As known in the art, there are many safety critical applications for magnetic sensor integrated circuits (ICs). There are a variety of specifications directed to improving functional safety and achieving higher overall quality levels and lower field failure rates. For example, test modes for major functional parameters of an IC allow customers to implement test functionality prior to insertion on a printed circuit board, for example. However, after installation in a system or subsystem, such as an automobile, there are limited test opportunities to ensure that components are operating properly.
In one aspect of the invention, a magnetic field sensor comprises: a sensing element, an analog circuit path coupled to the sensing element for generating an output voltage proportional to a magnetic field applied to the sensing element, and a coil in proximity to the sensing element, the coil having a first terminal that is accessible external to the magnetic field sensor.
The magnetic field sensor can further include one or more of the following features: the sensing element comprises a magnetic sensing element, the magnetic sensing element comprises a Hall element, the magnetic sensing element comprises a magnetoresistance element, the integrated circuit comprises a linear current sensor, the magnetic field sensor comprises a closed loop magnetic sensor, the coil is located on an opposite side of the lead frame from the die and enclosed in an over molded package, and/or the coil is located on the opposite side of the lead frame from the die and enclosed in a housing.
In another aspect of the invention, a magnetic field sensor comprises: a lead frame having a first surface and a second opposing surface, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second opposing surface attached to the first surface of the lead frame, a non-conductive mold material enclosing the die and at least a portion of the lead frame, and a conductive coil secured to the non-conductive mold material, wherein the coil has at least one terminal to provide a connection external to the magnetic field sensor.
The sensor can further include one or more of the following features: the non-conductive mold material encloses the coil, a second mold material, the second mold material is ferromagnetic, and/or a housing encloses said coil.
The foregoing features of this invention, as well as the invention itself, may be more fully understood from the following description of the drawings in which:
Exemplary embodiments of the invention provide a magnetic field sensor with external control of an on chip coil for generating a magnetic field for diagnostic/self test functionality, calibration, and/or back bias applications. In some embodiments, such conductive coils are formed on the semiconductor die itself. With this arrangement, a user can control a signal on the coil to meet the needs of a particular application. While exemplary embodiments of the invention are shown and described as having particular configurations, elements, and functions, it is understood that embodiments of the invention are applicable to magnetic field sensors in general in which external control of an internal coil is desirable.
In one aspect of the invention, magnetic sensor provides external control of an on chip coil to enable self-testing of a device to improve functional safety levels. Access to the coil also facilitates the manufacture of a closed loop sensor without the need to procure and assemble a compensation coil into a finished assembly.
As is known in the art, IS026262 is a specification for automotive OEMs directed to improving functional safety and achieving higher overall quality levels and lower field failure rates. Providing test modes for functional parameters of an IC in accordance with exemplary embodiments of the invention allows users to implement testing procedures at various stages of manufacture and use, such as after installation in an automobile. Thus, an IC can be tested after installation to ensure proper functioning. Providing test modes also improves functional safety in safety critical applications, such as accelerator pedal positioning. For example, a linear Hall IC having test functionality in accordance with exemplary embodiments of the invention can communicate that the IC is operating properly through self-test processing, which improves the functional safety of the entire throttle system.
In additional embodiments, an on chip coil with externally accessible terminals allows users of the magnetic sensor ICs to apply diagnostic magnetic fields to the sensing element to verify proper operation of the IC on an as needed basis, for example. In one embodiment having a closed loop system, accuracy of the system is increased by nearly eliminating the effects of sensitivity drift over temperature. In exemplary embodiments of the invention, an on-chip coil is used in a closed loop magnetic sensor.
The sensor IC senses current in a manner well known in the art. In general, a magnetic field sensing element, such as a Hall element 104, generates a voltage in response to an applied magnetic field. A dynamic offset cancellation module 106 ‘chops’ the signal and a signal recovery module 108 provides an output signal. Exemplary current sensing is shown and described for example, in U.S. Pat. No. 7,923,996, and U.S. Patent Publication No. US2011/001.8533, which are incorporated herein by reference. It is understood that other techiques can be used to meet the needs of a particular application.
