tests Declared as


“SEALED” (n = 411)











Average
3.12
2.34
3.12
2.41


Standard
2.19
2.17
2.19
2.07


Deviation


Maximum
8.00
6.00
8.00
6.00


Minimum
0.00
−1.00
0.00
0.00









In Table 1, Min Δ flow refers to the minimum change in flow rate over a 15 second window of flow, shown in ml/min. Max flow refers to the maximum flow rate observed in a 15 second window of flow, shown in ml/min. No negative flow values refer to data points where only positive flow rates are calculated. Negative flow values will not occur with a one way valve in place.


As another consideration, the size and or shape of the uterus will likely change during the integrity test. Thus, in some embodiments, an average flow rate can be used to determine the integrity of the uterus or the positioning of the device. For example, in one embodiment, if the average flow over a predetermined time period, such as 5 seconds, is zero or lower than a threshold flow rate, then the uterus is likely sealed. In another variation, a 15 second time window can be taken in which the trailing average of data points is tabulated for every 15 second time increment. Other time window increments can be utilized as a standard for data collection.


In some embodiments, the return channel comprises a valve 128c, such as a solenoid valve, that can be activated upon the start of the integrity test to close off the egress of the gas/fluid through the return channel. Alternatively, a one way pump can be utilized. When the return flow of gas/fluid through the return channel is stopped with the valve, a change of flow can be detected by the flow meter 126 on the input line. In addition to determining if there is a leak or if the device is positioned properly, the specifics of the changes in flow (e.g., how the flow reacts to closing of the return line with the valve) can provide the following the indications in some cases: a) The size of the uterine cavity; and b) The presence of a leak or lack of integrity in the system. For instance in clinical use with uteri of varying sizes, an integration under the graphical curve of flow rate versus time provides a volume assessment of the size of uterine cavity. The amount of volume can provide the physician information not only on the size of the uterus, but whether the device is improperly embedded in a false passage (smaller volume amount) or in the peritoneal cavity (larger volume amount).


Referring to FIG. 4, in some embodiments the amount of flow in the inflow and outflow channels can be used to determine the presence of an obstruction that may affect the flow of vapor during the ablation procedure. Based on this determination or patency test, the device may be repositioned or replaced prior to delivery of vapor. For example, in one embodiment, still referring to FIG. 4, a method of performing a patency test can comprise delivering gas or fluid from inflow lumen 129 of the uterine device into the uterus, also referred to as the fluid infusion tip, removing gas or fluid from the uterus with outflow lumen 131 of the uterine device, also referred to as the fluid outflow tip, and determining that the uterine device is not clogged or embedded in tissue if a flow rate of gas or fluid is observed in the flow meter of the inflow lumen of the uterine device. In FIG. 3 and FIG. 4, valves 128a and 128b control the flow of gas/fluid to the uterine ablation device 100 and valve 128c control the flow of gas/fluid from the outflow lumen 131 into the outflow canister or waste container 133. Control of the valves 128a and 128b and 128c can be performed by a separate controller and software unit shown as 123.


If it has been determined that the uterus is sealed based on the integrity test performed and described in FIG. 3, the controller can also be configured to perform a patency test. In one embodiment, referring to FIG. 4, the controller can be configured to open valves 128b and 128c, but close valve 128a. This allows gas or fluid to flow from source 122, through flow meter 126, through one way valve 127 and valve 128b, and into inflow lumen 129. Gas or fluid can be removed through outflow lumen 131, through valve 128c, and into a waste container 133 via tubing 135. As the gas or fluid enters and is removed from the uterus, the flow meter can measure a patency flow rate of the gas or fluid. If the patency flow rate is maintained above a patency flow rate threshold value, the controller can determine that the device is not clogged or embedded into tissue. In some embodiments, observing or measuring a flow of fluid or gas in outflow lumen 131 can be used to determine that the device is not clogged or embedded in tissue.


The patency test can also be revised with either the pressure driven or the flow driven systems. For example, if the distal end of the uterine ablation device was submerged or clogged with blood, tissue, or debris, a higher flow rate or pressure could be delivered to clear the distal end of the uterine ablation device to remove the source of clogging. This higher flow/pressure could be maintained or it could then be dropped down to a lower value during the patency test. Importantly, the requirement for applying a higher flow rate, or a higher pressure, to relieve clogging, may necessitate the repeat demonstration of integrity followed by a subsequent application of the patency test.


In empirical laboratory testing, it was demonstrated that the presence of blood and tissue within the lumens of a uterine device could provide a false result of uterine cavity integrity when measuring the flow rate of either a gas source, or a fluid source, through the uterine device. In such instances, the subsequent patency test demonstrated that the integrity test result was a false positive and the user would be alerted to a failed patency test and the procedure would not be allowed to continue to uterine cavity ablation. The accumulation of blood and tissue within lumens of uterine devices can occur during insertion or when the distal end of the uterine device is embedded within the tissue wall. This is particularly important for uterine ablation procedures since this patient population is characterized by active or uncontrolled bleeding, and uterine abnormalities that could contribute to greater amounts of lush endometrium or tissue, blood and clots, and loose debris or tissue within the uterine cavity. Underlying disease such as the presence of fibroids, myomas, or polyps that are often encountered in patients with abnormal bleeding also contributes to challenging anatomical configurations that makes the insertion and placement of uterine devices difficult and increase the risk of clogged lumens within uterine devices.



FIGS. 7A-7B describe an example of an algorithm for utilizing uterine integrity and patency tests for a uterine ablation procedure. First, a uterine device, as described above, can be inserted into the uterus of a patient. In some embodiments, saline can flow through a flow meter and both the inflow and outflow lumens of the uterine ablation device during insertion into the patient. Once the device has been placed in the uterine cavity, the cervix can be sealed by one or more balloons, such as the distal, central, and proximal balloon described above. Upon sealing the cervix, an integrity test can be initiated. As described above, a flow of gas/fluid from the uterine ablation device can be measured with a flow meter, and the system can monitor for a flow rate through the flow sensor to decrease to a flow rate threshold. Once the flow rate threshold is reached, (e.g., 5 ml/min in one embodiment), it can be determined that the uterus is sealed and the system can then begin the patency test. The patency test maintains flow into the uterine cavity with the inflow lumen of the device, but opens the outflow lumen to remove gas/fluid from the uterine cavity into a waste container. The flow rate threshold is then monitored during patency test. A flow rate above a patency test threshold (e.g., greater than 5 ml/min in one embodiment) can indicate that the lumens are not clogged or that the distal end of the uterine ablation device is not embedded into tissue. If the patency test threshold is not satisfied, the physician should repeat the insertion steps and repeat the integrity test and patency test prior to initiating uterine ablation. If the patency test threshold is satisfied, the uterine ablation treatment can begin as indicated in FIGS. 7A-7B.


In some additional embodiments, the return channel for the integrity test may or may not be the same return line used in the therapeutic mode to evacuate vapor and bodily fluids/tissue from the uterus. More specifically, in some embodiments the device may have its own dedicated return channel system specifically for carrying out the integrity test. In another embodiment, the return channel may have its own active or passive outflow regulator. In yet another embodiment, the return channel could have a second flow meter (not shown) that can be used to compare flow coming into the uterine cavity (via flow meter 126) versus the flow monitored on the egress from the uterine cavity (via the second flow meter within the return channel). Comparing the flow-out versus the flow-in can provide a dynamic measurement for the presence of leaks in the uterus or a lack of integrity.


In an additional embodiment, a system can be employed combining both a solenoid valve and a second flow meter in the return channel. In this embodiment, a series of return channel closures by the solenoid valve in combination with the measurement of flow during open cycles can provide indications of uterine cavity integrity and the amount of volume in that space. In some embodiments a recording and data analysis system can be incorporated to analyze the flow rate measurements and provide automation of actions based on the integrity of the uterus and position of the ablation device. This analysis system records the flow rate at various stages of the treatment and provides appropriate feedback to the user and ablation device.


Once the device has been properly positioned and the integrity test and patency tests determine that the uterus is sealed, the device is properly placed and an open communication between the delivery and return lumen exists, a heated condensable vapor can be delivered from the distal tip 106 of ablation device 100 through vapor ports 107 (of FIGS. 1A-1B) to the uterus to ablate the uterine tissue. FIG. 5 illustrates another view of the ablation device delivering vapor to the uterus. In one embodiment, vapor can be delivered to the ablation device via vapor source 123. In another embodiment, not shown, the gas/fluid source 122 can be used to provide a fluid, such as saline, to the device where it can then be converted into vapor to deliver to the uterus. Once the vapor has been delivered to the uterus through inflow lumen 129, the vapor can be removed from the uterus through outflow lumen 131 and deposited in waste container 133 via tubing 135.


