The present invention concerns apparatuses and methods for rapid fractionation of blood into erythrocyte, plasma and platelet fractions. Each fraction may be put to use or returned to the blood donor. Useful high concentration platelet fractions have platelet concentrations in excess of two times the concentration in anti-coagulated whole blood before processing of greater than 2×106 platelet/μL. The invention has particular value for rapid preparation of autologous concentrated platelet fractions to help or speed healing.
Blood may be fractionated and the different fractions of the blood used for different medical needs. For instance, anemia (low erythrocyte levels) may be treated with infusions of erythrocytes. Thrombocytopenia (low thrombocyte (platelet) levels) may be treated with infusions of platelet concentrate.
Under the influence of gravity or centrifugal force, blood spontaneously sediments into three layers. At equilibrium the top, low-density layer is a straw-colored clear fluid called plasma. Plasma is a water solution of salts, metabolites, peptides, and many proteins ranging from small (insulin) to very large (complement components). Plasma per se has limited use in medicine but may be further fractionated to yield proteins used, for instance, to treat hemophilia (factor VIII) or as a hemostatic agent (fibrinogen).
The bottom, high-density layer is a deep red viscous fluid comprising anuclear red blood cells (erythrocytes) specialized for oxygen transport. The red color is imparted by a high concentration of chelated iron or heme that is responsible for the erythrocytes high specific gravity. Packed erythrocytes, matched for blood type, are useful for treatment of anemia caused by, e.g., bleeding. The relative volume of whole blood that consists of erythrocytes is called the hematocrit, and in normal human beings can range from about 38% to about 54%.
The intermediate layer is the smallest, appearing as a thin white band on top the erythrocyte layer and below the plasma, and is called the buffy coat. The buffy coat itself has two major components, nucleated leukocytes (white blood cells) and anuclear smaller bodies called platelets (or thrombocytes). Leukocytes confer immunity and contribute to debris scavenging. Platelets seal ruptures in the blood vessels to stop bleeding and deliver growth and wound healing factors to the wound site.
Extraction of Platelets
Extraction of platelets from whole blood has been reviewed (Pietersz 2000). In transfusion medicine the intention is to transfuse each patient only with the component that is needed, so the aim of blood centers is to manufacture blood components as pure as possible, that is with the least contaminating cells. Platelets are the most difficult to isolate and purify. Based on data from Pietersz (2000), even under optimal conditions of centrifugation (long time at low speed), a significant fraction of platelets remain trapped within the sedimented erythrocytes.
Through the years centrifugation methods have been developed to separate the platelets from red blood cells, white blood cells and plasma. These methods separate the components both in plastic bag systems and in apheresis devices, and more recently in specialized apparatuses. Historically most platelet concentrates have been harvested from donors and used to treat thrombocytopenia, i.e., allogenically. More recently the platelet concentrates have been used to promote wound healing, and the use of autologous platelet concentrates (sequestration of platelets for treatment of the platelet donor) has grown.
The sedimentation of the various blood cells and plasma is based on the different specific gravity of the cells and the viscosity of the medium. This may be accelerated by centrifugation according approximately to the Svedberg equation:
V=((2/9)ω2R(dcells−dplasma)r2)/ηt
where
V=sedimentation velocity,
ω=angular velocity of rotation,
R=radial distance of the blood cells to the center of the rotor,
d=specific gravity,
r=radius of the blood cells,
ηt=viscosity of the medium at a temperature of t° C.
Characteristics of blood components are shown in Table 1.
When sedimented to equilibrium, the component with the highest specific gravity (density) eventually sediments to the bottom, and the lightest rises to the top. But the rate at which the components sediment is governed roughly by the Svedberg equation; the sedimentation rate is proportional to the square of the size of the component. In other words, at first larger components such as white cells sediment much faster than smaller components such as platelets; but eventually the layering of components is dominated by density.
Soft Spin Centrifugation
When whole blood is centrifuged at a low speed (up to 1,000 g) for a short time (two to four minutes) white cells sediment faster than red cells and both sediment much faster than platelets (per Svedberg equation above). At higher speeds the same distribution is obtained in a shorter time. This produces layers of blood components that are not cleanly separated and consist of (1) plasma containing the majority of the suspended platelets and a minor amount of white cells and red cells, and (2) below that a thick layer of red cells mixed with the majority of the white cells and some platelets. The method of harvesting platelet-rich plasma (PRP) from whole blood is based on this principle. The term “platelet-rich” is used for this component because most of the platelets in the whole blood are in the plasma following slow centrifugation so the concentration of platelets in the plasma has increased. Centrifugal sedimentation that takes the fractionation only as far as separation into packed erythrocytes and PRP is called a “soft spin”. “Soft spin” is used herein to describe centrifugation conditions under which erythrocytes are sedimented but platelets remain in suspension. “Hard spin” is used herein to describe centrifugation conditions under which erythrocytes sediment and platelets sediment in a layer immediately above the layer of erythrocytes.
Two Spin Platelet Separation
Following a soft spin, the PRP can removed to a separate container from the erythrocyte layer, and in a second centrifugation step, the PRP may be fractioned into platelet-poor plasma (PPP) and platelet concentrate (PC). In the second spin the platelets are usually centrifuged to a pellet to be re-suspended later in a small amount of plasma.
In the most common method for PRP preparation, the centrifugation of whole blood for 2 to 4 min at 1,000 g to 2,500 g results in PRP containing the majority of the platelets. After the centrifugation of a unit (450 ml) of whole blood in a 3-bag system the PRP is transferred to an empty satellite bag and next given a hard spin to sediment the platelets and yield substantially cell-free plasma. Most of the platelet poor plasma (PPP) is removed except for about 50 ml and the pellet of platelets is loosened and mixed with this supernatant. Optionally one can remove about all plasma and reconstitute with additive solution. To allow aggregated platelets to recover the mixture is given a rest of one to two hours before platelets are again re-suspended and then stored on an agitator.
It is believed that centrifugation can damage the platelets by sedimenting the platelets against a solid, non-physiological surface. The packing onto such a surface induces partial activation and may cause physiological damage, producing “distressed” platelets which partially disintegrate upon re-suspension.
Hard Spin Centrifugation
If the centrifugation is continued at a low speed the white cells will sediment on top of the red cells whereas the platelets will remain suspended in the plasma. Only after extended low speed centrifugation will the platelets also sediment on top of the red cells.
Experiments with a blood processor (deWit, 1975) showed that centrifugation at a high speed (2,000 g-3,000 g) produces a similar pattern of cell separation in a shorter time. Initially the cells separate according to size, i.e., white cells sediment faster than red cells and platelets remain in the plasma. Soon the red cells get ‘packed’ on each other squeezing out plasma and white cells. Because of their lower density, white cells and platelets are pushed upwards to the interface of red cells and plasma whereas the platelets in the upper plasma layer will sediment on top of this interface, provided the centrifugal force is sufficiently high and sedimentation time is sufficiently long. Plasma, platelets, white cells and red cells will finally be layered according to their density. Platelets sedimented atop a layer of red cells are less activated than those isolated by the “two spin” technique.
Platelet Yields and Centrifuge Speed
The so called “buffy coat” consists of the layers of platelets and white cells (leukocytes) but is usually harvested along with the lower part of the plasma layer and the upper layer of the red cell mass. In this application, all references to the platelet layer are intended to mean the platelet layer if no leukocytes are present or to the buffy coat layer when leucocytes are present mixed with the platelets.
The process and method of this invention can accomplish platelet isolation and collection with a wide range including both low and high centrifugation forces. Effective separation does not require a high g centrifugation; good results have been obtained with 600 g-1000 g or low speed centrifugation. High speed centrifugation refers to centrifugal forces greater than 2000 g. Experiments have shown that long (30-45 min) centrifugation at a force of about 700 g gives the most complete separation of whole blood into components. Such long times are not considered to be practical and economical for intra-operative autologous applications. For buffy coat separation one can spin 7 to 10 min at about 3,000 g to enable separation of whole blood into cell-free plasma, a buffy coat containing 60-70% of the white cells and 70-80% of the platelets, and red cells contaminated with approximately 30% of the white cells and 10-20% of the platelets.
Apheresis—Single Spin Platelet Separation
Specialized apparatuses have been invented to perform apheresis, the separation of platelets from blood while re-infusing the other components into the donor. This permits donors to give more platelets than possible with the two-step centrifugation because loss of erythrocytes limits the volume of blood that blood donors may give. Typically, a two to three hour apheresis procedure will produce a platelet product containing 3×1011 platelets, equivalent to 6 or more conventional blood donations.
The first demonstration of a single-step method for preparation of platelet concentrates was reported more than 25 years ago (deWit 1975). In this first attempt complete separation between the different cellular components could not be achieved, at least not in one step because of considerable overlap in the presence of platelets, leukocytes and erythrocytes in the fractions collected after different centrifugation times and speed. Many improved apheresis methods and devices have been developed and are described in cited patents.
In apheresis methods drawn blood is immediately mixed with an anticoagulant, centrifuged (Haemonetics, Baxter CS 3000 and Amicus, Cobe Spectra, Fresenius AS 104, AS 204), and separated into components according to density. The buffy coat is recognized by eye or by optical sensors and the platelet-rich layer is directed to a separate bag. Software of the various manufacturers has been adjusted to manufacture platelet concentrates without white cell contamination, some requiring additional filtration after the platelet harvest, others having special techniques or tools built into the apheresis systems.
Leukoreduction
The PC's resulting from both laboratory two spin processing and apheresis methods contain donor leukocytes. It was shown the white cells negatively affect platelet storage and may induce adverse effects after transfusion due to cytokine formation. Removal of leukocytes (leukoreduction) from PRP and PC is a major problem because non-self leukocytes (allogeneic leukocytes) and the cytokines they produce can cause a violent reaction by the recipient's leukocytes. In 1999 the FDA Blood Product Advisory Committee recommended routine leukoreduction of all non-leukocytes components in the US (Holme 2000). Therefore, much of the prior art focuses on leukoreduction of platelet concentrates because non-autologous leukocytes excite deleterious immune reactions. Since the process of this invention provides a convenient way to quickly harvest autologous platelets from the patient's blood, immune reactions are not a risk, and the presence of leukocytes is of little or no concern.
Autologous Platelets
Autologous platelets have been shown to have advantages in comparison with allogeneic platelets. Concerns about disease transmission and immunogenic reactions, which are associated with allogeneic or xenogeneic preparation, are minimized. The fact that an autologous preparation is prepared at the time of surgery reduces the risks associated with mislabeling a sample, which might occur through a laboratory system. The use of autologous platelets obviates the requirement for time-consuming screening tests. Platelet activation has less time to develop. Unlike stored platelets which become partially activated, the activation status of autologous platelets, when first produced, was found to be similar to that in the original whole blood (Crawther 2000).
Platelets may be used as an adjunct for wound healing. Knighton describes applying autologous platelet releasate to wounds to enhance healing (Knighton 1986). More recent studies use platelets themselves. Marx describes platelet preparations that dramatically accelerate bone healing following dental implant procedures (Marx 1998). Other researchers make similar claims for other medical procedures, for instance, treatment of macular holes (Gehring 1999), improved healing in cosmetic surgery (Man 2001), and use for hemostasis (Oz 1992).
In recent years devices originally invented to wash erythrocytes from shed blood (auto-transfusion devices) have been adapted to permit separation of autologous platelets, usually intraoperatively. This procedure has the important advantage that autologous leukocytes cause no reaction from patient leukocytes because they are self leukocytes, so removal of leukocytes from PC's is no longer important. For example, sequestration of PRP reduces allogeneic transfusion in cardiac surgery (Stover 2000). Auto-transfusion devices from a variety of manufacturers (e.g., ElectroMedics 500) can be used to make autologous platelet preparations with high platelet concentrations.
The auto-transfusion equipment used to make autologous platelet concentrates requires a skilled operator and considerable time and expense. Most devices require a large prime volume of blood. The ElectroMedics 500 withdraws 400 to 450 ml of autologous whole blood through a central venous catheter placed during surgery. As it withdraws the blood the separator adds citrate phosphate dextrose (CPD) to achieve anticoagulation. The blood is then centrifuged into its three basic components. The red blood cell layer forms at the lowest level, the platelet concentrate layer in a middle level, and the PPP layer at the top. The cell separator incrementally separates each layer, from the less dense to the more dense; therefore it separates PPP first (about 200 ml) and PC second (about 70 ml), leaving the residual red blood cells (about 180 ml). Once the PPP is removed, the centrifuge speed is lowered to 2400 RPM to allow for a precise separation of the PC from the red blood cells. In fact, the platelets most recently synthesized, and therefore of the greatest activity, are larger and mix with the upper 1 mm of red blood cells, so that this layer is included in the PRP product imparting a red tint.
Recently devices have been introduced which are specifically designed to make autologous platelet concentrates intraoperatively; for example the SmartPReP Autologous Platelet Concentrate System (Harvest Autologous Hemobiologics, Norwell, Mass.). It requires 90 to 180 cc of blood versus the 500 cc of blood used in most auto-transfusion machines. In addition two other products are near market introduction, The PlasmaSeal device (PlasmaSeal, San Francisco, Calif.) and The Platelet Concentrate Collection System (Implant Innovations, Inc., Palm Beach Gardens, Fla.). While these devices have somewhat reduced the cost and the time required, a skilled operator is required for the devices introduced to the market to date. Therefore, there remains a need for simple and fast automated methods and devices for making platelet concentrates.