As shown in
The magnetic field sensing element 104 in this and other embodiments can be, but is not limited to, a Hall effect element, a magnetoresistance element, or a magnetotransistor. As is known, there are different types of Hall effect elements, for example, a planar Hall element, a vertical Hall element, and a Circular Vertical Hall (CVH) element. As is also known, there are different types of magnetoresistance elements, for example, a semiconductor magnetoresistance element such as Indium Antimonide (InSb), a giant magnetoresistance (GMR) element, an anisotropic magnetoresistance element (AMR), a tunneling magnetoresistance (TMR) element, and a magnetic tunnel junction (MTJ). The sensing element 104 may include a single element or, alternatively, may include two or more elements arranged in various configurations, e.g., a half bridge or full (Wheatstone) bridge. Depending on the device type and other application requirements, the sensing element 104 may be a device made of a type IV semiconductor material such as Silicon (Si) or Germanium (Ge), or a type semiconductor material like Gallium-Arsenide (GaAs) or an Indium compound, e.g., Indium-Antimonide (InSb).
As is known, some of the above-described magnetic field sensing elements tend to have an axis of maximum sensitivity parallel to a substrate that supports the magnetic field sensing element, and others of the above-described magnetic field sensing elements tend to have an axis of maximum sensitivity perpendicular to a substrate that supports the magnetic field sensing element. In particular, planar Hall elements tend to have axes of sensitivity perpendicular to a substrate, while metal based or metallic magnetoresistance elements (e.g., GMR, TMR, AMR) and vertical Hall elements tend to have axes of sensitivity parallel to a substrate.
As used herein, the term “magnetic field sensor” is used to describe a circuit that uses a magnetic field sensing element, generally in combination with other circuits. Magnetic field sensors are used in a variety of applications, including, but not limited to, an angle sensor that senses an angle of a direction of a magnetic field, a current sensor that senses a magnetic field generated by a current carried by a current-carrying conductor, a magnetic switch that senses the proximity of a ferromagnetic object, a rotation detector that senses passing ferromagnetic articles, for example, magnetic domains of a ring magnet, and a magnetic field sensor that senses a magnetic field density of a magnetic field.
Exemplary embodiments of the invention are appliable to a variety of sensing applications having a range of sensing elements. Exemplary sensors include magnetic field, for example automotive speed and position sensors, current sensors, or package scale NMR devices for use in chemical or biological applications. Exemplary embodiments of the invention are applicable to a wide range of applications in which sensing magnetic fields generated by moving magnets or flowing current are desirable. For example, exemplary embodiments of the invention are useful for performing diagnostic functions for a device installed in an automobile in safety critical applications.
In safety critical applications it is desirable to improve the safety integrity level (SIL) of the sensor, such as by using self-test diagnostics. As described more fully below, in exemplary embodiments of the invention, the analog signal path of a sensor can be stimulated and evaluated. In one embodiment, output accuracy of the device over temperature can be enhanced.
Current in the coil 204 stimulates the Hall element 202 at the front end of the sensing circuitry when current flows through the coil by generating a magnetic field. With this arrangement, the entire analog signal path can be tested.
By providing external control over the coil 204, the analog signal path programmed sensitivity can be analyzed by the end user very accurately. By applying a constant current through the coil 204, the magnetic field generated by the coil is fixed. This fixed magnetic field causes a deflection on the output of the analog output proportional to the gain of the analog signal path. Since the gain of the device is programmable and the coil is defined, the device can provide an accurate measurement of the analog signal path by the end user detecting the change in output voltage or output current in response to the applied coil stimulus or current.
Since a user can control the signal on the coil, certain failure modes can be forced to check for detection. In addition, the offset of the device in the offset cancellation module 106 can also be tested. Since the zero gauss field analog output voltage is programmed, the zero field output signal as well as the signal path gain can be self-tested with high accuracy. If it were to drift for some reason, the drift can be identified during the user-test.