Maintaining uterine distension or pressure within the uterine cavity during integrity and patency tests, and immediately prior to the initiation of vapor treatment without deflation May or may not be performed. In some embodiments, a distended uterine cavity under a pressure below 70 mmHg without deflation will experience less blood and debris accumulation within the inflow and outflow lumens of the uterine ablation device prior to treatment. Reducing the accumulation of blood and debris in the return or outflow lumens will reduce procedure time and improve treatment efficiency. Reducing the accumulation of blood and debris in the return or outflow lumen can occur for a time duration encompassing the insertion of the device into the uterine cavity to the initiation of ablation treatment, which in cases can be 1 to 5 minutes. Greater time durations benefit further from the reducing the accumulation of blood and debris.


The initiation of vapor treatment can begin immediately following the completion of the integrity and patency tests. In some embodiments, this action can be controlled by software within the main generator unit. Alternatively, the integrity and patency tests can be conducted by a unit or module separate from the main generator that provides an indication that the treatment procedure is ready to begin utilizing the algorithm illustrated in FIG. 7. The opening and closing of various lumens during the integrity and patency tests can be performed by solenoid valves or balloons that pinch off the lumens.


In one embodiment, utilizing saline over gas as the media for performing the integrity and patency tests has the following advantages. It has been empirically determined that the application of heated vapor may not traverse an intentionally placed perforation in a uterine cavity whereas the same intentionally placed perforation can be traversed by saline media during an integrity test. In addition, in a uterine cavity of a living patient in test conditions, active bleeding can occlude or impede the ability of gas to traverse an intentionally created perforation, thereby providing a false indication of uterine integrity to the physician. For example, the perforating instrument can be a cervical dilator of 3 mm in diameter and the angle of perforation can be 15 degrees to normal, or perpendicular, to the uterine surface. Smaller and larger diameter instruments can be utilized.


Saline is also readily available in clinical use. In practice, gas such as carbon dioxide is administered to a patient within a safety threshold flow rate typically below 100 ml/min and at this rate, the gas may be ineffective in removing blood or other debris in the uterine cavity that may occlude or impede the interpretation of a potential perforation.


Also, in clinical use, incorporating saline over gas as the media for the integrity and patency tests provides a rinsing source for the lumens in vivo. This rinsing or diluting action can facilitate the open communication between the input and output lumens of the uterine ablation device prior to vapor treatment. The use of saline is particularly suited for diluting blood which may accumulate within the lumens of the uterine device.


Alternatively, an entirely flow-driven system may be used to perform the integrity and patency tests. In the flow driven system, as seen in FIG. 6A, a fluid 950 may be delivered distally towards the device and uterus. The fluid 950 may be saline, for example. The fluid 950 may be housed in a container 951. The container 951 may drive the fluid at a known or a variable rate. For example, in one embodiment the container 951 may be a syringe or peristaltic pump. The fluid 950 may be a gas and the container 951 may contain a propeller to propel the fluid. A valve 952 with a set crack pressure may be positioned proximal to a flow sensor 901. The valve 952 may have a crack pressure set at 60-70 mmHg, for example. Before the pressure in the uterus reaches the crack pressure of the valve 952, the flow sensor 901 may see a non-zero flow value. Once the pressure inside of the uterus 907 equals the crack pressure of the valve 952, the fluid 950 will cease flowing into the uterus 907 and may instead flow into a lumen 953. The lumen 953 may exit into atmosphere and provide no back pressure. A continued non-zero flow value may indicate a non-sealed uterus. The flow sensor may instead be positioned on line 953 if the flow value at the container 951 is known or measured. Positioning the flow sensor on line 953 may be advantageous to keep the flow sensor 953 out of the sterile field. The flow-driven system described herein may be performed without monitoring or measuring pressure within the uterine cavity.


As another embodiment, a system for performing an integrity test can be independent of pressure and as an example, remove the requirement for setting the height of a saline source to a know level. In addition, some embodiments can remove the requirement for placing a pressure relief valve within the system with a known cracking pressure. To illustrate this embodiment, as seen in FIG. 6B, a delivery flow of the fluid 950 is known and can be set to a constant value, for example by a pump 951, then an orifice 960 with a known resistance to the fluid may be placed in-between the fluid source and the uterus 907. Orifice 960 can be any component with a known orifice or bore size, such as, for example, a hypodermic needle with a known caliber and inner diameter. The orifice 960 may be positioned at a known height relative to the uterus 907. For example, the orifice 960 may be placed in the handle of the intrauterine device. The orifice 960 may be tuned with the flow of the fluid to yield a predictable pressure in the uterus 907. For example, if the fluid 950 is flowing at 10 mL/min and the orifice has an inner diameter of 0.01 inches and a length of 0.5 inches, then the intrauterine pressure may never exceed a threshold value, such as 60 mmHg. For example, when the pressure in the uterus is zero (gauge), then the majority of the fluid 950 may flow into the uterus 907. As the uterus 907 is filled with the fluid 950, the pressure in the uterus 907 may increase and the excess fluid 950 may instead flow through the orifice 960. Eventually, all of the fluid 950 may flow through the orifice 960. A flow sensor 901 may be placed as shown in FIG. 6B or may be placed on lumen 953 so as to measure flow through the orifice, for example. The lumen 953 and/or the flow sensor 901 may be completely and/or partially outside of the sterile field. An integrity test may be performed by monitoring the flow of the fluid 950 using the flow sensor 901. For example, if all of the fluid 950 is being diverted through the orifice 960, then the uterus may be considered fully sealed.



FIG. 8 shows one embodiment of a uterine ablation device, which can include some or substantially all of the components of the uterine ablation device of FIGS. 1A-1B. In FIG. 8, the uterine ablation device 100 includes a fluid reservoir 501 that is pressurized by an air or pressure source 507 connected to and controlled by an air pressure regulator 500 via conduit 502. The air or pressure source 507 can comprise, for example, a pressurized gas or air tank. In other embodiments, the air or pressure source could instead be a constant force spring or other element with a known constant force to provide a pressurized source of air. In one specific embodiment, an elastic, resilient piece of tubing such as a thin walled latex, PVC balloon, or other compliant balloon could also take the place of the spring and or pressurized air source by expanding while distended with air and utilizing the resultant pressure in the balloon to supply the pressurized air source.


In one embodiment, fluid reservoir 501 can be located within a handle 104 of a uterine insertion device 100 that is configured for delivering vapor to the uterine cavity. This configuration is particularly suited for handle 104 delivering vapor independent of the patient's uterus (not shown) height relative to the fluid reservoir 501. The described system does not require a patient uterus height measurement relative to the fluid reservoir 501 of the uterine ablation device 100 prior to performing the integrity test.


The air pressure regulator 500 can be used to set the fluid or liquid pressure within the fluid reservoir 501 via conduit 502. The fluid level 550 at the air-fluid interface in the fluid reservoir 501 is monitored by one or more sensors 552. The sensor(s) 552 can comprise, for example, an optical sensor, a flow sensor, an infrared sensor, a contact sensor, a magnetic sensor, an ion sensor, or similar sensors that respond to detection of a fluid level. The monitored fluid level 550 is communicated to the controller of the device in a feedback loop to maintain the fluid level at the appropriate level. When the fluid level 550 in the fluid reservoir 501 falls below a lower threshold as indicated by sensor(s) 552, the fluid supply system 504 is controlled by the controller to inject more fluid into the reservoir until the upper threshold of the fluid level 550 is reached.


The fluid supply system 504 contains a syringe 505 and a stepper motor or pump 540 to deliver the fluid. In some embodiments, the fluid supply system 504 and measures the flow rate of fluid as it supplies fluid via conduit 503 into the fluid reservoir 501. The flow rate can be measured with a sensor, or alternatively, the flow rate can be determined based on the operation (cycle speed) of the syringe pump. In another embodiment, sensor(s) 552 can be used to estimate the flow rate by monitoring the amount of time it takes for the fluid level to reach the upper threshold after falling below the lower threshold. The fluid supply system can include fluids such as saline, water, distilled water, or the like.


A method of using the embodiment of FIG. 8, includes the steps of:


1) Opening the fluid reservoir 501 to atmosphere (for example, the air pressure source 507 and air pressure regulator 500 are not connected and/or are not pressurized via conduit 502.)


2) Operating the fluid supply system 504 until the fluid level 550 reaches an upper threshold in the fluid reservoir 501. In practice this sensor 552 could be infrared, tactile, contact, magnetic, ion, or similar sensors that respond to the detection of a fluid level.


3) Close the fluid reservoir 501 to atmosphere.


4) Pressurize the pressure source with the air pressure regulator 500 to pressurize the fluid reservoir 501 to a preferred range of 52 mmHg to 60 mmHg, urging the fluid in the fluid reservoir 501 to exit through the handle 104 of the uterine ablation device 100. Other ranges of pressure for the fluid reservoir 501 are possible depending upon the clinical application and the bodily cavity being inspected for integrity.


5) If the fluid falls below a lower threshold (e.g., below the range sensed by a sensor 552), then the syringe can be advanced until the fluid level rises above an upper threshold (which may be the same and/or different than the lower threshold). Algorithms are used by the controller to detect a leak in response to the measuring the actions of the syringe: For example, if the fluid does not fall beneath the lower threshold for >15 seconds, or if the average syringe flow <5 mL/min for 15 seconds (e.g., counting steps, monitoring current/voltage, etc.)