The present invention is directed to methods and apparatuses for simple and fast preparation of autologous platelet concentrates from whole anti-coagulated blood.
This discussion includes numerous descriptions of events within the spinning rotor. Within the frame of reference of the rotor, the effects of gravity are minimal compared with centrifugal force. Therefore within the rotor, “top” means the end of the tube closer to the axis and “bottom” means the end of the tube closer to the perimeter of the rotor.
Another aspect of the present invention is that platelets are not aggregated by pelleting against a surface.
A further aspect of the invention is the use of a float having a density less than the density of the erythrocytes and greater than that of whole blood which rises through the mixture as the erythrocyte sediment during centrifugation, gently disrupting the erythrocytes to free trapped platelets, thus greatly increasing the platelet yield.
Another aspect of the present invention is that the apparatuses may be completely automated and require no user intervention between, first, loading and actuating the device and, second, retrieving the platelet concentrate.
Another aspect of the present invention is that different quantities of blood may be processed by the same apparatus.
Another aspect of the present invention is that bloods of different hematocrits and different plasma densities may be processed by the same apparatus.
Another aspect of the present invention is that the concentration of platelets in the product may be varied by need.
Another aspect of the present invention is that the processing includes only a single centrifugation step.
Another aspect of the present invention is that the processing is rapid.
The float collector blood platelet separation device of this invention comprises a centrifugal spin-separator container having a separation chamber cavity with a longitudinal inner surface. A float is positioned within the cavity, the float having a base, a platelet collection surface above the base, and an outer surface. The distance between the outer surface of the float and the inner surface of the cavity can be 0.5 mm, preferably less than 0.2 mm and optimally less than 0.03 mm. The float has a density less than the density of erythrocytes and greater than the density of plasma. The platelet collection surface has a position on the float which places it immediately below the level of platelets when the float is suspended in fully separated blood. The cavity can have a cylindrical inner surface and the float has a complementary cylindrical outer surface.
In one embodiment, the device includes a flexible inner tube, and a float is positioned within the flexible inner tube. The float has an outer surface in sealing engagement with the inner surface of the flexible tube in a neutral pressure condition, the sealing engagement preventing movement of fluid between the outer surface of the float and the inner surface of the flexible tube in the neutral pressure condition. The outer surface of the float disengages from contact with the inner surface of the flexible tube in an elevated pressure condition, thus enabling movement of fluid between the outer surface of the float and the inner surface of the flexible tube in the elevated pressure condition as well as free movement of the float within the tube. The float has a platelet receptor cavity positioned to be at the position of platelets in separated blood after centrifugation. The float has a channel communicating with the platelet receptor cavity for removing separated platelets therefrom after centrifugation. In one configuration, the float comprises a proximal segment having a distal surface and a distal segment having a proximal surface opposed to the distal surface, the distal surface and the proximal surfaces defining the platelet receptor cavity. Preferably, the outer container includes a port for introducing blood into the inner tube at the beginning of a platelet separation process and for removing platelets from the platelet cavity within the inner tube at the end of the platelet separation process. Optionally, the port includes a syringe coupling Luer locking device. The outer container can have an inner surface for restraining expansion of the inner tube during centrifugation.
In a still further embodiment, the centrifugal spin-separator is a substantially rigid tube, and the float comprises a proximal segment having a distal surface, and a distal segment having a proximal surface opposed to the distal surface, the distal surface and the proximal surfaces defining the platelet receptor cavity. This cavity has a surface which is a platelet collection surface. The outer surface of the float is preferably in sliding engagement with the inner surface of the cavity.
The term “platelet collection surface”, as used herein, is defined to mean a surface which provides support to the platelet or buffy coat layer. Preferably, the platelet layer is not in direct contact with the support layer to protect the platelets, and optimally, the platelets are sedimented on a thin buffer or cushion layer of erythrocytes resting on the platelet collection surface.
In another embodiment, a top surface of the float constitutes a platelet collection surface. In this form, the device may include a plunger positioned above the float and substantially axially concentric with the float and the cavity, the optional plunger having a cylindrical outer surface which is spaced from a complementary cylindrical inner surface of the tube. The space can be so small as to provide an effective liquid seal between the surfaces, or if the space is larger, at least one seal can be provided between the outer surface of the plunger and the inner surface of the cavity, the seal being positioned in sealing engagement with the outer and inner surfaces. Optionally, the bottom of the plunger has a plasma expressing surface opposed to the platelet collection surface; and a fluid removal passageway extends through the plunger and the plasma expressing surface into the platelet receptor cavity. Preferably, the top of the float includes a stop surface extending above the plasma collection surface.
The process of this invention for separating platelets from whole blood with the above devices comprises the steps of first introducing an amount of whole blood into the cavity, the amount of whole blood being sufficient, following centrifugation, to elevate the float above the floor of the separation chamber and position the platelet collection surface immediately below the level of platelets. The separation chamber is the cavity within which the blood is separated into erythrocyte, plasma and platelet (buffy coat) layers. The centrifugal spin-separator container is subjected to centrifugation forces in the axial direction toward the distal end, whereby erythrocytes are caused to concentrate at the distal end, plasma to collect toward the proximal end, and platelets to collect on the platelet collection surface. Platelets are then removed from the platelet collection surface.
When the device includes a plunger positioned above the float and substantially axially concentric with the float and the cavity, process of this invention comprises the steps of introducing an amount of whole blood into the cavity, the amount of whole blood being sufficient to position the level of platelets following centrifugation at the position of the platelet collection surface. The centrifugal spin-separator container is then subjected to centrifugation forces in the axial direction toward the distal end, whereby blood cells are caused to concentrate at the distal end, plasma to collect toward the proximal end, and platelets to collect closely adjacent the platelet collection surface. The plunger is then advanced in an axial direction against the top of the plasma until the plasma expressing surface is positioned closely adjacent the platelet collection surface and spaced apart therefrom. A platelet extraction tube is extended through the fluid removal passageway until the end thereof contacts the platelet layer, and a platelet concentrate is removed through the platelet extraction tube. Optionally, platelet poor plasma can be collected through the platelet extraction tube into a syringe or other receptacle while the plunger is being depressed. Platelets can then be extracted into a separate syringe or other receptacle.
Optionally, the device can lack a plunger arrangement. In this embodiment, platelets are removed from the platelet collection surface suspended in a small volume of plasma retained after first removing a volume of platelet poor plasma from above the sedimented platelet layer.
With embodiments of the device wherein the top of the float includes a stop surface positioned above the plasma collection surface, the plunger is advanced in an axial direction until the plasma expressing surface contacts the stop surface.
With devices having a float in a flexible tube, the process comprises the steps of introducing an amount of whole blood into the inner tube, the amount of whole blood being sufficient, following centrifugation, to elevate the float above the floor of the separation chamber and position the platelet collection surface immediately below the level of platelets. The tube is then subjected to centrifugation forces in the axial direction toward the distal end, whereby blood cells are caused to concentrate at the distal end, plasma to collect at the proximal end, and platelets to collect at a level closely adjacent the platelet collection surface. Platelets are then removed from the annular platelet receptor cavity.
When the top surface of the float constitutes the platelet collection surface, the device optionally includes a plunger positioned above the float and substantially axially concentric with the float and the cavity. The plunger has a cylindrical outer surface which is spaced from the inner surface of the cavity; the bottom of the plunger defining a plasma expressing surface opposed to a platelet collection surface. A fluid removal passageway extends through the plunger to the plasma expressing surface. With this embodiment, the process includes the additional step of moving the plunger toward the float until the plasma expressing surface is closely adjacent the platelet layer, and platelets are then removed through the fluid removal passageway. In this embodiment, plasma is expressed through the fluid removal passageway as the plunger is moved toward the float.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
This invention is a blood platelet separation device with several embodiments. All of the embodiments comprise a centrifugal spin-separator container having a cavity with a longitudinal inner surface. A float is positioned within the cavity. The float has a base and a platelet collection surface above the base. The float has an outer surface. In general, the distance between the outer surface of the float and the inner surface of the cavity can be less than 0.5 mm, preferably less than 0.2 mm and optimally less than 0.03 mm. For embodiments with a flexible tube, the surfaces can be in contact. The platelet collection surface has a position on the float which places it immediately below the level of platelets when the float is suspended in fully separated blood.
Patient blood may be obtained by a phlebotomy needle or central vein cannula or other whole blood collection means. The blood is immediately mixed with anticoagulant, such as ACD-A or heparin.
The outer surface 8 of the float 6 disengages from contact with the inner surface 4 of the flexible tube 2 when the pressure in the flexible tube is elevated under centrifugation. This enables movement of fluid between the outer surface of the float and the inner surface of flexible tube as well as free movement of the float within the tube.
The float has a platelet receptor cavity 10 with a platelet collection surface 16 in a position to immediately below the level of platelets in separated blood following centrifugation. The float 6 has a platelet collection channel 11 and a platelet withdrawal channel 12 communicating with the platelet receptor cavity 10 for removing separated platelets after centrifugation.
The float 6 comprises a proximal segment 13 having a distal surface 14 and a distal segment 15 not having proximal surface 16 opposed to the distal surface 14. The distal surface 14 and proximal surface 16 define the platelet receptor cavity 10. The float 6 has a specific gravity that is less than the specific gravity of erythrocytes and greater than the specific gravity of plasma such that at equilibrium the buffy coat platelet layer is sequestered between the upper and lower members of the float. For optimum platelet recovery, it is critical that the float rise from the bottom of the tube as the erythrocytes sediment. This requires that the float have a density greater than whole blood.
The platelet collection device of this embodiment includes a substantially inflexible outer container 18 enclosing the inner tube 2. The inner surface 22 of the outer container 18 limits expansion of the inner tube as the pressure in the inner tube 2 increases during centrifugation.
The outer container includes a port 20 for introducing blood into the inner tube at the beginning of the platelet separation process and for removing platelets from the platelet receptor cavity 10 through channels 11 and 12 at the end of the platelet separation process. The port can be provided with a Luer lock device for coupling with a loading syringe and with a platelet removal syringe.
Vent channel 17 vents air upward through channel 12 as blood is introduced into the separation channel 19.
In this embodiment, the needle or small tube 23 is preferably fixed to the Luer lock device 20. The tube 23 has an outer diameter which is smaller than the inner diameter of the channel 12 to enable it to slide freely in the channel 12 as the float 6 rises during centrifugation.
The device of this invention can be used in a simple operation to produce platelets. It involves the collection of blood containing an anticoagulant such as heparin, citrate or EDTA in a syringe; filling the separation tubes with the anti-coagulated blood from the syringe; centrifugation to separate the blood into erythrocyte, plasma and platelet buffy coat fractions; and removal of the platelets buffy coat fraction with another syringe.
The float can be made of two cones, the bases thereof optionally concave. The separation chamber cavity preferably has a concave bottom which mirrors the shape of the lower cone so that when the buoy is in its initial state, resting at the bottom of the cavity, there is a small space between the bottom of the lower buoy and the bottom of the cavity. The flexible tube 2 is preferably an elastomer sleeve having an inner diameter which is smaller than the greatest outer diameter of the float so that it holds the float firmly in place. The outer diameter of the flexible tube 2 is smaller than the inner diameter of the rigid cylinder 18 so that a space exists between the inner tube and the rigid cylinder. Small particles such as smooth spheres, e.g., ball bearings, can be provided in the space between the two cones to disperse platelets in the platelet buffy coat layer. The channel 12 terminates slightly above the base of float 6. A sterile vent 21 allows air to pass in and out of the device.
Surprisingly, with the current invention, a much smaller fraction of platelets remain associated with the erythrocyte pack, making higher yields of sequestered platelets possible. The float rising from the bottom of the device as erythrocytes sediment fluidizes the erythrocyte pack to release the platelets so they more readily rise to combine with the buffy coat.
If re-suspension particles are present in the platelet receptor, the entire device can be shaken or rotated so that the particles tumble around within the space between the two cones, disrupting and mixing the buffy coat into a homogeneous suspension. Alternatively, the platelets can be re-suspended by jetting in and out of the platelet-containing compartment with the collection syringe. Alternatively, an air bubble can be trapped within or introduced into the platelet-containing compartment, and the platelets can be re-suspended by shaking, inverting or rolling the device. The suspended buffy coat is then withdrawn though the Lehr 20. The removed volume is displaced by air which enters the device through vent 21.
The float 100 has a bottom surface 112 with a projecting spacer 113 which rests on the bottom 114 of the tube before anti-coagulated blood is introduced into the separator. The float has an upper surface 115 which is positioned to be immediately below the layer of platelets in separated blood. The upper structure of the float includes a projection 116, the top edge 118 of which acts as a stop to limit downward movement of the plunger 102 during the process. A platelet collection channel 120 is positioned in the center of the float. Platelet drainage channels 122 extend from the level of the surface 115 to the interior of the platelet collection channel 120.
The float 100 has a density less than separated erythrocytes and greater than plasma so that it will float on the erythrocyte layer at a level which places the platelet collection surface 115 immediately below the platelet layer when the blood is separated into its components. For optimum platelet recovery, it is critical that the float rise from the bottom of the tube as the erythrocytes sediment. This requires that the float have a density greater than whole blood.
The plunger 102 optionally can have an outer surface 124 which is spaced from the inner surface 126 of the tube 104 or in sliding engagement therewith. In the illustrated embodiment, seals 128 and 130 which can be O-rings are provided to prevent escape of liquid between the float and tube surfaces when the plunger 102 is moved toward the float 100. If the tolerances between the outer surface 124 and the tube surface 126 are sufficiently small, no seal is required to prevent escape of liquid between the plunger and the tube when the plunger is moved toward the float and when the product is withdrawn.