With external control of the coil, a user can exercise the device to meet the needs of a particular application. For example, some users may want to do a quick functional check and other users may want to determine whether the sensitivity of the device is within some specified window.
It is understood that the ability to control a coil in a magnetic sensor is desirable for various applications. Coils are used in magnetic field sensors for various reasons, for example to generate a magnetic field for diagnostic or self test functionality as described above and in a U.S. Patent Application No. 2010/00211347, for calibration as is described in a U.S. Pat. No. 8,030,918, and/or for resetting a GMR magnetic field sensing element as described in a U.S. Pat. No. 8,063,634, each of which is assigned to the Assignee of the subject application and incorporated herein by reference in its entirety. In many instances, such conductive coils are formed on the semiconductor die itself.
In another aspect of the invention, a magnetic field sensor includes a coil with externally accessible terminals that functions as a back bias magnet, so as to provide a magnetic field which can be used to detect movement of a proximate target.
Referring to the cross-sectional view of
In use, the magnetic field sensor 300 like the other sensor embodiments described herein may be positioned in proximity to a moveable magnetically permeable ferromagnetic article, or target, such as the illustrated gear 312, such that the magnetic field transducer 322 is adjacent to the article 312 and is thereby exposed to a magnetic field altered by movement of the article. The magnetic field transducer 322 generates a magnetic field signal proportional to the magnetic field.
While the magnetic field sensor 300 in
The ferromagnetic article 312 may be comprised of a hard ferromagnetic, or simply hard magnetic material (i.e., a permanent magnet such as a segmented ring magnet), a soft ferromagnetic material, or even an electromagnet and embodiments described herein may be used in conjunction with any such article arrangement.
In embodiments in which the article 312 is comprised of a soft ferromagnetic material, the ferromagnetic mold material 330 is comprised of a hard ferromagnetic material to form a bias magnet; whereas in embodiments in which the article 312 is comprised of a hard ferromagnetic material, the ferromagnetic mold material 330 may be soft ferromagnetic material to form a concentrator, or a hard magnetic material where a bias field is desired (for example, in the case of a magnetoresistance element that is biased with a hard magnetic material or permanent magnet). In other embodiments the mold material 330 may be a nonconductive and non ferromagnetic mold material similar to the material for the first mold element 320. In embodiments in which the ferromagnetic mold material 330 comprises a hard ferromagnetic material to form a bias magnet and in which the sensor 300 is oriented relative to the target such that transducer 322 is closer to the target than the ferromagnetic mold material 330 as shown, the bias magnet may be referred to as a back bias magnet.
The magnetic field sensor 300 generally includes additional circuitry formed in the active surface 314a of the die 314 for processing the magnetic field signal provided by the transducer 322. The lead frame 318 includes leads 324a-324c for coupling the circuitry to system components (not shown), such as a power source or microcontroller. Electrical connection between the leads 324a-324c and the semiconductor die 314 can be provided with wire bonds 326a-326e, respectively as shown. While the sensor 300 is shown to include three leads 324a-324c, it will be appreciated by those of ordinary skill in the art that various numbers of leads are possible. Other techniques for electrically coupling the lead frame leads to the sensor components include solder bumps or balls or pillar bumps.
The integrated circuit sensor 300 may be provided in the form of a two to six pin Single In-Line (SIP) package, or some other number of pins as appropriate. The die attach area 316 on the first surface 318a of a lead frame 318 is generally a dedicated area of the conductive lead frame to accept the semiconductor die 314. The die attach area 316 is sometimes referred to as a die attach paddle or a die attach pad and in some embodiments the die attach pad may be a silver plated or a NiPdAu area for example. Alternatively, as described in a co-pending U.S. patent application Ser. No. 13/350,970 entitled “Methods and Apparatus for a Magnetic Sensor having a Non-conductive Die Paddle” which was filed on Jan. 16, 2012 and assigned to the Assignee of the subject application, it may be desirable to form the die attach area with a non-conductive material, particularly in applications where Eddy currents can occur. Conventional techniques for securing the die 314 to the die attach area 316 include the use of adhesives, such as epoxy or an adhesive tape. It will be appreciated by those of ordinary skill in the art that the die attach area may or may not be a contiguous area.