6) If the system does not pass the integrity test within a predetermined time period (e.g., 60 seconds), then the uterine ablation device notifies the user that the integrity test is failed. Pull device out and check condition of device and also check to see if there are any conditions in the patient.


In an alternative embodiment, the uterine ablation device 100 above works with the same steps except the fluid reservoir 501 does not need to open and is closed to atmosphere and thereby does not need to conduct steps 1 and 3.


If a leak occurs within the uterine cavity or system, the fluid supply system will continue to operate to fill the fluid reservoir to the threshold level. Once the threshold or predetermined level is reached, the stepper motor or pump will stop advancing. The determination of flow rate can be performed by assessing the operation of the syringe or the stepper motor/pump. Experiments using the system described above in a simulated silicone uterus model demonstrated high accuracy and sensitivity in terms of leak detection.



FIG. 9 illustrates another embodiment that improves the sensitivity of sensing fluid level 550 within fluid reservoir 501 with sensor(s) 552. In this embodiment, an air-filled bladder 553 may be placed between the liquid and the air in the fluid reservoir 501. Pressurized air is supplied to small reservoir 501 as described above via air conduit 502, and reaches up to the air-filled bladder 553. The position of the air-filled bladder 553 in the fluid reservoir 501 defines the fluid level 550. Opposite the air conduit 502, a fluid conduit 503 supplies fluid to the fluid reservoir 501 as also described above.


In practice, the air-filled bladder 553 resides at fluid level 550 and provides greater detection by sensor(s) 552 of changes in the fluid-air interface. Air-filled bladder 553 alternatively can be constructed as a ball from a solid plastic that has buoyancy, or metallic materials for improved detection, or an internal RF emitter for an alternate mechanism for detection. Enhancing fluid level 550 with air-filled bladder 553 provides the following benefits:


1) Less mixing of air and liquid at fluid level 550 reduces chance of air entering the uterus.


2) Possibly improved sterility since the air supply that contacts the fluid would not require a filter or sterile air barrier. An example of a sterile air barrier is a 0.2 micron filter.


3) Less dependency on orientation since the small reservoir 501 can be tilted sideways, upside down, or generally in movement if contained within the handle of the uterine ablation device (not shown) without getting air into the uterus.


4) Air-filled bladder will make fluid level 550 easier to detect as opposed to a level that can undergo changes as the small reservoir 501 and liquid experiences movement.


5) Reduced risk of liquid going into the air line. The air-filled bladder 553 can prevents retrograde fluid travel into the air conduit 502 as the air-filled bladder 553 creates a seal in the small reservoir. The seal in the small reservoir can be enhanced by a tapered or reduced internal diameter in small reservoir 501 closer to air conduit 502 to prevent further advancement of liquid in the small reservoir 501.


Although FIG. 9 shows fluid reservoir 501 and corresponding fluid level 550 in a horizontal position or alignment, the air-fluid interface can be upright or vertical, horizontal, or angled since the fluid level 552 is agnostic to alignment of the small reservoir 501. In addition, the placement of a one-way valve distal to the fluid reservoir 501 can advantageously reduce or eliminate the effect of uterine contractions on the fluid level 550 within the fluid reservoir 501.



FIG. 10 illustrates another embodiment of a uterine ablation device 100 that utilizes a manometer defined by fluid conduits 610 and 611 to determine the height 621 of the handle 104 of the uterine ablation device 100 relative to the height 620 of a pressurized fluid source 635. The pressurized fluid source can comprise, for example, a saline bag or a separate fluid column 620. The manometer may measure either pressure or the height 620 of the pressurized fluid source 635.


In practice, the pressurized fluid source is raised, based on the manometer results, such that the height of the pressurized fluid source 635 is ˜32 in above the height of the uterus or handle 104. A drip chamber 630 having a predetermined flow rate or drop size (e.g., 10 drops/mL) is located in series to fluid conduit 610 and pressurized fluid source 635. A drop counter 631 (e.g., infrared beam sensor, infrared sensor, acoustic sensor, or the like) can be placed at the drip chamber 630 to monitor the flow of water during the integrity test. In one embodiment, the integrity test can be passed if flow through the drip chamber <5 mL/min for >15 sec).



FIG. 11 illustrates another embodiment of a uterine ablation device, including a relief valve 701 within the handle 104 configured to eliminate the need for measuring the height of the handle 104 relative to the fluid source prior to performing an integrity test. A fluid supply system 504 including syringe 505 and stepper motor or pump 540 is configured to supply fluid as described above. The flow rate measurement of the fluid going through fluid conduit 503 and into handle 104 can be determined by counting the steps of the stepper motor or cycles of the pump.


The relief valve 701 is configured to open at a factory-set pressure (e.g., 60 mmHg). The fluid supply system 504 drives fluid into the uterus at a specified flow rate until the relief valve 701 opens to relieve excess pressure from the uterine cavity. In practice the described system can operate with the following principles:


1) The stepper motor or pump 540 operates at a speed whereby the relief valve 701 initiates opening or displacement of the internal diaphragm or plug and the step counts are used to estimate flow rate; or


2) The fluid supply system 504 delivers fluid at a “passing” flow rate (e.g., <5 mmHg) and fluid must be observed flowing out of the relief valve 701. A passing integrity test is indicated by a reduction in flow rate from the stepper motor or pump 540 below a predetermined threshold.



FIG. 12A illustrates a graph of a gravity-fed system supplied by a raised saline bag that is at a height greater than the device that is measuring the pressure within the uterus. On the fluid source, the rate of fluid going into the uterus is monitored. The graph demonstrates the relationship of intrauterine pressure 801 versus flow rate 802. For an intact uterine cavity and increasing intrauterine pressure 801, the corresponding flow rate 802 steadily decreases. The upper end of intrauterine pressure 801 reaches a plateau defined by the height of the saline bag.



FIG. 12B illustrates a graph of an improved control of pressure or flow in real-time. The curves demonstrate that controlling fluid flow rate 802, as an example, a steady control of flow rate 802 can more quickly increase the intrauterine pressure 801 in section 803 to reduce the amount of time to perform the integrity test. In addition, steep drops in flow rate 801 can be used to further interrogate uterine integrity and intrauterine pressure 801 as seen in sections 804 and 805.



FIG. 13 illustrates another embodiment of a uterine ablation system including a syringe 200 that can be used to deliver fluid through a uterine ablation device 100. The fluid can be used for performing the uterine cavity integrity test, the patency test, and for creating vapor for thermal ablation. As described above, fluid may be supplied by syringe 200 by the displacement of syringe plunger 201 caused by stepper motor or pump 202. Fluid enters the uterine ablation device 100 via conduit 210 from the syringe 200.


In one embodiment, heating coil 215 is disposed in the uterine ablate device and heats the fluid to create vapor that can be delivered through the distal outlet 216 of the device. Heating coil 215 can be energized, monitored, and controlled by generator 218 via conduit 217.


In practice, syringe 200 may need to supply a fluid volume from a fluid source 203 that has a larger volume of fluid than the syringe 200 being used. There is also often a need to minimize delays in supplying the fluid by the syringe 200. To achieve accurate delivery, a stepper motor or pump 202 may be used to control the position of syringe plunger 201 in syringe 200. In one embodiment, a one-way valve distal 205 distal to the syringe 200 allows the syringe 200 to be refilled from supply container 203 without disconnecting the syringe from the uterine ablation device. In addition, a one-way valve 206 between the syringe 200 and the supply container 203 prevents the backflow of fluid to the supply container 203 while permitting the flow of fluid from the supply container 203 to the syringe 200. In operation, one-way valve 206 is activated in the syringe re-filling step that can be actuated manually by the end user or automatically by the generator (not shown) controlling the uterine ablation device 100.


Alternatively, as opposed to the one syringe 200 described above, two syringes could be used in parallel, so that when the first syringe is emptied, the second syringe can immediately begin delivering fluid. Simultaneously, the first syringe can be in the state of being refilled by a fluid supply source. For the two syringe configuration, two separate conveying mechanisms on the corresponding syringe plungers would be required to control the plunger movement of each syringe. In another embodiment, the two syringes can be positioned facing in opposite directions, and one syringe could fill as the other empties. With this configuration, only one conveying mechanism would be required although the syringe plungers would need to be connected to each other and to the conveying mechanism.


Alternatively, the syringe 200 can include a plurality of chambers, so that while the syringe is delivering fluid from one chamber, another chamber could be simultaneously refilled with fluid from the supply container. This would result in minimal time lag for the fluid being delivered through the uterine ablation device. In this embodiment, one common conveying mechanism such as stepper motor or pump achieves simultaneous delivery from one chamber while the other is being refilled. The multi-chamber syringe could have two or more ports per chamber: one for refilling and one for delivering fluid. A one-way valve could be placed on each port to control flow as described in the first above. The valves could be actively and/or passively controlled. For example, the valves could be controlled with mechanical motion, electrically, and/or via pressure differentials. One chamber of the double-acting syringe may be easier to purge of air bubbles than another end. Certain operations may be more sensitive to bubbles in the fluid pathway than others. Thus, for some operations, both chambers could be used (e.g., during device insertion into the patient) whereas for other operations only the purged side could be used (e.g., during vapor delivery).