The plunger has a bottom surface 132 and a fluid escape or snorkel tube 134. When the plunger is moved downward toward the float, the pressure imparted by this bottom surface 132 expresses liquid below the plunger 102 upward through the snorkel tube 134 into the cavity above the plunger.
The plunger is provided with a central channel 136 through which a tube or needle is inserted to remove platelet-rich fluid from the space between the bottom of the plunger and the top of the float.
While this embodiment is illustrated with an outer tube and a float and plunger with matching outer cylindrical shapes, it will be readily apparent to a person skilled in the art that the outer container can have any internal shape which matches the dimensions of the float and plunger such as a cavity with a square or other polygonal shape combined with a float and plunger with the corresponding outer polygonal shape. The cylindrical configuration is advantageous.
Withdrawal of the piston 150 of the syringe 143 draws a platelet-rich mixture from the platelet layer through the channels 122 and 120 (
The float 160 has a bottom surface 172 which rests on the bottom 174 of the tube before anti-coagulated blood is introduced into the separator. The upper structure of the float includes a projection 176, the top edge 178 of which acts as a stop to limit downward movement of the plunger 162 during the process. A platelet collection channel 180 in the center of the float communicates with platelet drainage channel 182 extending from the level of the surface 165.
The float 160 has a density less than separated erythrocytes and greater than plasma so that it will float in the erythrocyte layer at a level which places the platelet collection surface 165 immediately below the platelet layer when the blood is separated into its components. For optimum platelet recovery, it is critical that the float rise from the bottom of the tube as the erythrocytes sediment. This requires that the float have a density greater than whole blood.
As the plunger 162 is depressed toward the float 160 after centrifugation, plasma rises through the flexible snorkel tube 188 into the space 186 above the plunger 162. When platelets are removed by a tube extending through the central channel 184 (inserted as shown in
The plunger is shown at its highest level to permit introducing a maximum amount of blood into the separation chamber, the maximum height being limited by the top 190 of the tube 192 abutting the cap 166. This full extension is permitted by the flexibility of the snorkel tube 188.
The float 200 has a bottom surface 214 with a projecting spacer 216 which rests on the bottom of the tube before anti-coagulated blood is introduced into the separator. The float rises in the erythrocyte layer during centrifugation. The float 200 has an upper surface 218 which is positioned to be immediately below the layer of platelets in separated blood. The upper structure of the float includes a projection 220 which extends above the platelet or buffy coat layer.
The float 200 has a density less than separated erythrocytes and greater than plasma so that it will float in the erythrocyte layer at a level which places the platelet collection surface 218 immediately below the platelet layer when the blood is separated into its components. For optimum platelet recovery, it is critical that the float rise from the bottom of the tube as the erythrocytes sediment. This requires that the float have a density greater than whole blood.
The “Plungerless plunger” device of
This invention is further illustrated by the following specific, but non-limiting examples.
A parasol design platelet concentrator device of the type depicted in
The device was filled with 30 ml of freshly drawn whole blood anti-coagulated with CPDA-1. The device was centrifuged in an IEC Centra CL2 centrifuge for 30 minutes at 3000 rpm. Following centrifugation the tube was swirled vigorously to re-suspend the platelets within the platelet receptor cavity by the agitation induced by the stainless steel balls. Five cc concentrated platelets was removed from the platelet receptor cavity through the platelet extraction tube (23).
Platelet counts were determined as follows: One half cc of this sample was diluted with 10 cc of Isoton II isotonic diluent and centrifuged at 500 g for 1.5 minutes. One half cc of this diluted sample was diluted in yet another 10 cc of Isoton II and particles larger than 3 fl counted on a Coulter Z-1 particle analyzer. This result was compared to the number of particles in a similarly treated sample of whole blood. These small particles from treated samples represent the platelets. The sample of concentrated platelets contained 66% of the platelets present in the introduced whole blood at a concentration 2.86 times that found in the whole blood.
The “Parasol” device shown in
A platelet concentrator device of the type depicted
The device was filled with 25 cc of freshly drawn whole blood anti-coagulated with CPDA-1. The device was centrifuged in an IEC CRU 5000 centrifuge for 15 minutes at 1800 rpm. Following centrifugation the plunger was depressed by inserting a blunt hypodermic needle connected to a 10 cc syringe through the central access port until it collided with the stop on the top of the float. The device was swirled vigorously to re-suspend the platelets within the platelet receptor cavity after withdrawing 0.5 cc through the hypodermic needle (platelet extraction tube). An additional 3.5 cc concentrated platelets was removed from the platelet receptor cavity through the hypodermic needle (platelet extraction tube).
One half cc of this sample was diluted with 10 cc of Isoton II isotonic diluent and centrifuged at 500 g for 1.5 minutes. One half cc of this diluted sample was diluted in yet another 10 cc of Isoton II and particles larger than 3 μl counted on a Coulter Z-1 particle analyzer. This result was compared to the number of particles in a similarly treated sample of whole blood. These small particles from treated samples represent the platelets. The sample of concentrated platelets contained 69% of the platelets present in the introduced whole blood at a concentration 4.30 times that found in the whole blood.
The “Plunger” device shown in
A platelet concentrator device of the type depicted in
The device was filled with 25 cc of freshly drawn whole blood anti-coagulated with CPDA-1. The device was centrifuged in an IEC CRU 5000 centrifuge for 15 minutes at 1800 rpm. Following centrifugation, the plunger was depressed by inserting a blunt hypodermic needle connected to a 10 cc syringe through the central access port and pressing down on the body of the syringe until it collided with the stop on the top of the float. As the syringe body was depressed, platelet poor plasma collected in it. The syringe containing platelet poor plasma was removed and a second syringe was attached to the needle. The device was swirled vigorously to re-suspend the platelets within the platelet receptor cavity after withdrawing 0.5 cc through the hypodermic needle (platelet extraction tube). An additional 3.5 cc concentrated platelets was removed from the platelet receptor cavity through the hypodermic needle (platelet extraction tube).
One half cc of this sample was diluted with 10 cc of Isoton II isotonic diluent and centrifuged at 500 g for 1.5 minutes. One half cc of this diluted sample was diluted in yet another 10 cc of Isoton II and particles larger than 3 fl counted on a Coulter Z-1 particle analyzer. This result was compared to the number of particles in a similarly treated sample of whole blood. These small particles from treated samples represent the platelets. The sample of concentrated platelets contained 74% of the platelets present in the introduced whole blood at a concentration 4.61 times that found in the whole blood. Since this concentration is much larger and the concentration of platelets in the erythrocyte layer is much lower than obtained with simple centrifugation under comparable conditions without the float, it is clear that the flow of erythrocyte suspension between the walls of the float and the tube during centrifugation gently disrupts the erythrocytes and releases entrapped platelets, allowing them to collect in the platelet or buffy-coat layer.
With the “Plunger” device without snorkel used in this example, the platelet poor plasma is collected in a syringe during depression of the plunger. This provides all the advantages of “standard” plunger device plus providing platelet poor plasma in syringe for anyone who might want to use it, for example, as a hemostat.
Various alternative configurations of the device are possible within the context of the present invention. For example, the two cones which comprise the buoy can be replaced by funnels or by cones possessing concavities that communicate between the various compartments and conduct sedimenting cells between compartments during sedimentation. Complete fluid isolation of the various compartments is not essential, provided any openings between compartments are sufficiently small as to prevent substantial mixing of the fractions during handling and re-suspension and withdrawal of the buffy coat. Means can be provided for recovery of platelet depleted plasma and erythrocytes if desired. The tube and the channel through which blood is introduced and the buffy coat is withdrawn need not be concentric or rigid. The elastomeric sleeve can be replaced by a compressible material, e.g., foam, provided the inner surface which contacts blood is smooth and does not trap or activate platelets.
This application is a continuation of U.S. patent application Ser. No. 13/480,849, filed May 25, 2012, which is a continuation of U.S. patent application Ser. No. 12/951,701, filed Nov. 22, 2010, now U.S. Pat. No. 8,187,477 issued on May 29, 2012; which is a continuation of U.S. patent application Ser. No. 12/344,895 filed on Dec. 29, 2008, now U.S. Pat. No. 7,837,884 issued on Nov. 23, 2010; which is a divisional of U.S. patent application Ser. No. 11/584,414 filed on Oct. 19, 2006, now U.S. Pat. No. 7,470,371 issued on Dec. 30, 2008; which is a continuation of U.S. patent application Ser. No. 11/108,387 filed on Apr. 18, 2005, now U.S. Pat. No. 7,223,346 issued on May 29, 2007; which is a continuation of U.S. patent application Ser. No. 10/176,272 filed on Jun. 18, 2002, now abandoned; which claims benefit of all of U.S. Prov. App. No. 60/377,559, filed on May 3, 2002; U.S. Prov. App. No. 60/379,951, filed on May 10, 2002; and U.S. Prov. App. No. 60/382,639, filed on May 21, 2002. The entire disclosures of all the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
280820 | Hickson et al. | Jul 1883 | A |
593333 | Park | Nov 1897 | A |