The non-conductive mold material 320 is comprised of a non-conductive material so as to electrically isolate and mechanically protect the die 314 and the enclosed portion of the lead frame 318. Suitable materials for the non-conductive mold material 320 include thermoset and thermoplastic mold compounds and other commercially available IC mold compounds. It will be appreciated that the non-conductive mold material 320 can contain a ferromagnetic material, such as in the form of ferromagnetic particles, as long as such material is non-conductive.
The non-conductive mold material 320 is applied to the lead frame/die subassembly to enclose the die 314 and a portion of the lead frame 318. The non-conductive mold material 320 has a first surface 320a and a second, opposing surface 320b. The shape and dimensions of the non-conductive mold material are selected to suit a particular IC package.
In some embodiments as noted above, the ferromagnetic mold material 330 is comprised of a hard or permanent magnetic material to form a bias magnet. As will be apparent to those of ordinary skill in the art, various materials are suitable for providing the ferromagnetic mold material 330 depending on the operating temperature range and final package size. In some embodiments, it may be desirable for the ferromagnetic mold material to have a coercivity larger than its remanence.
Illustrative hard magnetic materials for the ferromagnetic mold material include, but are not limited to hard magnetic ferrites, SmCo alloys, NdFeB alloy materials, or Plastiform® materials of Arnold Magnetic Technologies Corp., or other plastic compounds with hard magnetic particles, for example a thermoset polymer such as polyphenylene sulfide material (PPS) or nylon material containing SmCo, NdFeB, or hard ferromagnetic ferrite magnetic particles; or a thermoset polymer such as SUMIKON®EME of Sumitomo Bakelite Co., Ltd or similar type of thermoset mold material containing hard magnetic particles. In some embodiments it may be desirable to align the hard ferromagnetic particles during molding to form a more isotropic or directional permanent magnetic material by molding in the presence of a magnetic field; whereas, in other embodiments, a sufficient magnet may result without an alignment step during molding for isotropic materials. It will be appreciated that a NdFeB or a SmCo alloy may contain other elements to improve temperature performance, magnetic coercivity, or other magnetic properties useful to a magnetic design.
In other embodiments, the ferromagnetic mold material 330 is comprised of a soft ferromagnetic material to form a concentrator. As will be apparent to those of ordinary skill in the art, various materials are suitable for providing the ferromagnetic mold material 30 in the form of a soft ferromagnetic material. In some embodiments, it may be desirable for the soft ferromagnetic mold material to have a relatively low coercivity and high permeability. Suitable soft ferromagnetic materials include, but are not limited to permalloy, NiCo alloys, NiFe alloys, steel, nickel, and soft magnetic ferrites.
The ferromagnetic mold material 330 is secured to the non-conductive mold material 320. The ferromagnetic mold material contacts the second surface 320b of the non-conductive mold material and also a portion of the sides of the non-conductive mold material between the first and second surfaces 320a, 320b, as shown.
In some embodiments, a portion of the non-conductive mold material 320 that contacts the ferromagnetic mold material 330 and/or the portion of the ferromagnetic mold material that contacts the non-conductive mold material has a securing mechanism in order to improve the adhesion between the two materials and to prevent or reduce lateral slippage or shear between the materials. As one example, the lead frame 318 has extensions 318c which extend beyond the non-conductive mold material and are enclosed by the ferromagnetic mold material, as shown. Such lead frame extensions additionally enhance the adhesion of the ferromagnetic mold material to the lead frame itself. In such embodiments utilizing lead frame portions as a securing mechanism such that the ferromagnetic mold material contacts such lead frame portions, it will be appreciated that the ferromagnetic mold material should be non-conductive or have a sufficiently low conductivity to prevent the leads from electrically shorting resulting in the device not operating as intended. Alternative forms of securing mechanisms are shown in other embodiments.