In addition, there is also the need to deliver fluids with a required accuracy that can be affected by overall volume capacity of the syringe delivering the fluid, and the accuracy of syringe plunger displacement. To improve the measurement of plunger displacement, the pressure being applied to the syringe (e.g., by the stepper motor or the pump) may be monitored. For example, a pressure transducer could be in contact with the fluid in the syringe, or a strain gauge could be placed on the syringe (or other fluid-contact components). The force used to drive the syringe could be used to predict the internal pressure.



FIG. 14 shows a flow chart describing the method steps performed by a uterine ablation device described herein to perform both integrity and patency tests: At step 400 of FIG. 14, the integrity test is initiated. To pass the integrity test, the speed of the motor must be below a certain threshold for a predetermined time period (e.g., 15 seconds), as shown in step 402. The speed of the motor is constantly being adjusted during the integrity test (step 404) to maintain a predetermined intra-uterine pressure (e.g., RPM=(55 mmHg−intrauterine pressure)*constant. The integrity testing window expires after a predetermined time period (e.g., 60 seconds), although the operator could repeat the test as necessary, as shown in step 406.


If the integrity test is passed at step 402, then the patency test is initiated at step 408. If the integrity test is failed, then steps 402, 404, and 406 are repeated.


To pass the patency test, the speed of the motor must be above a certain threshold for 5 seconds as shown in step 412. The speed of the motor is constantly being adjusted to maintain a predetermined intra-uterine pressure (e.g., RPM=(55 mmHg−intrauterine pressure)*constant), as shown in step 414. If the patency test is passed, then ablation is initiated at step 416. If the patency step is failed, then the system can attempt to unclog the device by running an increased flow rate through the device to attempt to unclog the device. Then steps 412 and 414 can be repeated.


The integrity test described above can be performed with feedback loops to keep the uterus at the target pressure with an intrauterine pressure monitor using pressure sensor. Alternatively, the intrauterine pressure sensor can be used to determine desired Drive Flow defined as:

Drive Flow (mL/min)=(55 mmHg−intrauterine pressure measurement)*2;


If intrauterine pressure is 55 mmHg, then the syringe stops flowing.


In addition, the system can convert the desired Drive Flow to step speed for stepper motor. For example, 1 mL/min=500 steps/second.


As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.