1468313 | Lux | Sep 1923 | A |
1593814 | Vogel | Jul 1926 | A |
2722257 | Lockhart | Nov 1955 | A |
3013557 | Pallotta | Dec 1961 | A |
3141846 | Laven, Jr. | Jul 1964 | A |
3159159 | Cohen | Dec 1964 | A |
3300051 | Mitchell | Jan 1967 | A |
3409165 | Creith | Nov 1968 | A |
3420374 | Umeda | Jan 1969 | A |
3441143 | Kudlaty | Apr 1969 | A |
3453364 | Flodin et al. | Jul 1969 | A |
3469369 | Helmke | Sep 1969 | A |
3508653 | Coleman | Apr 1970 | A |
3545671 | Ross | Dec 1970 | A |
3583627 | Wilson | Jun 1971 | A |
3596652 | Winkelman | Aug 1971 | A |
3647070 | Adler | Mar 1972 | A |
3654925 | Holderith | Apr 1972 | A |
3661265 | Greenspan | May 1972 | A |
3706305 | Berger et al. | Dec 1972 | A |
3706306 | Berger et al. | Dec 1972 | A |
3723244 | Breillatt, Jr. | Mar 1973 | A |
3741400 | Dick | Jun 1973 | A |
3779383 | Ayres | Dec 1973 | A |
3785549 | Latham, Jr. | Jan 1974 | A |
3814248 | Lawhead | Jun 1974 | A |
3849072 | Ayres | Nov 1974 | A |
3850369 | Bull et al. | Nov 1974 | A |
3879295 | Glover et al. | Apr 1975 | A |
3887466 | Ayres | Jun 1975 | A |
3894952 | Ayres | Jul 1975 | A |
3896733 | Rosenberg | Jul 1975 | A |
3897337 | Ayres | Jul 1975 | A |
3897343 | Ayres | Jul 1975 | A |
3909419 | Ayres | Sep 1975 | A |
3929646 | Adler | Dec 1975 | A |
3931010 | Ayres et al. | Jan 1976 | A |
3931018 | North, Jr. | Jan 1976 | A |
3935113 | Ayres | Jan 1976 | A |
3937211 | Merten | Feb 1976 | A |
3941699 | Ayres | Mar 1976 | A |
3945928 | Ayres | Mar 1976 | A |
3951801 | Ayres | Apr 1976 | A |
3957654 | Ayres | May 1976 | A |
3962085 | Liston et al. | Jun 1976 | A |
3965889 | Sachs | Jun 1976 | A |
3972812 | Gresl, Jr. | Aug 1976 | A |
3982691 | Schlutz | Sep 1976 | A |
4001122 | Griffin | Jan 1977 | A |
4020831 | Adler | May 1977 | A |
4046699 | Zine, Jr. | Sep 1977 | A |
4055501 | Cornell | Oct 1977 | A |
4059108 | Latham, Jr. | Nov 1977 | A |
4066549 | Oeser et al. | Jan 1978 | A |
4077396 | Wardlaw et al. | Mar 1978 | A |
4088582 | Murty et al. | May 1978 | A |
4146172 | Cullis et al. | Mar 1979 | A |
4152270 | Cornell | May 1979 | A |
4154690 | Ballies et al. | May 1979 | A |
4159896 | Levine et al. | Jul 1979 | A |
4187979 | Cullis et al. | Feb 1980 | A |
4189385 | Greenspan | Feb 1980 | A |
4203840 | Stoeppler et al. | May 1980 | A |
4204537 | Latham, Jr. | May 1980 | A |
4225580 | Rothman et al. | Sep 1980 | A |
4229298 | Bange | Oct 1980 | A |
4269718 | Persidsky | May 1981 | A |
4294707 | Ikeda et al. | Oct 1981 | A |
4298598 | Schwarz et al. | Nov 1981 | A |
4300717 | Latham, Jr. | Nov 1981 | A |
4303193 | Latham, Jr. | Dec 1981 | A |
4314823 | Rich, Jr. et al. | Feb 1982 | A |
4322298 | Persidsky | Mar 1982 | A |
4332351 | Kellogg et al. | Jun 1982 | A |
4362567 | Schwarz et al. | Dec 1982 | A |
4364832 | Ballies et al. | Dec 1982 | A |
4377572 | Schwarz et al. | Mar 1983 | A |
4379849 | Heimreid | Apr 1983 | A |
4411794 | Schwinn et al. | Oct 1983 | A |
4414976 | Schwarz et al. | Nov 1983 | A |
4416654 | Schoendorfer et al. | Nov 1983 | A |
4417981 | Nugent | Nov 1983 | A |
4424132 | Iriguchi et al. | Jan 1984 | A |
4427650 | Stroetmann et al. | Jan 1984 | A |
4427651 | Stroetmann et al. | Jan 1984 | A |
4442655 | Stroetmann et al. | Apr 1984 | A |
4443345 | Wells | Apr 1984 | A |
4445550 | Davis et al. | May 1984 | A |
4446021 | Aufderhaar et al. | May 1984 | A |
4453927 | Sinko | Jun 1984 | A |
4453939 | Zimmerman et al. | Jun 1984 | A |
4464167 | Schoendorfer et al. | Aug 1984 | A |
4511662 | Baran et al. | Apr 1985 | A |
4537767 | Rothman et al. | Aug 1985 | A |
RE32089 | Blatt et al. | Mar 1986 | E |
4577514 | Bradley et al. | Mar 1986 | A |
4610656 | Mortensen | Sep 1986 | A |
4617009 | Ohlin et al. | Oct 1986 | A |
4627879 | Rose et al. | Dec 1986 | A |
4631055 | Redl et al. | Dec 1986 | A |
4632761 | Bowers et al. | Dec 1986 | A |
4639316 | Eldegheidy | Jan 1987 | A |
4650678 | Fuhge et al. | Mar 1987 | A |
4655211 | Sakamoto et al. | Apr 1987 | A |
4672969 | Dew | Jun 1987 | A |
4675117 | Neumann et al. | Jun 1987 | A |
4680025 | Kruger et al. | Jul 1987 | A |
4714457 | Alterbaum | Dec 1987 | A |
4722790 | Cawley et al. | Feb 1988 | A |
4724317 | Brown et al. | Feb 1988 | A |
4735616 | Eibl et al. | Apr 1988 | A |
4735726 | Duggins | Apr 1988 | A |
4738655 | Brimhall et al. | Apr 1988 | A |
4755300 | Fischel et al. | Jul 1988 | A |
4755301 | Bowers | Jul 1988 | A |
4770779 | Ichikawa et al. | Sep 1988 | A |
4776964 | Schoendorfer et al. | Oct 1988 | A |
4818291 | Iwatsuki et al. | Apr 1989 | A |
4818386 | Burns | Apr 1989 | A |
4828710 | Itoh et al. | May 1989 | A |
4832851 | Bowers et al. | May 1989 | A |
4834890 | Brown et al. | May 1989 | A |
4839058 | Cawley et al. | Jun 1989 | A |
4844818 | Smith | Jul 1989 | A |
4846780 | Galloway et al. | Jul 1989 | A |
4846835 | Grande | Jul 1989 | A |
4850952 | Figdor et al. | Jul 1989 | A |
4853137 | Ersson | Aug 1989 | A |
4871462 | Fischel et al. | Oct 1989 | A |
4874368 | Miller et al. | Oct 1989 | A |
4877520 | Burns | Oct 1989 | A |
4879031 | Panzani et al. | Nov 1989 | A |
4900453 | Sedlmayer et al. | Feb 1990 | A |
4902281 | Avoy | Feb 1990 | A |
4909251 | Seelich et al. | Mar 1990 | A |
4915847 | Dillon et al. | Apr 1990 | A |
4917801 | Luderer et al. | Apr 1990 | A |
4928603 | Rose et al. | May 1990 | A |
4929242 | Desecki et al. | May 1990 | A |
4933291 | Daiss et al. | Jun 1990 | A |
4939081 | Figdor et al. | Jul 1990 | A |
4943273 | Pages et al. | Jul 1990 | A |
4946601 | Fiehler | Aug 1990 | A |
4950220 | Wells et al. | Aug 1990 | A |
4957637 | Cornell | Sep 1990 | A |
4957638 | Smith | Sep 1990 | A |
4973168 | Chan | Nov 1990 | A |
4983157 | Pober et al. | Jan 1991 | A |
4983158 | Headley | Jan 1991 | A |
4985153 | Kuroda et al. | Jan 1991 | A |
5000970 | Shanbhag et al. | Mar 1991 | A |
5002571 | O'Donnell, Jr. et al. | Mar 1991 | A |
5019243 | McEwen et al. | May 1991 | A |
5024613 | Vasconcellos et al. | Jun 1991 | A |
5030215 | Morse et al. | Jul 1991 | A |
5030341 | McEwen et al. | Jul 1991 | A |
5039401 | Columbus et al. | Aug 1991 | A |
5045048 | Kaleskas et al. | Sep 1991 | A |
5047004 | Wells | Sep 1991 | A |
5053127 | Schoendorfer et al. | Oct 1991 | A |
5053134 | Luderer et al. | Oct 1991 | A |
5071570 | Shiraki et al. | Dec 1991 | A |
5080262 | Herold et al. | Jan 1992 | A |
5086784 | Levine et al. | Feb 1992 | A |
5100564 | Pall et al. | Mar 1992 | A |
5104375 | Wolf et al. | Apr 1992 | A |
5112484 | Zuk, Jr. | May 1992 | A |
5112490 | Turpen | May 1992 | A |
5131907 | Williams et al. | Jul 1992 | A |
5137832 | Levine et al. | Aug 1992 | A |
5141645 | Shiraki et al. | Aug 1992 | A |
5147290 | Jonsson et al. | Sep 1992 | A |
5152905 | Pall et al. | Oct 1992 | A |
5156613 | Sawyer | Oct 1992 | A |
5165938 | Knighton | Nov 1992 | A |
5171456 | Hwang et al. | Dec 1992 | A |
5173295 | Wehling et al. | Dec 1992 | A |
5178602 | Wells | Jan 1993 | A |
5185001 | Galanakis | Feb 1993 | A |
5188583 | Guigan et al. | Feb 1993 | A |
5190057 | Sarfarazi | Mar 1993 | A |
5190759 | Lindblad et al. | Mar 1993 | A |
5197985 | Caplan et al. | Mar 1993 | A |
5203825 | Haynes et al. | Apr 1993 | A |
5204537 | Bennet et al. | Apr 1993 | A |
5206023 | Hunziker et al. | Apr 1993 | A |
5207638 | Choksi et al. | May 1993 | A |
5217426 | Bacehowski et al. | Jun 1993 | A |
5217627 | Pall et al. | Jun 1993 | A |
5219328 | Morse et al. | Jun 1993 | A |
5226877 | Epstein | Jul 1993 | A |
5226914 | Caplan et al. | Jul 1993 | A |
5234608 | Duff | Aug 1993 | A |
5236604 | Fiehler | Aug 1993 | A |
5251786 | Sarrine | Oct 1993 | A |
5258126 | Pall et al. | Nov 1993 | A |
5260420 | Burnouf-Radosevich et al. | Nov 1993 | A |
5269927 | Fiehler | Dec 1993 | A |
5271852 | Luoma, II | Dec 1993 | A |
5279825 | Wehling et al. | Jan 1994 | A |
5281342 | Biesel et al. | Jan 1994 | A |
5290552 | Sierra et al. | Mar 1994 | A |
5290918 | Bui-Khac et al. | Mar 1994 | A |
5298171 | Biesel et al. | Mar 1994 | A |
5304372 | Michalski et al. | Apr 1994 | A |
5316674 | Pall et al. | May 1994 | A |
5318524 | Morse et al. | Jun 1994 | A |
5318782 | Weis-Fogh et al. | Jun 1994 | A |
5321126 | van Dommelen et al. | Jun 1994 | A |
5322620 | Brown et al. | Jun 1994 | A |
5330974 | Pines et al. | Jul 1994 | A |
5344752 | Murphy | Sep 1994 | A |
5354483 | Furse | Oct 1994 | A |
5370221 | Magnusson et al. | Dec 1994 | A |
5370802 | Brown | Dec 1994 | A |
5372945 | Alchas et al. | Dec 1994 | A |
5376263 | Fischel | Dec 1994 | A |
5387187 | Fell et al. | Feb 1995 | A |
5393674 | Levine et al. | Feb 1995 | A |
5395923 | Bui-Khac et al. | Mar 1995 | A |
5403272 | Deniega et al. | Apr 1995 | A |
5405607 | Epstein | Apr 1995 | A |
5409833 | Hu et al. | Apr 1995 | A |
5411885 | Marx | May 1995 | A |
5417650 | Gordon | May 1995 | A |
5420250 | Lontz | May 1995 | A |
5443481 | Lee | Aug 1995 | A |
5454958 | Fiehler | Oct 1995 | A |
5456693 | Conston et al. | Oct 1995 | A |
5456885 | Coleman et al. | Oct 1995 | A |
5474687 | Van Vlasselaer | Dec 1995 | A |
5480378 | Weis-Fogh et al. | Jan 1996 | A |
5484383 | Fitch, Jr. et al. | Jan 1996 | A |
5486359 | Caplan et al. | Jan 1996 | A |
5494578 | Brown et al. | Feb 1996 | A |
5494592 | Latham, Jr. et al. | Feb 1996 | A |
5501371 | Schwartz-Feldman | Mar 1996 | A |
5505685 | Antwiler | Apr 1996 | A |
5510102 | Cochrum | Apr 1996 | A |
5520885 | Coelho et al. | May 1996 | A |
5525477 | Hassouna | Jun 1996 | A |
5533518 | Vogler | Jul 1996 | A |
5560830 | Coleman et al. | Oct 1996 | A |
5575778 | Hardt et al. | Nov 1996 | A |
5577513 | Van Vlasselaer | Nov 1996 | A |
5585007 | Antanavich et al. | Dec 1996 | A |
5588958 | Cunningham et al. | Dec 1996 | A |
5589462 | Patat et al. | Dec 1996 | A |
5601711 | Sklar et al. | Feb 1997 | A |
5601727 | Bormann et al. | Feb 1997 | A |
5603845 | Holm | Feb 1997 | A |
5607579 | Latham, Jr. et al. | Mar 1997 | A |
5614106 | Payrat et al. | Mar 1997 | A |
5618663 | Delmas | Apr 1997 | A |
5632895 | Tsukagoshi et al. | May 1997 | A |
5632905 | Haynes | May 1997 | A |
5641414 | Brown | Jun 1997 | A |
5641622 | Lake et al. | Jun 1997 | A |
5643192 | Hirsh et al. | Jul 1997 | A |
5643193 | Papillon et al. | Jul 1997 | A |
5645540 | Henniges et al. | Jul 1997 | A |
5646004 | Van Vlasselaer | Jul 1997 | A |
5648223 | Van Vlasselaer | Jul 1997 | A |
5649903 | Deniega et al. | Jul 1997 | A |
5663051 | Vlasselaer | Sep 1997 | A |
5674173 | Hlavinka et al. | Oct 1997 | A |
5707331 | Wells et al. | Jan 1998 | A |
5707647 | Dunn et al. | Jan 1998 | A |
5707876 | Levine | Jan 1998 | A |
5716616 | Prockop et al. | Feb 1998 | A |
5723331 | Tubo et al. | Mar 1998 | A |
5724988 | Dennehey et al. | Mar 1998 | A |
5733466 | Benebo et al. | Mar 1998 | A |
5733545 | Hood, III | Mar 1998 | A |
5736033 | Coleman et al. | Apr 1998 | A |
5738784 | Holm et al. | Apr 1998 | A |
5738796 | Bormann et al. | Apr 1998 | A |