As is shown in
According to the alternative cross-sectional view of
The illustrative coil 33 on the other hand is positioned relative to the magnetic field sensing element 322 to function as a back bias magnet, so as to provide a magnetic field which can be used to detect movement of a proximate target. To this end, the coil 333 is positioned adjacent to the second surface 320b of the non-conductive mold material 320 so that the transducer 322 is closer to the target 312 than the coil 333, as shown. Here again, it will be appreciated that it may be desirable in certain applications to rotate the sensor by 180° so that the coil 333 is closer to the target than the transducer or to rotate the sensor by 90° so that the major face of the transducer is orthogonal to the target, thereby achieving a different type of magnetically sensitive sensor, as may be desirable when the transducer is a magnetoresistance element for example which has a different axis of sensing element sensitivity than a planar Hall element. It may also be desirable in an embodiment to rotate coil 333 such that its central axis is parallel to the surface of the die 314 for certain sensor configurations and sensing element combinations.
Various techniques and materials can be used to form the coil 333. For example, the coil can be formed from copper wire of various sizes and with various automated processes so as to provide an insulator between coil windings. The coil material selection, wire gauge selection, number of turns, and other design choices can be readily varied to suit a particular application so as to produce a magnetic field of a desired strength. The coil 333 may be formed so that each turn is in the shape of a circle, rectangle, or other shapes such as an oval, as desirable to suit a particular application and packaging arrangement.
The coil 333 may be secured to the second surface 320b of the non-conductive mold material 320 by various means. As one example, an adhesive, such as an epoxy, may be used to secure the coil in place. Once secured in place, the mold material 330 may be formed in the manner described above, such as by injection molding for example.
In operation, a bias current may be applied to the coil 333 which causes a bias magnetic field to be generated. The transducer 322 is responsive to perturbations in the magnetic field caused by movement of the target 312. It will be appreciated by those of ordinary skill in the art that the mold material 330 can be provided in the form of a hard ferromagnetic material, a soft ferromagnetic material, or even a non-conductive material. For example, in embodiments in which the material 330 is a soft ferromagnetic material, the magnetic field generated by the coil 333 can be focused or otherwise concentrated as desired by the soft ferromagnetic mold material 330. Alternatively, in embodiments in which the material 330 is a hard ferromagnetic material, the magnetic field provided by the coil 333 can be used to modulate the magnetic field provided by the hard ferromagnetic material 330, in order to thereby reduce the peak current otherwise required to provide the same peak value of magnetic field strength when compared to the case of the coil alone (i.e., if the hard ferromagnetic mold material 330 were not present). In another embodiment, a separately formed element may be disposed in the central aperture 340.
When checking the part the for proper operation, such as or safety integrity level (SIL) the current applied to the coil is changed, for example, by a change in the input current applied to the coil externally from the package. As noted above, the coil current can be controlled via connection to one or two (or more) external pins of the package. The change in output voltage of the part should change due to the change in magnetic field caused by the change of coil current. The output voltage changed can be monitored, such as by user-test circuitry (see
In some embodiments, since the back bias functionality is provided by the coil, the mold material 330 may be eliminated entirely in which case the non-conductive mold material 320 with the coil 333 attached to its second surface 320b can be packaged to provide the resulting sensor IC. Such an arrangement can be provided in a package of the type described in a U.S. Pat. No. 6,265,865 or a U.S. Pat. No. 5,581,179, each of which is assigned to the Assignee of the subject application and incorporated herein by reference in its entirety.