Claims
  • 1. A method of performing an integrity test for a uterus of a patient, comprising the steps of: inserting a uterine ablation device into the uterus of the patient;activating a fluid supply system to deliver fluid into a reservoir disposed on or in the uterine ablation device;deactivating the fluid supply system when a level of an air-fluid interface within the reservoir reaches an upper threshold;pressurizing the fluid in the reservoir with a pressure source acting through a pressure regulator to deliver the fluid from the reservoir of the uterine ablation device into the uterus;measuring the level of the air-fluid interface within the reservoir with one or more sensors of the reservoir;re-activating the fluid supply system when the level of the air-fluid interface within the reservoir reaches a lower threshold; anddetermining that there is a leak in the uterus when a flow rate of the fluid supply system does not remain below a flow rate threshold for a predetermined amount of time over the course of an integrity testing time period.
  • 2. The method of claim 1, wherein the reservoir is opened to atmosphere prior to the activating step.
  • 3. The method of claim 1, wherein the reservoir is closed to atmosphere after the deactivating step.
  • 4. The method of claim 1, further comprising determining that there is not any leak in the uterus when the flow rate of the fluid supply system falls below the flow rate threshold for the predetermined amount of time.
  • 5. The method of claim 4 wherein the flow rate threshold is 5 mL/min and the predetermined amount of time is 15 seconds.
  • 6. The method of claim 1, wherein the flow rate threshold is 5 mL/min, the predetermined amount of time is 15 seconds, and the integrity testing time period is 60 seconds.
  • 7. The method of claim 1 wherein the one or more sensors comprise infrared sensors.
  • 8. The method of claim 1 wherein the one or more sensors comprise contact sensors.
  • 9. The method of claim 1 wherein the one or more sensors comprise magnetic sensors.
  • 10. The method of claim 1 wherein the one or more sensors comprise ion sensors.
  • 11. The method of claim 1 wherein the pressure source is pressurized to 55 mmHg.
  • 12. The method of claim 1 wherein a pressure in a uterine cavity of the uterus is independent of a patient height relative to the pressure source.
  • 13. A uterine treatment device, comprising: a shaft sized and configured for insertion into a uterus of a patient;an inflow lumen disposed along a length of the shaft;an outflow lumen disposed along the length of the shaft;at least one inflow port disposed at a distal end of the inflow lumen;at least one outflow port disposed at a distal end of the outflow lumen;a fluid reservoir operatively coupled to the inflow lumen and the outflow lumen;one or more sensors configured to measure a level of an air-fluid interface within the fluid reservoir;a fluid supply system connected to the fluid reservoir, the fluid supply system being configured to deliver fluid into the fluid reservoir;a pressure source connected to the fluid reservoir, the pressure source being configured to pressurize fluid in the fluid reservoir to deliver fluid from the fluid reservoir into the uterus of the patient;a pressure regulator disposed between the pressure source and the fluid reservoir, the pressure regulator being configured to reduce a pressure from the pressure source to a predetermined pressure value; anda controller configured to activate the fluid supply system to deliver fluid into the fluid reservoir, deactivate the fluid supply system when the level of the air-fluid interface within the fluid reservoir reaches an upper threshold, and re-activate the fluid supply system when the level of the air-fluid interface within the fluid reservoir reaches a lower threshold, the controller being further configured to determine that there is a leak in the uterus when a flow rate of the fluid supply system does not remain below a flow rate threshold for a predetermined amount of time over the course of an integrity testing time period.
  • 14. The device of claim 13, wherein the controller is configured to determine that there is not any leak in the uterus when the flow rate of the fluid supply system falls below the flow rate threshold for the predetermined amount of time.
  • 15. The device of claim 14, wherein the flow rate threshold is 5 mL/min and the predetermined amount of time is 15 seconds.
  • 16. The device of claim 13, wherein the flow rate threshold is 5 mL/min, the predetermined amount of time is 15 seconds, and the integrity testing time period is 60 seconds.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. 119 of U.S. Provisional Patent Application No. 62/297,643, filed Feb. 19, 2016, titled “Methods and Apparatus for Determining the Integrity of a Bodily Cavity”, and is a continuation-in-part of U.S. patent application Ser. No. 13/648,132, filed Oct. 9, 2012, titled “Integrity Testing Method and Apparatus for Delivering Vapor to the Uterus”, both of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2017/018729 2/21/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2017/143343 8/24/2017 WO A
US Referenced Citations (714)
Number Name Date Kind
408899 Small Aug 1889 A
697181 Smith Apr 1902 A
1719750 Bridge et al. Jul 1929 A
3818913 Wallach Jun 1974 A
3871374 Bolduc et al. Mar 1975 A
3880168 Berman Apr 1975 A
3924628 Droegemueller et al. Dec 1975 A
3930505 Wallach Jan 1976 A
4083077 Knight et al. Apr 1978 A
4447227 Kotsanis May 1984 A
4672962 Hershenson Jun 1987 A
4682596 Bales et al. Jul 1987 A
4748979 Hershenson Jun 1988 A
4758228 Williams Jul 1988 A
4773410 Blackmer et al. Sep 1988 A
4793352 Eichenlaub Dec 1988 A
4872920 Flynn et al. Oct 1989 A
4898574 Uchiyama et al. Feb 1990 A
4915113 Holman Apr 1990 A
4941475 Williams et al. Jul 1990 A
4950266 Sinofsky Aug 1990 A
4976711 Parins et al. Dec 1990 A
4985027 Dressel Jan 1991 A
5006119 Acker et al. Apr 1991 A
5011566 Hoffman Apr 1991 A
5045056 Behl Sep 1991 A
5078736 Behl Jan 1992 A
5084043 Hertzmann et al. Jan 1992 A
5084044 Quint Jan 1992 A
5102410 Dressel Apr 1992 A
5112328 Taboada et al. May 1992 A
5122138 Manwaring Jun 1992 A
5145935 Hayashi Sep 1992 A
5158536 Sekins et al. Oct 1992 A
5162374 Mulieri et al. Nov 1992 A
5190539 Fletcher et al. Mar 1993 A
5217459 Kamerling Jun 1993 A
5217465 Steppe Jun 1993 A
5218970 Turnbull et al. Jun 1993 A
5242474 Herbst et al. Sep 1993 A
5246436 Rowe Sep 1993 A
5263951 Spears et al. Nov 1993 A
5277201 Stern Jan 1994 A
5277696 Hagen Jan 1994 A
5306274 Long Apr 1994 A
5318014 Carter Jun 1994 A
5331947 Shturman Jul 1994 A
5334190 Seiler Aug 1994 A
5344397 Heaven et al. Sep 1994 A
5348551 Spears et al. Sep 1994 A
5352512 Hoffman Oct 1994 A
5411482 Campbell May 1995 A
5417686 Peterson et al. May 1995 A
5424620 Cheon et al. Jun 1995 A
5433708 Nichols et al. Jul 1995 A
5433739 Sluijter et al. Jul 1995 A
5437629 Goldrath Aug 1995 A
5443470 Stern et al. Aug 1995 A
5445168 Krebs Aug 1995 A
5449380 Chin Sep 1995 A
5451208 Goldrath Sep 1995 A
5462521 Brucker et al. Oct 1995 A
5500012 Brucker et al. Mar 1996 A
5503638 Cooper et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5506300 Ward et al. Apr 1996 A
5524620 Rosenschein Jun 1996 A
5529076 Schachar Jun 1996 A
5540658 Evans et al. Jul 1996 A
5542928 Evans et al. Aug 1996 A
5554172 Horner et al. Sep 1996 A
5562608 Sekins et al. Oct 1996 A
5562720 Stern et al. Oct 1996 A
5584872 LaFontaine et al. Dec 1996 A
5591157 Hennings et al. Jan 1997 A
5616120 Andrew et al. Apr 1997 A
5620440 Heckele et al. Apr 1997 A
5647871 Levine et al. Jul 1997 A
5653692 Masterson et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5665074 Kelly Sep 1997 A
5665822 Bitler et al. Sep 1997 A
5669907 Platt et al. Sep 1997 A
5674191 Edwards et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5683366 Eggers et al. Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5695507 Auth et al. Dec 1997 A
5697281 Eggers et al. Dec 1997 A
5697536 Eggers et al. Dec 1997 A
5697882 Eggers et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5700262 Acosta et al. Dec 1997 A