5750025 | Holmes et al. | May 1998 | A |
5750658 | Coelho et al. | May 1998 | A |
5762798 | Wenthold et al. | Jun 1998 | A |
5785700 | Olson | Jul 1998 | A |
5786217 | Tubo et al. | Jul 1998 | A |
5788662 | Antanavich et al. | Aug 1998 | A |
5792344 | Holm | Aug 1998 | A |
5795489 | Holm et al. | Aug 1998 | A |
5795571 | Cederholm-Williams et al. | Aug 1998 | A |
5795751 | Apel | Aug 1998 | A |
5811094 | Caplan et al. | Sep 1998 | A |
5811151 | Hendriks et al. | Sep 1998 | A |
5817519 | Zelmanovic et al. | Oct 1998 | A |
5823986 | Peterson | Oct 1998 | A |
5824084 | Muschler | Oct 1998 | A |
5830359 | Knight et al. | Nov 1998 | A |
5833866 | Brown | Nov 1998 | A |
5834418 | Brazeau et al. | Nov 1998 | A |
5837150 | Langley et al. | Nov 1998 | A |
5840502 | Van Vlasselaer | Nov 1998 | A |
5853600 | McNeal et al. | Dec 1998 | A |
5860937 | Cohen | Jan 1999 | A |
5863892 | Stern et al. | Jan 1999 | A |
5865785 | Bischof | Feb 1999 | A |
5885239 | Headley et al. | Mar 1999 | A |
5889584 | Wardlaw | Mar 1999 | A |
5895346 | Wells et al. | Apr 1999 | A |
5899874 | Jonsson | May 1999 | A |
5900245 | Sawhney et al. | May 1999 | A |
5906934 | Grande et al. | May 1999 | A |
5916557 | Berlowitz-Tarrant et al. | Jun 1999 | A |
5916743 | Lake et al. | Jun 1999 | A |
5918622 | Perez et al. | Jul 1999 | A |
5924972 | Turvaville et al. | Jul 1999 | A |
5934803 | Hutter | Aug 1999 | A |
5938621 | Kelly et al. | Aug 1999 | A |
5951160 | Ronk | Sep 1999 | A |
5955032 | Kelly et al. | Sep 1999 | A |
5955436 | Kunkle, Jr. | Sep 1999 | A |
5958250 | Brown et al. | Sep 1999 | A |
5958253 | Holm et al. | Sep 1999 | A |
5961210 | McCardel et al. | Oct 1999 | A |
5980734 | Itoh et al. | Nov 1999 | A |
5980757 | Brown et al. | Nov 1999 | A |
5985315 | Patat et al. | Nov 1999 | A |
5997544 | Nies et al. | Dec 1999 | A |
6007811 | Sawyer et al. | Dec 1999 | A |
6010627 | Hood, III | Jan 2000 | A |
6011490 | Tonnesen et al. | Jan 2000 | A |
6020196 | Hu et al. | Feb 2000 | A |
6022306 | Dumont et al. | Feb 2000 | A |
6025201 | Zelmanovic et al. | Feb 2000 | A |
6027655 | Holm | Feb 2000 | A |
6049026 | Muschler | Apr 2000 | A |
6051146 | Green et al. | Apr 2000 | A |
6051147 | Bischof | Apr 2000 | A |
6053856 | Hlavinka | Apr 2000 | A |
6054122 | MacPhee et al. | Apr 2000 | A |
6063297 | Antanavich et al. | May 2000 | A |
6063624 | Kandler et al. | May 2000 | A |
6071421 | Brown | Jun 2000 | A |
6071422 | Hlavinka et al. | Jun 2000 | A |
6071423 | Brown et al. | Jun 2000 | A |
6090793 | Zimmermann et al. | Jul 2000 | A |
6096309 | Prior et al. | Aug 2000 | A |
6102843 | Kelley et al. | Aug 2000 | A |
6117425 | MacPhee et al. | Sep 2000 | A |
6123655 | Fell et al. | Sep 2000 | A |
6150163 | McPherson et al. | Nov 2000 | A |
6153113 | Goodrich et al. | Nov 2000 | A |
6183737 | Zaleske et al. | Feb 2001 | B1 |
6196987 | Holmes et al. | Mar 2001 | B1 |
6197325 | MacPhee et al. | Mar 2001 | B1 |
6200287 | Keller et al. | Mar 2001 | B1 |
6200606 | Peterson et al. | Mar 2001 | B1 |
6214338 | Antanavich et al. | Apr 2001 | B1 |
6221315 | Giesler et al. | Apr 2001 | B1 |
6245900 | Yamasaki et al. | Jun 2001 | B1 |
6264890 | Boehringer et al. | Jul 2001 | B1 |
6274090 | Coelho et al. | Aug 2001 | B1 |
6277961 | Hock et al. | Aug 2001 | B1 |
6280400 | Niermann | Aug 2001 | B1 |
6286670 | Smith | Sep 2001 | B1 |
6296602 | Headley | Oct 2001 | B1 |
6316247 | Katz et al. | Nov 2001 | B1 |
6322785 | Landesberg et al. | Nov 2001 | B1 |
6327491 | Franklin et al. | Dec 2001 | B1 |
6328765 | Hardwick et al. | Dec 2001 | B1 |
6334842 | Hlavinka et al. | Jan 2002 | B1 |
6342157 | Hood, III | Jan 2002 | B1 |
6351659 | Vilsmeier | Feb 2002 | B1 |
6355239 | Bruder et al. | Mar 2002 | B1 |
6368298 | Beretta et al. | Apr 2002 | B1 |
6368498 | Guilmette | Apr 2002 | B1 |
6398972 | Blasetti et al. | Jun 2002 | B1 |
6406671 | DiCesare et al. | Jun 2002 | B1 |
6409528 | Bodnar | Jun 2002 | B1 |
6410344 | Chung et al. | Jun 2002 | B1 |
6417004 | Brady et al. | Jul 2002 | B1 |
6440444 | Boyce et al. | Aug 2002 | B2 |
6444228 | Baugh et al. | Sep 2002 | B1 |
6464624 | Pages | Oct 2002 | B2 |
6471069 | Lin et al. | Oct 2002 | B2 |
6472162 | Coelho et al. | Oct 2002 | B1 |
6487992 | Hollis | Dec 2002 | B1 |
6508778 | Verkaart et al. | Jan 2003 | B1 |
6516953 | DiCesare et al. | Feb 2003 | B1 |
6523698 | Dennehey et al. | Feb 2003 | B1 |
6544162 | Landin et al. | Apr 2003 | B1 |
6544727 | Hei | Apr 2003 | B1 |
6558341 | Swisher | May 2003 | B1 |
6563953 | Lin et al. | May 2003 | B2 |
6596180 | Baugh et al. | Jul 2003 | B2 |
6623959 | Harris | Sep 2003 | B2 |
6629919 | Egozy et al. | Oct 2003 | B2 |
6638503 | Chitte et al. | Oct 2003 | B2 |
6676629 | Andrew et al. | Jan 2004 | B2 |
6716187 | Jorgensen et al. | Apr 2004 | B1 |
6719901 | Dolecek et al. | Apr 2004 | B2 |
6733471 | Ericson et al. | May 2004 | B1 |
6758978 | Bedell | Jul 2004 | B1 |
6764531 | Hogan | Jul 2004 | B2 |
6777231 | Katz et al. | Aug 2004 | B1 |
6803022 | DiCesare et al. | Oct 2004 | B2 |
6811777 | Mishra | Nov 2004 | B2 |
6830762 | Baugh et al. | Dec 2004 | B2 |
6835353 | Smith et al. | Dec 2004 | B2 |
6835377 | Goldberg et al. | Dec 2004 | B2 |
RE38730 | Wells et al. | Apr 2005 | E |
6899813 | Dolecek et al. | May 2005 | B2 |
6905612 | Dorian et al. | Jun 2005 | B2 |
6911202 | Amir et al. | Jun 2005 | B2 |
RE38757 | Wells et al. | Jul 2005 | E |
6979307 | Beretta et al. | Dec 2005 | B2 |
7011644 | Andrew et al. | Mar 2006 | B1 |
7077273 | Ellsworth et al. | Jul 2006 | B2 |
7077827 | Greenfield | Jul 2006 | B2 |
7155288 | Soykan et al. | Dec 2006 | B2 |
7179391 | Leach et al. | Feb 2007 | B2 |
7195606 | Ballin | Mar 2007 | B2 |
7223346 | Dorian et al. | May 2007 | B2 |
7273886 | Olivero et al. | Sep 2007 | B2 |
7354515 | Coull et al. | Apr 2008 | B2 |
7374678 | Leach et al. | May 2008 | B2 |
7411006 | Shanbrom | Aug 2008 | B2 |
7470371 | Dorian et al. | Dec 2008 | B2 |
7531355 | Rodriguez et al. | May 2009 | B2 |
7553413 | Dorian et al. | Jun 2009 | B2 |
7694828 | Swift et al. | Apr 2010 | B2 |
7780860 | Higgins et al. | Aug 2010 | B2 |
7806276 | Leach et al. | Oct 2010 | B2 |
7832566 | Leach et al. | Nov 2010 | B2 |
7837884 | Dorian et al. | Nov 2010 | B2 |
7845499 | Higgins et al. | Dec 2010 | B2 |
7901584 | Dorian et al. | Mar 2011 | B2 |
7914689 | Higgins et al. | Mar 2011 | B2 |
7954646 | Leach et al. | Jun 2011 | B2 |
7987995 | Dorian et al. | Aug 2011 | B2 |
7992725 | Leach et al. | Aug 2011 | B2 |
8048321 | Leach et al. | Nov 2011 | B2 |
8062534 | Higgins et al. | Nov 2011 | B2 |
8067534 | Jagota et al. | Nov 2011 | B2 |
8119013 | Leach et al. | Feb 2012 | B2 |
8163184 | Leach et al. | Apr 2012 | B2 |
8187477 | Dorian et al. | May 2012 | B2 |
8313954 | Leach et al. | Nov 2012 | B2 |
8328024 | Leach et al. | Dec 2012 | B2 |
8474630 | Dorian et al. | Jul 2013 | B2 |
8567609 | Landrigan et al. | Oct 2013 | B2 |
8596470 | Leach et al. | Dec 2013 | B2 |
20010009757 | Bischof et al. | Jul 2001 | A1 |
20020032112 | Pages | Mar 2002 | A1 |
20020035820 | Farris | Mar 2002 | A1 |
20020076400 | Katz et al. | Jun 2002 | A1 |
20020082220 | Hoemann et al. | Jun 2002 | A1 |
20020090711 | Karlsson | Jul 2002 | A1 |
20020104808 | Blasetti et al. | Aug 2002 | A1 |
20020114775 | Pathak | Aug 2002 | A1 |
20020161449 | Muschler | Oct 2002 | A1 |
20020169408 | Beretta et al. | Nov 2002 | A1 |
20020172666 | Sacchi et al. | Nov 2002 | A1 |
20020182664 | Dolecek et al. | Dec 2002 | A1 |
20020192632 | Hei et al. | Dec 2002 | A1 |
20030033021 | Plouhar et al. | Feb 2003 | A1 |
20030033022 | Plouhar et al. | Feb 2003 | A1 |
20030050709 | Noth et al. | Mar 2003 | A1 |
20030050710 | Petersen et al. | Mar 2003 | A1 |
20030082152 | Hedrick et al. | May 2003 | A1 |
20030185803 | Kadiyala et al. | Oct 2003 | A1 |
20030191429 | Andrew et al. | Oct 2003 | A1 |
20030205538 | Dorian et al. | Nov 2003 | A1 |
20040005246 | Efthimiadis et al. | Jan 2004 | A1 |
20040013575 | Stevens et al. | Jan 2004 | A1 |
20040120942 | McGinnis et al. | Jun 2004 | A1 |
20040171146 | Katz et al. | Sep 2004 | A1 |
20040182395 | Brookman | Sep 2004 | A1 |
20040182788 | Dorian et al. | Sep 2004 | A1 |
20040182795 | Dorian et al. | Sep 2004 | A1 |
20040251217 | Leach et al. | Dec 2004 | A1 |
20050076396 | Katz et al. | Apr 2005 | A1 |
20050084961 | Hedrick et al. | Apr 2005 | A1 |
20050084962 | Simon | Apr 2005 | A1 |
20050109716 | Leach et al. | May 2005 | A1 |
20050130301 | McKay et al. | Jun 2005 | A1 |
20050145187 | Gray | Jul 2005 | A1 |
20050153441 | Hedrick et al. | Jul 2005 | A1 |
20050153442 | Katz et al. | Jul 2005 | A1 |
20050186120 | Dorian et al. | Aug 2005 | A1 |
20050196393 | Shanbrom | Sep 2005 | A1 |
20050196874 | Dorian et al. | Sep 2005 | A1 |
20050247715 | Ellsworth et al. | Nov 2005 | A1 |
20050260174 | Fraser et al. | Nov 2005 | A1 |
20050260175 | Hedrick et al. | Nov 2005 | A1 |
20050282275 | Katz et al. | Dec 2005 | A1 |
20060051865 | Higgins et al. | Mar 2006 | A1 |
20060057693 | Simon | Mar 2006 | A1 |
20060083720 | Fraser et al. | Apr 2006 | A1 |
20060140923 | Evangelista et al. | Jun 2006 | A1 |
20060151384 | Ellsworth et al. | Jul 2006 | A1 |
20060175242 | Dorian et al. | Aug 2006 | A1 |
20060175244 | Dorian et al. | Aug 2006 | A1 |
20060178610 | Nowakowski | Aug 2006 | A1 |
20060196885 | Leach et al. | Sep 2006 | A1 |
20060243676 | Swift et al. | Nov 2006 | A1 |
20060273049 | Leach et al. | Dec 2006 | A1 |
20060273050 | Higgins et al. | Dec 2006 | A1 |
20060278588 | Woodell-May | Dec 2006 | A1 |
20070034579 | Dorian et al. | Feb 2007 | A1 |
20070036768 | Fraser et al. | Feb 2007 | A1 |
20070075016 | Leach | Apr 2007 | A1 |
20070208321 | Leach et al. | Sep 2007 | A1 |
20080011684 | Dorian et al. | Jan 2008 | A1 |
20080164204 | Hatamian et al. | Jul 2008 | A1 |
20080173593 | Coull et al. | Jul 2008 | A1 |
20080193424 | McKale et al. | Aug 2008 | A1 |
20080210645 | Coull et al. | Sep 2008 | A1 |
20080217263 | Higgins et al. | Sep 2008 | A1 |
20080217264 | Leach et al. | Sep 2008 | A1 |
20080217265 | Leach et al. | Sep 2008 | A1 |
20080268064 | Woodell-May | Oct 2008 | A1 |
20080269762 | Simon et al. | Oct 2008 | A1 |
20080283474 | Leach et al. | Nov 2008 | A1 |
20080306431 | Yoo | Dec 2008 | A1 |
20080318317 | Roche et al. | Dec 2008 | A1 |
20090014391 | Leach et al. | Jan 2009 | A1 |
20090018313 | Shanbrom | Jan 2009 | A1 |
20090101599 | Dorian et al. | Apr 2009 | A1 |
20090192528 | Higgins et al. | Jul 2009 | A1 |
20090220482 | Higgins et al. | Sep 2009 | A1 |
20090221075 | Dorian et al. | Sep 2009 | A1 |
20090236297 | Dorian et al. | Sep 2009 | A1 |
20090250413 | Hoeppner | Oct 2009 | A1 |
20090253566 | Chavarria | Oct 2009 | A1 |
20090289014 | Hoeppner | Nov 2009 | A1 |
20100055087 | Higgins et al. | Mar 2010 | A1 |
20100140182 | Chapman et al. | Jun 2010 | A1 |
20100186676 | Van Der Berg | Jul 2010 | A1 |