Referring now to
The non-conductive mold material 474 has a protrusion 486 extending away from a second surface 470b of the lead frame 470 as shown. The protrusion 486 may prevent there being a void in the bottom surface of the sensor 400 (adjacent to the second end 480b of the ferromagnetic mold material), since the presence of a void may make overmolding more difficult. It will be appreciated by those of ordinary skill in the art that the protrusion may extend all or only part of the way to the second end 480b of the mold material.
The sensor includes a coil 433 that may the same as or similar to the coil 333 of
While the sensor 400 is shown to have a protrusion extending only partially through the mold material 480 to terminate before the second end 480b of the mold material, it will be appreciated that a similar sensor including a coil that may be (although is not required to be) concentrically disposed with respect to a protrusion of the non-conductive mold material can be provided with a protrusion extending to the second end 480b of the mold material 480.
In operation, a bias current may be applied to the coil 433 which causes a bias magnetic field to be generated. The transducer 464 is responsive to perturbations in the magnetic field caused by movement of a target. The bias current may be changed to cause a change in the output voltage at a known time in order to check the functionality of the package sensor by looking for a change in response of the output voltage. It will be appreciated by those of ordinary skill in the art that the mold material 480 can be provided in the form of a hard ferromagnetic material, a soft ferromagnetic material, or even a non-conductive material. For example, in embodiments in which the material 480 is a soft ferromagnetic material, the magnetic field generated by the coil 433 can be focused or otherwise concentrated as desired by the soft ferromagnetic mold material 480. Alternatively, in embodiments in which the material 480 is a hard ferromagnetic material, the magnetic field provided by the coil can be used to modulate the magnetic field provided by the hard ferromagnetic material 480, in order to thereby reduce the peak current otherwise required to provide the same magnetic field strength with just the coil (i.e., if the hard ferromagnetic mold material 480 were not present).
Here again, since the back bias functionality is provided by the coil, the mold material 480 may be eliminated entirely (as is shown in
In applications including the mold material 480, such mold material may be tapered from a first end 480a proximate to the lead frame 470 to a second end 480b distal from the lead frame and the sensor may, optionally, include a third mold material 490 in the form of an overmold in order to protect and electrically insulate the device. In another embodiment a housing 490 may be used as in U.S. Pat. Nos. 5,045,920 and 5,581,179, which are assigned to the assignee of the present invention and incorporated herein by reference. In such an embodiment, the third mold material may be replaced by the housing which is pre-molded and the welded to the plastic package, for example. In other embodiments the pre-molded, or otherwise manufactured, housing may be used in place of the second mold material where only the first and second mold versions are used, in such an embodiment the coil is enclosed by the pre-molded housing.
Referring to
The sensor includes a coil 433′ that may the same as or similar to the coil 433 of
In operation, a bias current is applied to the coil 433′ which causes a bias magnetic field to be generated and the transducer 464 is responsive to perturbations in the magnetic field caused by movement of a proximate target. The bias current may be changed to cause a change in the output voltage at a known time in order to check the functionality of the package sensor by looking for a change in response of the output voltage. While the ferromagnetic mold material is eliminated in the sensor 400′ of