5707352 Sekins et al. Jan 1998 A
5730719 Edwards Mar 1998 A
5735811 Brisken Apr 1998 A
5741247 Rizoiu et al. Apr 1998 A
5741248 Stern et al. Apr 1998 A
5743870 Edwards Apr 1998 A
5752965 Francis et al. May 1998 A
5754717 Esch May 1998 A
5755753 Knowlton May 1998 A
5769880 Truckai et al. Jun 1998 A
5782914 Schankereli Jul 1998 A
5785521 Rizoiu et al. Jul 1998 A
5800379 Edwards Sep 1998 A
5800482 Pomeranz et al. Sep 1998 A
5800493 Stevens et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5820580 Edwards et al. Oct 1998 A
5824703 Clark Oct 1998 A
5827268 Laufer Oct 1998 A
5836896 Rosenschein Nov 1998 A
5836906 Edwards Nov 1998 A
5843019 Eggers et al. Dec 1998 A
5871469 Eggers et al. Feb 1999 A
5873855 Eggers et al. Feb 1999 A
5879329 Ginsburg Mar 1999 A
5885243 Capetan et al. Mar 1999 A
5888198 Eggers et al. Mar 1999 A
5891094 Masterson et al. Apr 1999 A
5891095 Eggers et al. Apr 1999 A
5891134 Goble et al. Apr 1999 A
5891457 Neuwirth Apr 1999 A
5902272 Eggers et al. May 1999 A
5911734 Tsugita et al. Jun 1999 A
5913856 Chia et al. Jun 1999 A
5938660 Swartz et al. Aug 1999 A
5944686 Patterson et al. Aug 1999 A
5944715 Goble et al. Aug 1999 A
5957919 Laufer Sep 1999 A
5964752 Stone Oct 1999 A
5968037 Rizoiu et al. Oct 1999 A
5976129 Desai Nov 1999 A
5980504 Sharkey et al. Nov 1999 A
5986662 Argiro et al. Nov 1999 A
5989212 Sussman et al. Nov 1999 A
5989249 Kirwan Nov 1999 A
5989445 Wise et al. Nov 1999 A
5997499 Sussman et al. Dec 1999 A
6004509 Dey et al. Dec 1999 A
6015406 Goble et al. Jan 2000 A
6024095 Stanley Feb 2000 A
6024733 Eggers et al. Feb 2000 A
6027501 Goble et al. Feb 2000 A
6032077 Pomeranz Feb 2000 A
6045532 Eggers et al. Apr 2000 A
6045549 Smethers et al. Apr 2000 A
6047700 Eggers et al. Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6053909 Shadduck Apr 2000 A
6056746 Goble et al. May 2000 A
6057689 Saadat May 2000 A
6059011 Giolo May 2000 A
6063079 Hovda et al. May 2000 A
6063081 Mulier et al. May 2000 A
6066132 Chen et al. May 2000 A
6066134 Eggers et al. May 2000 A
6066139 Ryan et al. May 2000 A
6080128 Sussman et al. Jun 2000 A
6080151 Swartz et al. Jun 2000 A
6083255 Laufer et al. Jul 2000 A
6086585 Hovda et al. Jul 2000 A
6095149 Sharkey et al. Aug 2000 A
6099251 LaFleur Aug 2000 A
6102046 Weinstein et al. Aug 2000 A
6102885 Bass Aug 2000 A
6105581 Eggers et al. Aug 2000 A
6106516 Massengill Aug 2000 A
6109268 Thapliyal et al. Aug 2000 A
6113594 Savage Sep 2000 A
6113597 Eggers et al. Sep 2000 A
6113722 Hoffman et al. Sep 2000 A
6117109 Eggers et al. Sep 2000 A
6126682 Sharkey et al. Oct 2000 A
6130671 Argiro Oct 2000 A
6139571 Fuller et al. Oct 2000 A
6149620 Baker et al. Nov 2000 A
6156036 Sussman et al. Dec 2000 A
6159160 Hsei et al. Dec 2000 A
6159194 Eggers et al. Dec 2000 A
6159207 Yoon Dec 2000 A
6159208 Hovda et al. Dec 2000 A
6162210 Shadduck Dec 2000 A
6162232 Shadduck Dec 2000 A
6174308 Goble et al. Jan 2001 B1
6179805 Sussman et al. Jan 2001 B1
6179824 Eggers et al. Jan 2001 B1
6179836 Eggers et al. Jan 2001 B1
6183469 Thapliyal et al. Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6194066 Hoffman Feb 2001 B1
6196989 Padget et al. Mar 2001 B1
6200333 Laufer Mar 2001 B1
6203542 Ellsberry et al. Mar 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210404 Shadduck Apr 2001 B1
6210405 Goble et al. Apr 2001 B1
6219059 Argiro Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6228078 Eggers et al. May 2001 B1
6228081 Goble May 2001 B1
6228082 Baker et al. May 2001 B1
6231567 Rizoiu et al. May 2001 B1
6235020 Cheng et al. May 2001 B1
6238391 Olsen et al. May 2001 B1
6254597 Rizoiu et al. Jul 2001 B1
6254600 Willink et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6261311 Sharkey et al. Jul 2001 B1
6264650 Hovda et al. Jul 2001 B1
6264651 Underwood et al. Jul 2001 B1
6264652 Eggers et al. Jul 2001 B1
6277112 Underwood et al. Aug 2001 B1
6277114 Bullivant et al. Aug 2001 B1
6283910 Bradshaw et al. Sep 2001 B1
6283961 Underwood et al. Sep 2001 B1
6283989 Laufer et al. Sep 2001 B1
6290715 Sharkey et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6296638 Davison et al. Oct 2001 B1
6299633 Laufer Oct 2001 B1
6300150 Venkatasubramanian Oct 2001 B1
6306129 Little et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6309387 Eggers et al. Oct 2001 B1
6312408 Eggers et al. Nov 2001 B1
6312474 Francis et al. Nov 2001 B1
6315755 Sussman Nov 2001 B1
6319221 Savage et al. Nov 2001 B1
6322549 Eggers et al. Nov 2001 B1
6327505 Medhkour et al. Dec 2001 B1
6328735 Curley et al. Dec 2001 B1
6331171 Cohen Dec 2001 B1
6355032 Hovda et al. Mar 2002 B1
6361531 Hissong Mar 2002 B1
6363937 Hovda et al. Apr 2002 B1
6364877 Goble et al. Apr 2002 B1
6375635 Moutafis et al. Apr 2002 B1
6379350 Sharkey et al. Apr 2002 B1
6379351 Thapliyal et al. Apr 2002 B1
6387088 Shadduck et al. May 2002 B1
6388043 Langer et al. May 2002 B1
6391025 Weinstein et al. May 2002 B1
6394949 Crowley et al. May 2002 B1
6394996 Lawrence et al. May 2002 B1
6398759 Sussman et al. Jun 2002 B1
6398775 Perkins et al. Jun 2002 B1
6409699 Ash Jun 2002 B1
6409723 Edwards Jun 2002 B1
6425877 Edwards Jun 2002 B1
6416507 Eggers et al. Jul 2002 B1
6416508 Eggers et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6432103 Ellsberry et al. Aug 2002 B1
6440089 Shine Aug 2002 B1
6443947 Marko Sep 2002 B1
6451012 Dobak, III Sep 2002 B2
6458231 Wapner et al. Oct 2002 B1
6461350 Underwood et al. Oct 2002 B1
6461354 Olsen et al. Oct 2002 B1
6464694 Massengill Oct 2002 B1
6464695 Hovda et al. Oct 2002 B2
6468270 Hovda et al. Oct 2002 B1
6468274 Alleyne et al. Oct 2002 B1
6468313 Claeson et al. Oct 2002 B1
6475215 Tanrisever Nov 2002 B1
6482201 Olsen et al. Nov 2002 B1
6488673 Laufer et al. Dec 2002 B1
6493589 Medhkour et al. Dec 2002 B1
6500173 Underwood et al. Dec 2002 B2
6508816 Shadduck Jan 2003 B2
6510854 Goble Jan 2003 B2
6517533 Swaminathan Feb 2003 B1
6522930 Schaer et al. Feb 2003 B1
6527761 Soltesz et al. Mar 2003 B1
6527766 Bair Mar 2003 B1
6540741 Underwood et al. Apr 2003 B1
6544211 Andrew et al. Apr 2003 B1
6544261 Ellsberry et al. Apr 2003 B2
6547784 Thompson et al. Apr 2003 B1
6551271 Nguyen Apr 2003 B2
6551274 Heiner Apr 2003 B2
6554780 Sampson et al. Apr 2003 B1
6557559 Eggers et al. May 2003 B1
6558379 Batchelor et al. May 2003 B1
6565561 Goble et al. May 2003 B1
6569146 Werner et al. May 2003 B1
6575929 Sussman et al. Jun 2003 B2
6575933 Wittenberger et al. Jun 2003 B1
6575968 Eggers et al. Jun 2003 B1
6579270 Sussman et al. Jun 2003 B2
6582423 Thapliyal et al. Jun 2003 B1
6585639 Kotmel et al. Jul 2003 B1
6588613 Pechenik et al. Jul 2003 B1
6589201 Sussman et al. Jul 2003 B1
6589237 Woloszko et al. Jul 2003 B2
6592594 Rimbaugh et al. Jul 2003 B2
6595990 Weinstein et al. Jul 2003 B1
6599311 Biggs et al. Jul 2003 B1
6602248 Sharps et al. Aug 2003 B1
6610043 Ingenito Aug 2003 B1
6620155 Underwood et al. Sep 2003 B2
6623444 Babaev Sep 2003 B2
6626855 Weng et al. Sep 2003 B1
6629974 Penny et al. Oct 2003 B2
6632193 Davison et al. Oct 2003 B1
6632220 Eggers et al. Oct 2003 B1
6634363 Danek et al. Oct 2003 B1
6653525 Ingenito et al. Nov 2003 B2
6669685 Rizoiu et al. Dec 2003 B1
6669694 Shadduck Dec 2003 B2
6676628 Sussman et al. Jan 2004 B2
6676629 Andrew et al. Jan 2004 B2
6679264 Deem et al. Jan 2004 B1
6679879 Shadduck Jan 2004 B2
6692490 Edwards Feb 2004 B1
6692494 Cooper et al. Feb 2004 B1
6695839 Sharkey et al. Feb 2004 B2
6699212 Kadziauskas et al. Mar 2004 B1
6699244 Carranza et al. Mar 2004 B2
6708056 Duchon et al. Mar 2004 B2
6712811 Underwood et al. Mar 2004 B2
6712812 Roschak et al. Mar 2004 B2
6719754 Underwood et al. Apr 2004 B2
6726684 Woloszko et al. Apr 2004 B1
6726708 Lasheras Apr 2004 B2
6743184 Sampson et al. Jun 2004 B2
6743197 Edwards Jun 2004 B1
6746447 Davison et al. Jun 2004 B2
6749604 Eggers et al. Jun 2004 B1
6755794 Soukup Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6763836 Tasto et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6770070 Balbierz Aug 2004 B1
6770071 Woloszko et al. Aug 2004 B2
6772012 Ricart et al. Aug 2004 B2
6773431 Eggers et al. Aug 2004 B2
6776765 Soukup et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6805130 Tasto et al. Oct 2004 B2