20100206798 | Dorian et al. | Aug 2010 | A1 |
20100256595 | Leach et al. | Oct 2010 | A1 |
20100323870 | Leach et al. | Dec 2010 | A1 |
20100324450 | Leach et al. | Dec 2010 | A1 |
20110014705 | Leach et al. | Jan 2011 | A1 |
20110020196 | Grippi et al. | Jan 2011 | A1 |
20110021334 | Leach et al. | Jan 2011 | A1 |
20110036786 | Ellsworth | Feb 2011 | A1 |
20110056893 | Leach et al. | Mar 2011 | A1 |
20110065183 | Dorian et al. | Mar 2011 | A1 |
20110077596 | Higgins et al. | Mar 2011 | A1 |
20110168193 | Leach et al. | Jul 2011 | A1 |
20110192804 | Landrigan et al. | Aug 2011 | A1 |
20110251041 | Chavarria et al. | Oct 2011 | A1 |
20120015796 | Leach et al. | Jan 2012 | A1 |
20120145652 | Leach et al. | Jun 2012 | A1 |
20120228203 | Hecker et al. | Sep 2012 | A1 |
20130068676 | Leach et al. | Mar 2013 | A1 |
20130102452 | Leach et al. | Apr 2013 | A1 |
20130196425 | Dorian et al. | Aug 2013 | A1 |
20130294983 | Dorian et al. | Nov 2013 | A1 |
20140051061 | Landrigan et al. | Feb 2014 | A1 |
20140054246 | Landrigan et al. | Feb 2014 | A1 |
20140091048 | Leach et al. | Apr 2014 | A1 |
20140275497 | Leach et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
696278 | Jan 1999 | AU |
9103724 | Mar 1993 | BR |
1321138 | Aug 1993 | CA |
2182862 | Jun 1996 | CA |
2448415 | Dec 2002 | CA |
1074709 | Jul 1993 | CN |
103702729 | Apr 2014 | CN |
56103 | Oct 1860 | DE |
1443359 | Nov 1968 | DE |
4202667 | May 1993 | DE |
090997 | Oct 1983 | EP |
0102773 | Mar 1984 | EP |
0109374 | May 1984 | EP |
0142339 | May 1985 | EP |
0244834 | Nov 1987 | EP |
0253198 | Jan 1988 | EP |
0295771 | Dec 1988 | EP |
0417818 | Mar 1991 | EP |
534178 | Mar 1993 | EP |
0534178 | Mar 1993 | EP |
0592242 | Apr 1994 | EP |
1005910 | Jun 2000 | EP |
1006360 | Jun 2000 | EP |
1289618 | Mar 2003 | EP |
1406492 | Apr 2004 | EP |
1427279 | Jun 2004 | EP |
1467746 | Oct 2004 | EP |
1509326 | Mar 2005 | EP |
1670315 | Jun 2006 | EP |
1716901 | Nov 2006 | EP |
854715 | Nov 1960 | GB |
60-053845 | Mar 1985 | JP |
60250014 | Dec 1985 | JP |
2036872 | Feb 1990 | JP |
02071747 | Mar 1990 | JP |
2000199760 | Jul 2000 | JP |
02129224 | Oct 2000 | JP |
2004-305439 | Nov 2004 | JP |
2005013783 | Jan 2005 | JP |
200598704 | Apr 2005 | JP |
2005524451 | Aug 2005 | JP |
2006-305365 | Nov 2006 | JP |
2006527025 | Nov 2006 | JP |
2008104789 | May 2008 | JP |
WO-8400905 | Mar 1984 | WO |
WO-8802259 | Apr 1988 | WO |
WO-9010031 | Sep 1990 | WO |
WO-9222312 | Dec 1992 | WO |
WO-9305067 | Mar 1993 | WO |
WO-9308904 | May 1993 | WO |
WO-9407548 | Apr 1994 | WO |
WO-9617871 | Jun 1996 | WO |
WO-9617871 | Jun 1996 | WO |
WO-9848938 | Nov 1998 | WO |
WO-0061256 | Oct 2000 | WO |
WO-0074713 | Dec 2000 | WO |
WO-0103756 | Jan 2001 | WO |
WO-0183068 | Nov 2001 | WO |
WO-0238610 | May 2002 | WO |
WO-02060925 | Aug 2002 | WO |
WO-02098566 | Dec 2002 | WO |
WO-03015800 | Feb 2003 | WO |
WO-03024215 | Mar 2003 | WO |
WO-03053362 | Jul 2003 | WO |
WO-03088905 | Oct 2003 | WO |
WO-03092894 | Nov 2003 | WO |
WO-03099412 | Dec 2003 | WO |
WO-2004009207 | Jan 2004 | WO |
WO-2004104553 | Dec 2004 | WO |
WO-2005034843 | Apr 2005 | WO |
WO-2006041406 | Apr 2006 | WO |
WO-2007127834 | Nov 2007 | WO |
WO-2007142908 | Dec 2007 | WO |
WO-2008127639 | Oct 2008 | WO |
WO-2009021257 | Feb 2009 | WO |
WO-2009111338 | Sep 2009 | WO |
WO-2011008836 | Jan 2011 | WO |
Entry |
---|
“Caps for Corning® and Costar® Plastic Labware,” Technical Bulletin. (Dec. 2008) Corning, Incorporated. |
“Cell Isolation Techniques, Methods and Materials, Working with Enzymes,” (2004) (9 pages) Worthington Biochemical Corp. |
“Cell Isolation Theory, Tissue Types,” (2004) (5 pages) Worthington Biochemical Corp. |
“Centrifuge Tubes” Corning Costar brochure. 1996/1997 Catalog pp. 76-77. |
“Clotalyst® Autologous Clotting Factor” brochure. (Aug. 15, 2008) Biomet Biologics. |
“Clotalyst® Autologous Clotting Factor. Would you like to have an autologous thrombin for rapid clotting and haemostasis?” Brochure. Biomet Biologics (Aug. 15, 2008). |
“Corning® 15 and 50 mL Centrifuge Tubes,” Life Sciences. (Jun. 2005) Corning Incorporated. |
“Cytori Celution Cell Concentrate Device,” Exhibit 14, 510(k) Summary, FDA approval K060482 (Sep. 28, 2006). |
“Frequently Asked Questions, 1. Kits, 2. Enzymes,” (2003) 3 pages Worthington Biochemical Corp. |
“Letter CryoSeal FS System. Vaccines, Blood & Biologics,” letter. (Jul. 26, 2007) FDA U.S. Food and Drug Administation. http://www.fda.gov/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/PremarketApprovalsPMAs/ucm091631.htm (Web accessed Aug. 12, 2011). |
“MarrowStim™ Concentration Kit Peripheral Arterial Disease (PAD) Study” brochure. Web. Jul. 2, 2009 http://www.biomet.com/patients/clinical—recruitment—padstudy.cfm. |
“MarrowStim™ Concentration System,” brochure. Biomet Biologics Jun. 15, 2008. |
“Plasmax® Plasma Concentration System” brochure. (Jun. 15, 2008) Biomet® Biologics. |
“Prosys PRP Kit,” brochure Tozai Holdings, Inc. http://tozaiholdings.en.ec21.com/Prosys—PRP—Kit--5467051—5467061.html Printed from Web Aug. 24, 2011. |
“Prosys PRP Kit,” Tozai Holdings, Inc. EC21 Global B2B Marketplace http://www.ec21.com/product-details/Prosys-PRP-Kit--5467061.html Printed from Web Jul. 18, 2011. |
“ThermoGenesis Corp. to Supply Autologous Thrombin Kits to Biomet, Inc.,” PR Newslink: http:/tinyurl.com/4h3up. (Apr. 5, 2005) http://www.noblood.org/press-releases/2128-thermogenesis-corp-supply-autologous-thrombin-kits-biomet-inc [web accessed Sep. 27, 2011]. |
“Trypsinization of Adherent Cells,” (undated) 2 pages. |
“Trypsinizing cells.” Bart's Cookbook, Web. Apr. 14, 2010. http://pingu.salk.edu/˜sefton/Hyper—protocols/trypsin.html. |
Anesthesiology, vol. 81, No. 4, pp. 1074-1077, Oct. 1994, Hiromasa Mitsuhata, M.D., et al., “An Anaphylactic Reaction to Topical Fibrin Glue”. |
Ann Thorac Surg, vol. 53, pp. 530-531, 1992, Mehmet C. Oz, M.D., et al., “Autologous Fibrin Glue From Intraoperatively Collected Platelet-Rich Plasma”. |
Ann Thorac Surg, vol. 56, pp. 387-389, 1993, Robert L. Quigley, M.D., et al., “Intraoperative Procurement of Autologous Fibrin Glue”. |
Badiavas, et al., “Treatment of Chronic Wounds With Bone Marrow-Derived Cells,” (Reprinted) Arch Dermatol. 139:510-516 (Apr 2003). |
Bang, N.U., et al., “Plasma Protein Requirements for Human Platelet Aggregation” Ann. N.Y. Acad Sci, 201:280-299 (1972). |
Berguer, R., R. L. Staerkel, E. E. Moore, F. A. Moore, W. B. Galloway, and M. B. Mockus. “Warning: fatal reaction to the use of fibrin glue in deep hepatic wounds. Case reports.” J Trauma 31:3 (1991): 408-11. |
Berruyer, M., J. Amiral, P. Ffrench, J. Belleville, O. Bastien, J. Clerc, A. Kassir, S. Estanove, and M. Dechavanne. “Immunization by bovine thrombin used with fibrin glue during cardiovascular operations. Development of thrombin and factor V inhibitors,” J Thorac Cardiovasc Surg 105: 5 (1993): 829-7. |
BioCUE™ Platelet Concentration System, Jun. 2010. (2 pages). |
Biopolymers, vol. 27, pp. 763-774, 1988, Gerald Marx, “Mechanism of Fibrin Coagulation Based on Selective, Cation-Driven, Protofibral Association”. |
Boomgaard, et al., “Pooled Platelet Concentrates Prepared by the Platelet-Rich-Plasma Method and Filtered with Three Different Filters and Stored for 8 Days.” Vox Sanq, vol. 68: 82-89, Feb. 1995. |
Brodke, et al., “Bone Grafts Prepared with Selective Cell Retention Technology Heal Canine Segmental Defects as Effectively as Autograft”, SCR-Enriched Bone Grafts Heal Canine Segmental Defects, Journal of Orthopaedic Research (May 2006) pp. 857-866. |
Casali, B., F. Rodeghiero, A. Tosetto, B. Palmieri, R. Immovilli, C. Ghedini, and P. Rivasi. “Fibrin glue from single-donation autologous plasmapheresis.” Transfusion 32:7 (1992): 641-3. |
CLOTALYST™ Automatic Clotting Factor, Would you like to have an autologous thrombin for rapid clotting and haemostasis?, brochure, Biomet Biologics, Inc., Feb. 2007 (12 pages). |
Collier, B.S. et al., “The pH Dependence of Quantitative Ristocetin-induced Platelet Aggregation: Theoretical and Practical Implications—A New Device for Maintenance of Platelet-Rich Plasma pH”, Hematology Service, Clinical Pathology Department, Clinical Center, National Institutes of Health, Bethesda, Md. 20014, Blood, vol. 47, No. 5 (May 1976). |
Connolly, “Injectable Bone Marrow Preparations to Stimulate Osteogenic Repair,” Clinical Orthopaedics and Related Research 313:8-18 (Apr. 1995). |
Connolly, John, M.D., et al. “Development of an Osteogenic Bone-Marrow Preparation.” The Journal of Bone and Joint Surgery, Incorporated. vol. 71-A, No. 5 (Jun. 1989) pp. 684-691. |
Dallari, et al., “In Vivo Study on the Healing of Bone Defects Treated with Bone Marrow Stromal Cells, Platelet-Rich Plasma, and Freeze-Dried Bone Allografts, Alone and in Combination,” Healing of Bone Defects, Journal of Orthopaedic Research (May 2006) pp. 877-888. |
De Ugarte, et al., “Comparison of Multi-Lineage Cells from Human Adipose Tissue and Bone Marrow,” Cells Tissues Organs 174:101-109 (2003). |
De Ugarte, et al., “Differential Expression of Stem Cell Mobilization-Associated Molecules on Multi-Lineage Cells from Adipose Tissue and Bone Marrow,” Immunology Letters 89:267-270 (2003). |
De Wit, et al. “Experiments on the Preparation of Blood Components with the IBM 2991 Blood Cell Processor” Vox Sang. 29: 352-362 (Feb. 10, 1975). |
DelRossi, A. J., A. C. Cernaianu, R. A.Vertrees, C. J. Wacker, S. J. Fuller, J. Cilley Jr., and W. A. Baldino. “Platelet-rich plasma reduces postoperative blood loss after cardiopulmonary bypass.” J Thorac Cardiovasc Surg 100:2 (Aug. 1990): 281-6. |
DePalma, L., et al., “The preparation of fibrinogen concentrate for use as fibrin glue by four different methods.” Transfusion (1993) vol. 33, No. 9; pp. 717-720. |
DeUgarte, M.D., Daniel A., et al., “Future of Fat as Raw Material for Tissue Regeneration,” (Feb. 2003) pp. 215-219, Lippincott Williams & Wilkins, Inc. |
DiMuzio, Paul et al., “Development of a Tissue-Engineered Bypass Graft Seeded with Stem Cells,” Vasucular, vol. 14, No. 6, (2006) pp. 338-342, BC Decker, Inc. |
Drug Intelligence and Clinical Pharmacy, vol. 22, pp. 946-952, Dec. 1988, Dennis F. Thompson, et al., “Fibrin Glue: A Review of Its Preparation, Efficacy, and Adverse Effects as a Topical Hemostat”. |
Edlich, Richard F., George T. Rodeheaver, and John G. Thacker. “Surgical Devices in Wound Healing Management.” In Wound Healing: Biochemical & Clinical Aspects,ed. I. Kelman Cohen, Robert F. Diegelmann, and William J. Lindblad. 581-600. 1st ed., vol. Philadelphia: W.B. Saunders Company, 1992. |
Eppley, et al., “Platelet Quantification and Growth Factor Analysis from Platelet-Rich Plasma: Implications for Wound Healing,” Plastic and Reconstructive Surgery, 114(6):1502-1508 (Nov. 2004). |