6813520 Truckai et al. Nov 2004 B2
6832996 Woloszko et al. Dec 2004 B2
6837884 Woloszko Jan 2005 B2
6837887 Woloszko et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6852108 Barry et al. Feb 2005 B2
6860847 Alferness et al. Mar 2005 B2
6872183 Sampson et al. Mar 2005 B2
6875194 MacKool Apr 2005 B2
6896672 Eggers et al. May 2005 B1
6896674 Woloszko et al. May 2005 B1
6896675 Leung et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6901927 Deem et al. Jun 2005 B2
6904909 Andreas et al. Jun 2005 B2
6907881 Suki et al. Jun 2005 B2
6911028 Shadduck Jun 2005 B2
6915806 Pacek et al. Jul 2005 B2
6918903 Bass Jul 2005 B2
6921385 Clements et al. Jul 2005 B2
6929640 Underwood et al. Aug 2005 B1
6929642 Xiao et al. Aug 2005 B2
6949096 Davison et al. Sep 2005 B2
6955675 Jain Oct 2005 B2
6960204 Eggers et al. Nov 2005 B2
6962584 Stone et al. Nov 2005 B1
6972014 Eum et al. Dec 2005 B2
6978174 Gelfand et al. Dec 2005 B2
6986769 Nelson et al. Jan 2006 B2
6991028 Comeaux et al. Jan 2006 B2
6991631 Woloszko et al. Jan 2006 B2
7004940 Ryan et al. Feb 2006 B2
7004941 Tvinnereim et al. Feb 2006 B2
7022088 Keast et al. Apr 2006 B2
7022105 Edwards Apr 2006 B1
7031504 Argiro et al. Apr 2006 B1
7063670 Sampson et al. Jun 2006 B2
7070596 Woloszko et al. Jul 2006 B1
7083612 Littrup et al. Aug 2006 B2
7094215 Davison et al. Aug 2006 B2
7094249 Broome et al. Aug 2006 B1
7101367 Xiao et al. Sep 2006 B2
7104986 Hovda et al. Sep 2006 B2
7105007 Hibler Sep 2006 B2
RE39358 Goble Oct 2006 E
7128748 Mooradian et al. Oct 2006 B2
7131969 Hovda et al. Nov 2006 B1
7136064 Zuiderveld Nov 2006 B2
7144402 Kuester Dec 2006 B2
7144588 Oray et al. Dec 2006 B2
7162303 Levin et al. Jan 2007 B2
7169143 Eggers et al. Jan 2007 B2
7179255 Lettice et al. Feb 2007 B2
7186234 Dahla et al. Mar 2007 B2
7192400 Campbell et al. Mar 2007 B2
7192428 Eggers et al. Mar 2007 B2
7201750 Eggers et al. Apr 2007 B1
7217268 Eggers et al. May 2007 B2
7233820 Gilboa Jun 2007 B2
7235070 Vanney Jun 2007 B2
7241293 Davison Jul 2007 B2
7270658 Woloszko et al. Sep 2007 B2
7270659 Ricart et al. Sep 2007 B2
7270661 Dahla et al. Sep 2007 B2
7276063 Davison et al. Oct 2007 B2
7297143 Woloszko et al. Nov 2007 B2
7297145 Woloszko et al. Nov 2007 B2
7311708 McClurken Dec 2007 B2
7320325 Duchon et al. Jan 2008 B2
7326235 Edwards Feb 2008 B2
7331957 Woloszko et al. Feb 2008 B2
7335195 Mehier Feb 2008 B2
7347859 Garabedian et al. Mar 2008 B2
7512445 Truckai et al. Mar 2009 B2
7524315 Blott et al. Apr 2009 B2
7585295 Ben-Nun Sep 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7653438 Deem et al. Jan 2010 B2
7717909 Strul et al. May 2010 B2
7756583 Demarais et al. Jul 2010 B2
7815616 Boehringer et al. Oct 2010 B2
7815646 Hart Oct 2010 B2
7846160 Payne et al. Dec 2010 B2
7853333 Demarais Dec 2010 B2
7873417 Demarais et al. Jan 2011 B2
7937143 Demarais et al. May 2011 B2
7993323 Barry et al. Aug 2011 B2
8025656 Gruber et al. Sep 2011 B2
8131371 Demarais et al. Mar 2012 B2
8145316 Deem et al. Mar 2012 B2
8145317 Demarais et al. Mar 2012 B2
8150519 Demarais et al. Apr 2012 B2
8150520 Demarais et al. Apr 2012 B2
8175711 Demarais et al. May 2012 B2
8192424 Woloszko Jun 2012 B2
8197470 Sharkey et al. Jun 2012 B2
8216217 Sharkey et al. Jul 2012 B2
8221401 Sharkey et al. Jul 2012 B2
8221403 Sharkey et al. Jul 2012 B2
8226645 Harrington et al. Jul 2012 B2
8313485 Shadduck Nov 2012 B2
8343078 Toth Jan 2013 B2
8394037 Toth Mar 2013 B2
8486060 Kotmel et al. Jul 2013 B2
8500732 Truckai et al. Aug 2013 B2
8506563 Truckai et al. Aug 2013 B2
8529562 Vissy et al. Sep 2013 B2
8540708 Truckai et al. Sep 2013 B2
8551082 Strul et al. Oct 2013 B2
8574226 Shadduck Nov 2013 B2
8579888 Hoey et al. Nov 2013 B2
8579892 Hoey et al. Nov 2013 B2
8585645 Barry et al. Nov 2013 B2
8585692 Shadduck et al. Nov 2013 B2
8597289 Layton, Jr. et al. Dec 2013 B2
8647349 Gruber et al. Feb 2014 B2
8690873 Truckai et al. Apr 2014 B2
8715278 Toth et al. May 2014 B2
8721632 Hoey et al. May 2014 B2
8758341 Shadduck Jun 2014 B2
8801702 Hoey et al. Aug 2014 B2
8814796 Martin et al. Aug 2014 B2
8840625 Adams et al. Sep 2014 B2
8900223 Shadduck Dec 2014 B2
8926629 Truckai Jan 2015 B2
8936592 Beck et al. Jan 2015 B2
8939971 Truckai et al. Jan 2015 B2
8956348 Bek Feb 2015 B2
8998898 Truckai et al. Apr 2015 B2
8998901 Truckai et al. Apr 2015 B2
9050102 TruckaI Jun 2015 B2
9050103 Truckai Jun 2015 B2
9095348 Truckai et al. Aug 2015 B2
9113944 Shadduck Aug 2015 B2
9144421 Lau et al. Sep 2015 B1
9186208 Truckai et al. Nov 2015 B2
9204889 Shadduck Dec 2015 B2
9242122 Tsoref et al. Jan 2016 B2
9247989 Truckai Feb 2016 B2
9259262 Hundertmark et al. Feb 2016 B2
9265921 Korman Feb 2016 B2
9277952 Burnett et al. Mar 2016 B2
9283022 Burnett et al. Mar 2016 B2
9289257 Toth et al. Mar 2016 B2
9333111 Kochem et al. May 2016 B2
9339330 Truckai May 2016 B2
9408657 Burnett et al. Aug 2016 B2
9421059 Truckai et al. Aug 2016 B2
9427556 Burnett Aug 2016 B2
9433457 Shadduck Sep 2016 B2
9433467 Beck et al. Sep 2016 B2
9486267 Burnett et al. Nov 2016 B2
9498274 Burnett et al. Nov 2016 B2
9554853 Strul et al. Jan 2017 B2
9585712 Truckai Mar 2017 B2
9615875 Shadduck Apr 2017 B2
9636171 Toth et al. May 2017 B2
9662060 Peliks et al. May 2017 B2
9662163 Toth et al. May 2017 B2
9743974 Gurskis et al. Aug 2017 B2
9743978 Skalyni Aug 2017 B2
9775542 Toth Oct 2017 B2
9788890 Toth et al. Oct 2017 B2
9814520 Truckai Nov 2017 B2
9848933 Burnett et al. Dec 2017 B2
9883907 Toth et al. Feb 2018 B2
9895192 Model Feb 2018 B2
9907599 Hoey et al. Mar 2018 B2
9913681 Bueaudet Mar 2018 B2
9943353 Hoey et al. Apr 2018 B2
9993290 Chee et al. Jun 2018 B2
10004551 Burnett et al. Jun 2018 B2
10004553 Churchill et al. Jul 2018 B2
10052150 Truckai et al. Aug 2018 B2
10105176 Toth et al. Oct 2018 B2
10179019 Chee et al. Jan 2019 B2
10213151 Filloux et al. Feb 2019 B2
10213335 Burnett et al. Feb 2019 B2
10238446 Gurskis et al. Mar 2019 B2
10299856 Chee et al. May 2019 B2
10456194 Truckai Oct 2019 B2
10499981 Model Dec 2019 B2
10524847 Shadduck Jan 2020 B2
10548653 Hoey et al. Feb 2020 B2
10575898 Chee et al. Mar 2020 B2
10588689 Truckai Mar 2020 B2
10617461 Toth et al. Apr 2020 B2
10624694 Kochem et al. Apr 2020 B2
10722298 Skalnyi Jul 2020 B2
10758300 Truckai et al. Sep 2020 B2
10779877 Churchill et al. Sep 2020 B2
20020007180 Wittenberger et al. Jan 2002 A1
20020013601 Nobles et al. Jan 2002 A1
20020019627 Maguire et al. Feb 2002 A1
20020077516 Flanigan Jun 2002 A1
20020078956 Sharpe et al. Jun 2002 A1
20020111386 Sekins et al. Aug 2002 A1
20020128638 Chauvet et al. Sep 2002 A1
20020133147 Marchitto et al. Sep 2002 A1
20020151917 Barry Oct 2002 A1
20020161326 Sussman et al. Oct 2002 A1
20020173815 Hogendijk et al. Nov 2002 A1
20020177846 Mulier et al. Nov 2002 A1
20030028189 Woloszko et al. Feb 2003 A1
20030097126 Woloszko et al. May 2003 A1
20030099279 Venkatasubramanian et al. May 2003 A1
20030130738 Hovda et al. Jul 2003 A1
20030144654 Hilal Jul 2003 A1
20030158545 Hovda et al. Aug 2003 A1
20030163178 Davison et al. Aug 2003 A1
20030181922 Alferness Sep 2003 A1
20030212394 Pearson et al. Nov 2003 A1
20030217962 Childers et al. Nov 2003 A1
20030220604 Al-Anazi Nov 2003 A1
20030225364 Kraft et al. Dec 2003 A1
20040002698 Hua Xiao et al. Jan 2004 A1
20040024399 Sharps et al. Feb 2004 A1
20040047855 Ingenito Mar 2004 A1
20040049180 Sharps et al. Mar 2004 A1
20040055606 Hendricksen et al. Mar 2004 A1
20040068306 Shadduck Apr 2004 A1
20040116922 Hovda et al. Jun 2004 A1
20040199226 Shadduck Oct 2004 A1
20040230190 Dahla et al. Nov 2004 A1
20050010205 Hovda et al. Jan 2005 A1
20050119650 Sanders et al. Jun 2005 A1
20050143728 Sampson et al. Jun 2005 A1
20050165324 Receveur Jul 2005 A1
20050166925 Wilson et al. Aug 2005 A1
20050171574 Rubinsky et al. Aug 2005 A1
20050171582 Matlock Aug 2005 A1
20050177147 Vancelette et al. Aug 2005 A1
20050182449 Auge II Aug 2005 A1
20050215991 Altman et al. Sep 2005 A1
20050222485 Shaw et al. Oct 2005 A1
20050228423 Khashayar et al. Oct 2005 A1
20050228424 Khashayar et al. Oct 2005 A1
20050240171 Forrest Oct 2005 A1
20050240239 Boveja et al. Oct 2005 A1
20050267467 Paul et al. Dec 2005 A1
20050283143 Rizoiu Dec 2005 A1