Epstein, G. H., R. A. Weisman, S. Zwillenberg, and A. D. Schreiber. “A new autologous fibrinogen-based adhesive for otologic surgery.” Ann Otol Rhinol Laryngol 95 (May 25-26, 1985) 40-5. |
European Communication Pursuant to Article 94(3) EPC mailed May 6, 2013 for PCT/US2010/029957 which claims benefit of U.S. Appl. No. 12/417,789, filed Apr. 3, 2009. |
Fibrostik™ Plasma Concentrator, Attention Operating Surgeon, Cell Factor Technologies, Inc., Jul. 2003. |
First clinical results: Kuderma, H. And Helene Matras. “Die klinische Anwendung der Klebung van Nervenanastomosen mit Gerinnungssubstanzen bei der Rekonstruction verletzter peripherer Nerven.” Wein Klin Wochenschr 87 (Aug. 15, 1975): 495-501. |
Floryan, K. et al. “Home Study Program: Intraoperative Use of Autologous Platelet-Rich and Platelet-Poor Plasma for Orthopedic Surgery Patients” vol. 80, No. 4 (Oct. 2004) p. 667-674. |
Frasier, John K., et al., “Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes,” Nature Clinical Practice Cardiovascular Medicine, vol. 3, Supplement 1 (Mar. 2006) pp. S33-S37. |
Friesen, M.D., Robert, et al. “Blood Conservation During Pediatric Cardiac Surgery: Ultrafiltration of the Extracorporeal Circuit Volume After Cardiopulmonary Bypass.” Anesth. Analg 1993: 77-702-7. |
Galois, et al., “Cartilage Tissue Engineering: State-of-the-Art and Future Approaches,” Pathol Biol (Paris), 53(10), Dec. 2005. |
Gibble, J. W. and P. M. Ness. “Fibrin glue: the perfect operative sealant?” Transfusion 30 (1990): 741-7. |
Gimble, Jeffrey M., “Adipose-Derived Stem Cells for Regenerative Medicine,” Circulation Research (May 11, 2007) pp. 1249-1260, American Heart Association, Inc. |
Gomillion, Cheryl T., et al., “Stem cells and adipose tissue engineering,” Biomaterials 27, Science Direct (2006) pp. 6052-6063, Elsevier. |
GPS® III System, GPS® III Platelet Separation System, Leadership through Technology, brochure, Jul. 2007 (8 sheets). |
GPS® System, “GPS® Platelet Concentrate System,” Cell Factor Technologies, Inc., Biomet Orthopaedics, Inc., (Feb. 29, 2004) (9 pages). |
GPS® System, “Shoulder Recovery with the GPS® Platelet Concentrate System, Rotator Cuff Surgical Techniques,” brochure, Cell Factor Technologies, Inc., Biomet Orthopaedics, Inc., (2004) 6 pages. |
GPS® System, “Shoulder Recovery with the GPS® Platelet Concentrate System, Rotator Cuff Surgical Techniques,” Cell Factor Technologies, Inc., Biomet Orthopaedics, Inc., (2004) 3 pages, http://www.cellfactortech.com/global—products.cfm, printed Sep. 16, 2005. |
GPS® II System, Gravitational Platelet Separation System, “Accelerating the Body's Natural Healing Process,” Biomet Biologics (Jul. 15, 2006) 16 pages. |
GPS® II System, Gravitational Platelet Separation System, “Accelerating the Body's Natural Healing Process,” Cell Factor Technologies, Inc., Biomet Europe (2005) 16 pages, http://www.cellfactortech.com/global—products.cfm, printed Sep. 16, 2005. |
GPS® II System, Gravitational Platelet Separation System, “User Manual,” Cell Factor Technologies, Inc., Biomet Europe [date unknown] 13 pages, http://www.cellfactortech.com/global—products.cfm, printed Sep. 16, 2005. |
Grove, et al., “Plasticity of Bone Marrow-Derived Stem Cells,” Stem Cells: Concise Review, 22, Jan. 2004. |
Guilak, Frank, et al., “Adipose-derived adult stem cells for cartilage tissue engineering,” Biorheology 41 (2004) pp. 389-399, IOS Press. |
Harris, E.L.V. Concentration of the Extract. In. Protein Purification Methods: A Practical Approach Harris, E.L.V.; Angal, S.; Editors. (1989) Publisher: (IRL Press, Oxford, UK), pp. 67-69. |
Hartman, A. R., D. K. Galanakis, M. P. Honig, F. C. Seifert, and C. E. Anagnostopoulos. “Autologous whole plasma fibrin gel. Intraoperative procurement.” Arch Surg 127 (Mar. 1992): 357-9. |
Harvest SmartPrep PRP-20 Procedure Pack, “Instructions for Use” (date unknown). |
Harvest Technologies brochure, SmartPrep2 (2002). |
Hattori, et al., “Osteogenic Potential of Human Adipose Tissue-Derived Stromal Cells as an Alternative Stem Cell Source,” Cells Tissues Organs (2004) 178:2-12 Karger. |
Haynesworth, S.E. et al. “Mitogenic Stimulation of Human Mesenchymal Stem Cells by Platelet Releasate Suggests a Mechanism for Enhancement of Bone Repair by Platelet Concentrate” 48th Annual Meeting of the Orthopaedic Research Society Poster No. 0462 (2002). |
Hennis, H. L., W. C. Stewart, and E. K. Jeter. “Infectious disease risks of fibrin glue [letter].” Ophthalmic Surg 23 (Sep. 1992): 640. |
Hernigou, et al., “Percutaneous Autologous Bone-Marrow Grafting for Nonunions. Influence of the Number and Concentration of Progenitor Cells,” Journal of Bone & Joint Surgery, 87-A(7):1430-1437 (Jul. 2005). |
Hom, D., et al. “Promoting Healing with Recombinant Human Platelet-Derived Growth Factor-BB in a Previously Irradiated Problem Wound.” The Laryngoscope, vol. 113 (pp. 1566-1671) Sep. 2003. |
Hood, Andrew G., et al., “Perioperative Autologous Sequestration III: A New Physiologic Glue with Wound Healing Properties,” (Jan. 1993) vol. 14 pp. 126-129. |
International Preliminary Examination Report and Written Opinion issued Aug. 31, 2010 for PCT/US2009/035564 claiming benefit of U.S. Appl. No. 61/078,178, filed Jul. 3, 2008, which priority is also claimed of said provisional case by U.S. Appl. No. 12/395,085, filed Feb. 27, 2009. |
International Preliminary Report on Patentability and Written Opinion mailed Oct. 13, 2011 for PCT/US2010/029957 which claims benefit of U.S. Appl. No. 12/417,789, filed Apr. 3, 2009. |
International Preliminary Report on Patentability completed Aug. 13, 2009 for PCT/US2008/004687 claiming benefit of U.S. Appl. No. 60/911,407, filed Apr. 12, 2007. |
International Preliminary Report on Patentability mailed Jan. 26, 2012 for PCT/US2010/041942 claiming benefit of U.S. Appl. No. 12/504,413, filed Jul. 16, 2009. |
International Search Report and Written Opinion mailed Aug. 9, 2011 for PCT/US2011/031954 claiming benefit of U.S. Appl. No. 12/758,127, filed Apr. 12, 2010. |
International Search Report and Written Opinion mailed Jul. 2, 2008 for International Application No. PCT/US2008/004687 which claims priority to U.S. Appl. No. 60/911,407, filed Apr. 12, 2007. |
International Search Report and Written Opinion mailed Jul. 3, 2009 for PCT/US2009/035564 claiming benefit of U.S. Appl. No. 61/078,178, filed Jul. 3, 2008. |
International Search Report and Written Opinion mailed Jul. 30, 2010 for PCT/US2010/029957 which claims benefit of U.S. Appl. No. 12/417,789, filed Apr. 3, 2009. |
International Search Report and Written Opinion mailed Nov. 7, 2011 for PCT/US2011/045290 claiming benefit of U.S. Appl. No. 12/846,944, filed Jul. 30, 2010. |
International Search Report and Written Opinion mailed Oct. 8, 2010 for PCT/US2010/041942 claiming benefit of U.S. Appl. No. 12/504,413, filed Jul. 16, 2009. |
International Search Report for International Application No. PCT/US/0316506 mailed Oct. 13, 2003 which claims benefit of U.S. Appl. No. 60/383,013, filed May 24, 2002. |
International Search Report for International Application No. PCT/US2007/012587 mailed Nov. 6, 2007 which claims benefit of U.S. Appl. No. 11/441,276, filed May 25, 2006. |
Invitation to Pay Additional Fees and, Where Applicable, Protest Fee mailed Aug. 6, 2012 for PCT/US2012/034104 claiming benefit of U.S. Appl. No. 13/089,591, filed Apr. 19, 2011. |
Ishida, et al., “Platelet-Rich Plasma With Biodegradable Gelatin Hydrogel Promotes Rabbit Meniscal Tissue Regeneration,” 52nd Annual Meeting of the Orthopaedic Research Society Paper No. 1035, 1 page (2006). |
Jackson, C. M. And Y. Nemerson. “Blood coagulation.” Annu Rev Biochem 49 (1980): 765-811). |
Japan Office Action mailed Aug. 23, 2013 for Japan Patent Application No. 2010-503066. |
Japan Office Action mailed Jan. 22, 2013 for Japan Application No. 2010-503066. |
Jayadev, Suprya. “Trypsinization of Adherent Cells.” Aug. 8, 1991. Web. Apr. 14, 2010 http://www.duke.edu/web/ceramide/protocols/0005.html. |
Johnstone, et al., “Autologous Mesenchymal Progenitor Cells in Articular Cartilage Repair”, Clinical Orthopaedics and Related Research 367S:S156-S162 (Oct. 1999). |
Jorgensen, et al., “Stem Cells for Repair of Cartilage and Bone: The Next Challenge in Osteoarthritis and Rheumatoid Arthritis,” Annals of Rheumatic Diseases, Aug. 2000. |
Journal of Oral Maxillofacial Surgery, vol. 43, pp. 605-611, Helene Matras, M.D., “Fibrin Seal: The State of the Art” (1985). |
Karpatkin, S., “Heterogeneity of Human Platelets. VI., Correlation of Platelet Function with Platelet Volume”, Blood, vol. 51, No. 2 (Feb. 1978). |
Kjaergard, H. K,, U. S. Weis-Fogh, H. Sorensen, J. Thiis, and I. Rygg. “A simple method of preparation of autologous fibrin glue by means of ethanol.” Surg Gynecol Obstet 175 (1992): 72-3. |
Kjaergard, H. K., Fogh Us Weis, and J. J. Thiis. “Preparation of autologous fibrin glue from pericardial blood.” Ann Thorac Sur 55 (1993): 543-4. |
Kumar, Vijay et al. “Stability of Human Thrombin Produced From 11 ml of Plasma Using the Thrombin Processing Device,” Journal of American Society of Extra-Corporeal Technology. JECT: Mar. 2005:37; 390-395. |
Kumar, Vijay et al. “Whole Blood Thrombin: Development of a Process for Intra-Operative Production of Human Thrombin.” Journal of American Society of Extra-Corporeal Technology. JECT: Apr. 2007; 39:18-23. |
Kumar, Vijay et al., “Autologous Thrombin: Intraoperative Production From Whole Blood.” Journal of American Society of Extra-Corporeal Technology. JECT: Apr. 2008; 40:94-98. |
Laryngoscope vol. 99, pp. 974-976, Sep. 1989, Kyosti Laitakari, M.D., et al., “Autologous and Homologous Fibrinogen Sealants: Adhesive Strength”. |
Laryngoscope, vol. 95, pp. 1074-1076, Sep. 1985, Karl H. Siedentop, M.D., et al., “Autologous Fibrin Tissue Adhesive”. |
Laryngoscope, vol. 96, pp. 1062-1064, Oct. 1986, Karl H. Siedentop, M.D., et al., “Extended Experimental and Preliminary Surgical Findings with Autologous Fibrin Tissue Adhesive Made from Patient's Own Blood”. |
Lasher, Lisa, M.D., “My Experience with PRP,” PowerPoint presentation, http://www.cellfactortech.com/global—products.cfm, printed Sep. 16, 2005. |
Lendeckel, Stefan, et al., “Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report,” Journal of Cranio-Maxillofacial Surgery (2004) European Association for Cranio-Maxillofacial Surgery. |
Lerner, R. and N. S. Binur. “Current status of surgical adhesives.” J Surg Res 48 (Feb. 1990): 165-81. |
Longas, Maria O., “An Improved Method for the Purification of Human Fibrinogen.” J. Biochem (1980) vol. 11, pp. 559-564. |
Lu, et al., “Bone Marrow Mesenchymal Stem Cells: Progress in Bone/Cartilage Defect Repair,” 19(1), Jan. 2002. |
Marrowstim Concentration System, Biomet Biologics, Inc., 20 pages (REV Feb. 15, 2008). |
Marx, Gerard, et al., “Heat Denaturation of Fibrinogen to Develop a Biomedical Matrix.” Journal of Biomedical Materials Research Part B: Applied Biomaterials (Apr. 2007) pp. 49-57. |
Masri, Marwan A., et al. “Isolation of Human Fibrinogen of High Purity and in High Yield Using Polyethylene Glycol 1000.” Thromb Haemostas (Struttgart) (1983) vol. 49 (2); pp. 116-119. |
Matras, Helene, H. P. Dinges, H. Lassmann, and B. Mamoli. “Zur nahtlosen interfaszikularen Nerventransplantation im Tierexperiment.” Wein Med Woschtr 122:37 (1972): 517-523. |
Minntech® Filtration Technologies Group, “Hemocor HPH® Hemoconcentrator,” Minntech Corporation (2004); http://www.minntech.com/ftg/products/hph/index.html, printed Jul. 15, 2004 (2 pages). |
Minntech® Filtration Technologies Group, “Medical Applications: Blood Filtration” Minntech Corporation (2004); http://www.minntech.com/ftg/industries/medical/blood—filter.html, printed Jul. 15, 2004 (1 page). |
Minntech® Filtration Technologies Group, “Renaflo® II Hemofilter,” Minntech Corporation (2004); http://www.minntech.com/ftg/products/renaflo/index.html, printed Jul. 15, 2004 (2 pages). |
Molnar, Amy, “Stem Cells from Muscles Can Repair Cartilage, Study Finds Genetically Engineered Muscle-Derived Stem Cells Improved Cartilage Repair in Rats”, American College of Rheumatology, (2005). |
Moretz, W., Jr., J Shea Jr., J. R. Emmett, and J Shea. “A simple autologous fibrinogen glue for otologic surgery.” Otolaryngol Head Neck Surg 95 (Jul. 1986): 122-4. |
Nakagami, Hironori, et al., “Novel Autologous Cell Therapy in Ischemic Limb Disease Through Growth Factor Secretion by Cultured Adipose Tissue-Derived Stromal Cells,” Angiogenesis by Adipose Tissue-Derived Cells, (Dec. 2005) pp. 2542-2547, American Heart Association, Inc. |
Nathan, Suresh,, et al., “Cell-Based Therapy in the Repair of Osteochondral Defects: A Novel Use for Adipose Tissue,” Tissue Engineering, vol. 9, No. 4 (2003) pp. 733-744 Mary Ann Liebert, Inc. |
Nilsson, et al., “Bone Repair Induced by Bone Morphogenetic Protein in Ulnar Defects in Dogs,” The Journal of Bone and Joint Surgery, vol. 68 B., No. 4, Aug. 1986. |
Notice of Allowance mailed Mar. 24, 2011 for U.S. Appl. No. 12/101,586. |
Notice of Allowance mailed May 27, 2010 for U.S. Appl. No. 12/101,594, filed Apr. 11, 2008. |
Notice of Allowance mailed Oct. 18, 2011 for U.S. Appl. No. 12/897,401. |
Office Action (Final) mailed Mar. 18, 2010 for U.S. Appl. No. 12/101,594, filed Apr. 11, 2008. |
Office Action mailed Feb. 3, 2011 for U.S. Appl. No. 12/101,586, filed Apr. 14, 2008. |
Office Action mailed Nov. 16, 2010 for U.S. Appl. No. 12/897,401 claiming benefit of U.S. Appl. No. 12/101,594, filed Apr. 11, 2008. |
Office Action mailed Oct. 16, 2009 for U.S. Appl. No. 12/101,594, filed Apr. 11, 2008. |
Office Action mailed Sep. 20, 2010 for U.S. Appl. No. 12/101,586, filed Apr. 14, 2008. |
Orphardt, Charles E., “Denaturation of Proteins,” Virtual Chembook, Elmhurst College (2003) 3 pages. http://www.elmhurst.edu/˜chm/vchembook/568denaturation.html (web accessed Mar. 9, 2011). |
Otolaryngologic Clinics of North America, vol. 27, No. 1, pp. 203-209, Feb. 1994, Dean M. Toriumi, M.D., et al., “Surgical Tissue Adhesives in Otolaryngology-Head and Neck Surgery”. |
Parchment et al., Roles for in vitro myelotoxicity tests in preclinical drug development and clinical trial planning, Toxicology Pathology, Society of Toxicological Pathologists, vol. 21, No. 2, 1993, pp. 241-250. |
Parker, Anna M., et al., Adipose-derived stem cells for the regeneration of damaged tissues, Expert Opinion, Cell- & Tissue-based Therapy, Expert Opin. Biol. Ther. (2006) pp. 567-578 Informa UK Ltd. |
Planat-Bénard, V., et al., “Spontaneous Cardiomyocyte Differentiation From Adipose Tissue Stroma Cells,” Adipose-Derived Cell Cardiomyocyte (Feb. 6, 2004) pp. 223-229 American Heart Association, Inc. |
Ponticiello, Michael S., “A Rapid Technique for the Isolation and Concentration of Stem Cells from Human Bone Marrow”, Cell Factor Technologies, Inc. (2006) 2 pages. |
Rangappa, Sunil, M.D., “Transformation of Adult Mesenchymal Stem Cells Isolated From the Fatty Tissue Into Cardiomyocytes,” Adult Stem Cells Transformed into Cardiomyoctyes, (2003) pp. 775-779 Ann Thorac Surg. |
Rigotti, M.D., et al, “Clinical Treatment of Radiotherapy Tissue Damage by Lipoaspirate Transplant: A Healing Process Mediated by Adipose-Derived Adult Stem Cells,” Plastic and Reconstructive Surgery, Breast, PRS Journal vol. 119, No. 5, Stem Cell Therapy for Angiogenesis, (Apr. 15, 2007) pp. 1409-1422. |
Rubin, M.D., et al, “Clinical Treatment of Radiotherapy Tissue Damage by Lipoaspirate Transplant: A Healing Process Mediated by Adipose-Derived Adult Stem Cells,” Plastic and Reconstructive Surgery, Discussion vol. 119, No. 5, Stem Cell Therapy for Angiogenesis, (Apr. 15, 2007) pp. 1423-1424. |
Sanal, M. “Does fibrin glue cause foreign body reactions? [letter].” Eur J Pediatr Surg 3 (1992): 190 (1 page). |
Sanal, M., H. Dogruyol, A. Gurpinar, and O. Yerci. “Does fibrin glue cause foreign body reactions?” Eu r J Pediatr Surg 2 (1992): 285-6. |
Schmidt, K.G., et al., “Labelling of Human and Rabbit Platelets with Indium-Oxine Complex”, 23:97-106 (1979). |
Schmidt, K.G., et al., “Preparation of Platelet Suspensions from Whole Blood in Buffer”, Scand. J. Hoemato, 23:88-96 (1979). |
Schäffler, Andreas, et al., “Concise Review: Adipose Tissue-Derived Stromal Cells—Basic and Clinical Implications for Novel Cell-Based Therapies,” Tissue-Specific Stem Cells, Stem Cells® (Apr. 10, 2007) pp. 818-827 AlphaMed Press. |
Semple, Elizabeth, PhD, et al. “Quality of Thrombin Produced From the Patient's Own Plasma Using the TPD™, a New Thrombin-Processing Device.” Journal of American Society of Extra-Corporeal Technology. JECT: 2005; 37:196-200. |
Sierra, D. H. “Fibrin sealant adhesive systems: a review of their chemistry, material properties and clinical applications.” J Biomater Appl 7 (Apr. 1993): 309-52. |
Sigma-Aldrich® Alkaline Phosphatase (Procedure No. 85), drug fact sheet, (2003) pp. 1-2, Sigma-Aldrich, Inc. |
Silver, Frederick H., et al., “Review Preparation and use of fibrin glue in surgery.” Biomaterials 16 (1995) pp. 891-903. |
Solem, Jan Otto, et al., “Hemoconcentration by Ultrafiltration During Open-Heart Surgery,” Scand J Thor Cardiovasc Surg 22:271-274, 1988. |
Sutton, Robin G., et al. “Comparison of Three Blood-Processing Techniques During and After Cardiopulmonary Bypass.” Ann Thorac Surg (1993) vol. 56; pp. 941-943. |
Swift, Mathew J., et al., “Characterization of Growth Factors in Platelet Rich Plasma,” 1-Cell Factor Technologies, http://www.cellfactortech.com/global—products.cfm, printed Sep. 16, 2005. |
Symphony II Platelet Concentrate System/Pcs brochure; “Increasing bone graft bioactivity through reproducible concentrations of natural growth factors,” DePuy (Jan. 2003). |
Takahashi, Kazutoshi et al., “Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors,” Cell, (Nov. 30, 2007) pp. 1-12, Elsevier Inc. |
The American Journal of Surgery, vol. 168, pp. 120-122, Aug. 1994, Roy L. Tawes, Jr., M.D., et al., “Autologous Fibrin Glue: The Last Step in Operative Hemostatis”. |
The American Surgeon, vol. 55, pp. 166-168, Mar. 1989, William D. Spotnitz, M.D., et al., “Successful Use of Fibrin Glue During 2 Years of Surgery at a University Medical Center”. |
The Sports Medicine Center, “Knee Cartilage Implantation”, Carticel™, “Autologous Cultured Chondrocyte Implantation”, http://www.orthoassociates.com/carticel.htm (printed Apr. 6, 2006). |
The Stone Clinic, “Platelet Rich Plasma (PRP)”, web site printed May 2006. |
Weis-Fogh, U. S. “Fibrinogen prepared from small blood samples for autologous use in a tissue adhesive system.” Eur Surg Res 20 (1988): 381-9. |
Weisman, MD., Robert A., “Biochemical Characterization of Autologous Fibrinogen Adhesive,” Laryngoscope 97: Oct. 1987; pp. 1186-1190. |
Wiseman, David M., David T. Rovee, and Oscar M. Alverez. “Wound Dressings: Design and Use.” In Wound Healing: Biochemical & Clinical Aspects,ed. I. Kelman Cohen, Robert F. Diegelmann, and William J. Lindblad. 562-580. 1st ed., vol. Philadelphia: W. B. Saunders Company, 1992. |
Woodell-May, et al., “Producing Accurate Platelet Counts for Platelet Rich Plasma: Validation of a Hematology Analyzer and Preparation Techniques for Counting,” Scientific Foundation, Journal of Carniofacial Surgery 16(5):749-756 (Sep. 2005). |
Written Opinion of the International Preliminary Examining Authority mailed Mar. 17, 2009 for International Application No. PCT/US2008/004687 which claims priority to U.S. Appl. No. 60/911,407, filed Apr. 12, 2007. |
Yoon, Eulsik, M.D., Ph.D., et al., “In Vivo Osteogenic Potential of Human Adipose-Derived Stem Cells/Poly Lactide-Co-Glycolic Acid Constructs for Bone Regneration in a Rat Critical-Sized Calvarial Defect Model,” Tissue Engineering, vol. 13, No. 3 (2007) pp. 619-627 Mary Ann Liebert, Inc. |
Zhang, Duan-zhen, et al., “Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction,” Chinese Medical Journal, vol. 120, No. 4 (2007) pp. 300-307 General Hospital of Shenyang Military Region, Shenyang, China. |
Zuk, Patricia A., Ph.D., “Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies,” Tissue Engineering, vol. 7, No. 2, (2001) pp. 211-228 Mary Ann Liebert, Inc. |
International Preliminary Report on Patentability and Written Opinion mailed Oct. 31, 2013 for PCT/US2012/034104 claiming benefit of U.S. Appl. No. 13/089,591, filed Apr. 19, 2011. |
International Search Report and Written Opinion mailed Dec. 5, 2013 for PCT/US2013/056793 claiming benefit of U.S. Appl. No. 13/595,461, filed Aug. 27, 2012. |
Japanese Office Action mailed May 20, 2014 for Japanese Application No. JP2012-503768. |
Japanese Office Action mailed Sep. 9, 2014 for Japan Patent Application No. 2012-520742, which claims benefit of PCT/US2010/041942 filed Jul. 14, 2010, which claims benefit of U.S. Appl. No. 12/504,413, filed Jul. 16, 2009. |
Minivalve international: duckbill valves—du 054.001 sd, <http://www.minivalve.com/htm/DV054.htm>, Accessed Jun. 30, 2014, 1 page. |
Momentive SiloprenLSR 2050, Jun. 30, 2014, 3 pages. |
Vernay Product Information Sheet, Umbrella Check Valve, Part No. V251010200, Jul. 2013, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20130294983 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
60377559 | May 2002 | US | |
60379951 | May 2002 | US | |
60382639 | May 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11584414 | Oct 2006 | US |
Child | 12344895 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13480849 | May 2012 | US |
Child | 13932559 | US | |
Parent | 12951701 | Nov 2010 | US |
Child | 13480849 | US | |
Parent | 12344895 | Dec 2008 | US |
Child | 12951701 | US | |
Parent | 11108387 | Apr 2005 | US |
Child | 11584414 | US | |
Parent | 10176272 | Jun 2002 | US |
Child | 11108387 | US |