20060004400 McGurk et al. Jan 2006 A1
20060047291 Barry Mar 2006 A1
20060058831 Atad Mar 2006 A1
20060085054 Zikorus et al. Apr 2006 A1
20060100619 McClurken et al. May 2006 A1
20060130830 Barry Jun 2006 A1
20060135955 Shadduck Jun 2006 A1
20060142783 Lewis et al. Jun 2006 A1
20060161147 Privitera et al. Jul 2006 A1
20060161233 Barry et al. Jul 2006 A1
20060200076 Gonzalez et al. Sep 2006 A1
20060206150 Demarais et al. Sep 2006 A1
20060211914 Hassler, Jr. Sep 2006 A1
20060224154 Shadduck et al. Oct 2006 A1
20060265053 Hunt Nov 2006 A1
20060271111 Demarais et al. Nov 2006 A1
20070021713 Kumar et al. Jan 2007 A1
20070032785 Diederich et al. Feb 2007 A1
20070129720 Demarais et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070129761 Demarais et al. Jun 2007 A1
20070135875 Demarais et al. Jun 2007 A1
20070225744 Nobles et al. Sep 2007 A1
20070239197 Dubey et al. Oct 2007 A1
20070288051 Beyer et al. Dec 2007 A1
20080033493 Deckman et al. Feb 2008 A1
20080077201 Levinson et al. Mar 2008 A1
20080125747 Prokop May 2008 A1
20080132826 Shadduck et al. Jun 2008 A1
20080135053 Gruber et al. Jun 2008 A1
20080161788 Dando et al. Jul 2008 A1
20080167664 Payne et al. Jul 2008 A1
20080249467 Burnett et al. Oct 2008 A1
20090024108 Lee-Sepsick et al. Jan 2009 A1
20090030412 Willis et al. Jan 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090125010 Sharkey et al. May 2009 A1
20090216220 Hoey et al. Aug 2009 A1
20090306640 Glaze et al. Dec 2009 A1
20100078046 Labib et al. Apr 2010 A1
20100082021 Gutierrez et al. Apr 2010 A1
20100094268 Bouthillier et al. Apr 2010 A1
20100094270 Sharma Apr 2010 A1
20100100091 Truckai Apr 2010 A1
20100100094 Truckai Apr 2010 A1
20100106152 Truckai et al. Apr 2010 A1
20100114083 Sharma May 2010 A1
20100114089 Truckai et al. May 2010 A1
20100168731 Wu et al. Jul 2010 A1
20100168739 Wu et al. Jul 2010 A1
20100174282 Demarais et al. Jul 2010 A1
20100179528 Shadduck et al. Jul 2010 A1
20100204688 Hoey et al. Aug 2010 A1
20100228222 Williams et al. Sep 2010 A1
20100249773 Clark et al. Sep 2010 A1
20100262133 Hoey et al. Oct 2010 A1
20110009829 Kosinski et al. Jan 2011 A1
20110054508 Zhou et al. Mar 2011 A1
20110077628 Hoey et al. Mar 2011 A1
20110112400 Emery et al. May 2011 A1
20110112432 Toth May 2011 A1
20110112433 Toth May 2011 A1
20110112523 Toth et al. May 2011 A1
20110118718 Toth et al. May 2011 A1
20110118719 Vissy et al. May 2011 A1
20110160648 Hoey Jun 2011 A1
20110166499 Demarais et al. Jul 2011 A1
20110178570 Demarais Jul 2011 A1
20110200171 Beetel et al. Aug 2011 A1
20110208096 Demarais et al. Aug 2011 A1
20110208178 Truckai Aug 2011 A1
20110257564 Demarais et al. Oct 2011 A1
20110264011 Wu et al. Oct 2011 A1
20110264075 Leung et al. Oct 2011 A1
20110264090 Shadduck et al. Oct 2011 A1
20110275885 Bouche Nov 2011 A1
20120035471 Lee-Sepsick et al. Feb 2012 A1
20120065632 Shadduck Mar 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120101538 Ballakur et al. Apr 2012 A1
20120116382 Ku et al. May 2012 A1
20120116383 Mauch et al. May 2012 A1
20120116486 Naga et al. May 2012 A1
20120130359 Turovskiy May 2012 A1
20120130360 Buckley et al. May 2012 A1
20120130458 Ryba et al. May 2012 A1
20120136343 Burnett May 2012 A1
20120136344 Buckley et al. May 2012 A1
20120136350 Goshgarian et al. May 2012 A1
20120136417 Buckley et al. May 2012 A1
20120136418 Buckley et al. May 2012 A1
20120143293 Mauch et al. Jun 2012 A1
20120150267 Buckley et al. Jun 2012 A1
20120158104 Huynh et al. Jun 2012 A1
20120172888 Shugrue Jul 2012 A1
20120197198 Demarais et al. Aug 2012 A1
20120197245 Burnett et al. Aug 2012 A1
20120209281 Truckai Aug 2012 A1
20120232545 Truckai et al. Sep 2012 A1
20120245583 Truckai et al. Sep 2012 A1
20120259271 Shadduck et al. Oct 2012 A1
20120283717 Sharkey et al. Nov 2012 A1
20120316460 Stout Dec 2012 A1
20130006231 Sharma et al. Jan 2013 A1
20130090572 Peliks Apr 2013 A1
20130116683 Shadduck et al. May 2013 A1
20130237978 Shadduck et al. Sep 2013 A1
20130261539 King Oct 2013 A1
20130296837 Burnett et al. Nov 2013 A1
20140031805 Shadduck Jan 2014 A1
20140088575 Loeb Mar 2014 A1
20140088581 Kelly et al. Mar 2014 A1
20140200570 Hoey et al. Jul 2014 A1
20140236129 Radl Aug 2014 A1
20150025515 Hoey et al. Jan 2015 A1
20150119795 Germain et al. Apr 2015 A1
20150334079 Laidlaw Nov 2015 A1
20150335373 Chee et al. Nov 2015 A1
20170258511 Peliks et al. Sep 2017 A1
20170354452 Gurskis et al. Dec 2017 A1
20180168713 Hoey et al. Jun 2018 A1
20180193079 Hoey et al. Jul 2018 A1
20180199982 Hoey et al. Jul 2018 A1
20180289416 Chee et al. Oct 2018 A1
20190117289 Sharkey et al. Apr 2019 A1
20190117290 Sharkey et al. Apr 2019 A1
20190216523 Gurskis et al. Jul 2019 A1
20190223934 Shadduck Jul 2019 A1
Foreign Referenced Citations (34)
Number Date Country
2851355 Apr 2013 CA
201189204 Feb 2009 CN
201379631 Jan 2010 CN
101951846 Jan 2011 CN
102271602 Dec 2011 CN
102355864 Feb 2012 CN
102525548 Jul 2012 CN
103717126 Apr 2014 CN
104135960 May 2014 CN
104042342 Sep 2014 CN
H06-285074 Oct 1994 JP
2000502585 Mar 2000 JP
20003513742 Apr 2003 JP
2010516351 May 2010 JP
WO9953853 Oct 1999 WO
WO00011927 Mar 2000 WO
WO0029055 May 2000 WO
WO0185012 Nov 2001 WO
WO02069821 Sep 2002 WO
WO 03070302 Aug 2003 WO
WO2005025635 Mar 2005 WO
WO2005102175 Nov 2005 WO
WO2006003665 Jan 2006 WO
WO 2006055695 May 2006 WO
WO2006108974 Oct 2006 WO
WO2009009398 Jan 2009 WO
WO2010045055 Apr 2010 WO
WO2010048007 Apr 2010 WO
WO2011025658 Mar 2011 WO
WO2011053599 May 2011 WO
WO2011060189 May 2011 WO
WO2011060191 May 2011 WO
WO2012106260 Aug 2012 WO
WO 2012106474 Aug 2012 WO
Non-Patent Literature Citations (17)
Entry
Kim et al.; Polyurethanes having shape memory effect; Polymer—Letchworth; 37(26); pp. 5781-5793; Jan. 1996.
Poco; Industry news: Poco introduces improved CXT-CXT-xtra; 2 pages; retrieved from the internet (https://web.archive.org/web/20061215223908/http://www.poco.com/us/) on Feb. 2020.
Stanford; Capacitor micro machined ultrasonic transducer (cMUT); 10 pages; retrieved from the internet (https://web.archive.org/web/20040205083311/http://acoustics.stanford.edu/group/cmut1.pdf) on Feb. 20, 2020.
Baker et al.; Threshold intrauterine perfusion pressures for intraperitoneal spill during hydrotubation and correlation with tubal adhesive diseases; Fertility and Sterility; 64(6); pp. 1066-1069; Dec. 31, 1995.
Blacker; Vaporization of the uterus; J. Obstet. & Gyn.; vol. 1; Issue 5; pp. 488-511; May 1902.
Fishman et. al.; A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema; N Engl J Med; 348(210. pp. 2059-2073; May 22, 2003.
Homasson et. al.; Bronchoscopic cryotherapy for airway strictures caused by tumors; Chest; 90(2); pp. 159-164; Aug. 1, 1986.
Marasso et al.; Radiofrequency resection of bronchial tumours in combination with cryotherapy: evaluation of a new technique; Thorax; 53(2); pp. 106-109; Feb. 1998.
Marasso et. al.; Cryosurgery in bronchoscopic treatment of tracheobronchial stenosis; Cheat; 103(2); pp. 472-474; Feb. 1993.
Morice et. al; Endobronchial argon plasma coagulation for treatment of hemoptysis and neoplastic airway obstruction; Chest; 119(3); pp. 781-787; Mar. 1, 2001.
Neuwirth et al.; The endometrial ablator: a new instrument; Obst. & Gyn.; vol. 83; No. 5; part 1; pp. 792-796; May 1994.
Prior et al.; Treatment of mennorrhagia by radiofrequency heating; Int. J. Hyperthermia; vol. 7; No. 2; pp. 213-220; Mar.-Apr. 1991.
Tschirren et. al.; Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans; IEEE Transactions on Medical Imaging; 24(12); pp. 1529-1539; Dec. 2005.
Unger et. al.; Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography; Science, 288(5463); pp. 113-116; Apr. 7, 2000.
Van De Velde; Vapo-cauterization of the uterus; Amer. J. Med. Sci.; vol. CXVIII (118); Nov. 1899.
Chee et al.; U.S. Appl. No. 16/422,835 entitled “Systems and methods for performing endometrial ablation,” filed May 24, 2019.
Third Office Action issued by the Chinese Patent Office for Application No. CN 201780024406.5, dated Dec. 6, 2021 (Waiting for English Translation).
Related Publications (1)
Number Date Country
20190038210 A1 Feb 2019 US
Provisional Applications (1)
Number Date Country
62297643 Feb 2016 US