In another embodiment, the coil may be used to create a closed loop current sensor. In this embodiment the packaged magnetic field sensor and at least one coil inside the package (either on the die, in the package, or both), in any package form or style such as SIP, SOIC, QFN, or other package of interest, are connected externally to the package with a circuit. The user circuit applies a current to the coil inside the package (or on the die of the sensor) to maintain the output voltage of the sensor at a known voltage (or current for a current output device such as a “two-wire” part). This has the advantage of allowing higher current to be used in the coil, particularly for the case of the coils describe in
Having described exemplary embodiments of the invention, it will now become apparent to one of ordinary skill in the art that other embodiments incorporating their concepts may also be used. The embodiments contained herein should not be limited to disclosed embodiments but rather should be limited only by the spirit and scope of the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3195043 | Burig et al. | Jul 1965 | A |
3281628 | Bauer et al. | Oct 1966 | A |
3607528 | Gassaway | Sep 1971 | A |
3661061 | Tokarz | May 1972 | A |
3728786 | Lucas et al. | Apr 1973 | A |
4048670 | Eysermans | Sep 1977 | A |
4188605 | Stout | Feb 1980 | A |
4204317 | Winn | May 1980 | A |
4236832 | Komatsu et al. | Dec 1980 | A |
4283643 | Levin | Aug 1981 | A |
4315523 | Mahawili et al. | Feb 1982 | A |
4438347 | Gehring | Mar 1984 | A |
4573258 | Io et al. | Mar 1986 | A |
4614111 | Wolff | Sep 1986 | A |
4670715 | Fuzzell | Jun 1987 | A |
4719419 | Dawley | Jan 1988 | A |
4733455 | Nakamura et al. | Mar 1988 | A |
4745363 | Carr et al. | May 1988 | A |
4746859 | Malik | May 1988 | A |
4752733 | Petr et al. | Jun 1988 | A |
4758943 | Aström et al. | Jul 1988 | A |
4760285 | Nelson | Jul 1988 | A |
4769344 | Sakai et al. | Sep 1988 | A |
4772929 | Manchester | Sep 1988 | A |
4789826 | Willett | Dec 1988 | A |
4796354 | Yokoyama et al. | Jan 1989 | A |
4823075 | Alley | Apr 1989 | A |
4833406 | Foster | May 1989 | A |
4908685 | Shibasaki et al. | Mar 1990 | A |
4910861 | Dohogne | Mar 1990 | A |
4935698 | Kawaji et al. | Jun 1990 | A |
4944028 | Iijima et al. | Jul 1990 | A |
4970411 | Halg et al. | Nov 1990 | A |
4983916 | Iijima et al. | Jan 1991 | A |
5012322 | Guillotte | Apr 1991 | A |
5021493 | Sandstrom | Jun 1991 | A |
5028868 | Murata et al. | Jul 1991 | A |
5045920 | Vig et al. | Sep 1991 | A |
5078944 | Yoshino | Jan 1992 | A |
5084289 | Shin et al. | Jan 1992 | A |
5121289 | Gagliardi | Jun 1992 | A |
5137677 | Murata | Aug 1992 | A |
5139973 | Nagy et al. | Aug 1992 | A |
5167896 | Hirota et al. | Dec 1992 | A |
5185919 | Hickey | Feb 1993 | A |
5196794 | Murata | Mar 1993 | A |
5210493 | Schroeder et al. | May 1993 | A |
5216405 | Schroeder et al. | Jun 1993 | A |
5247202 | Popovic et al. | Sep 1993 | A |
5247278 | Pant et al. | Sep 1993 | A |
5250925 | Shinkle | Oct 1993 | A |
5289344 | Gagnon et al. | Feb 1994 | A |
5286426 | Rano, Jr. et al. | Mar 1994 | A |
5315245 | Schroeder et al. | May 1994 | A |
5329416 | Ushiyama et al. | Jul 1994 | A |
5332965 | Wolf et al. | Jul 1994 | A |
5351028 | Krahn | Sep 1994 | A |
5412255 | Wallrafen | May 1995 | A |
5414355 | Davidson et al. | May 1995 | A |
5424558 | Borden et al. | Jun 1995 | A |
5432444 | Yasohama | Jul 1995 | A |
5434105 | Liou | Jul 1995 | A |
5453727 | Shibasaki et al. | Sep 1995 | A |
5469058 | Dunnam | Nov 1995 | A |
5479695 | Grader et al. | Jan 1996 | A |
5488294 | Liddell et al. | Jan 1996 | A |
5491633 | Henry et al. | Feb 1996 | A |
5497081 | Wolf et al. | Mar 1996 | A |
5500589 | Sumcad | Mar 1996 | A |
5500994 | Itaya | Mar 1996 | A |
5508611 | Schroeder et al. | Apr 1996 | A |
5514953 | Schultz et al. | May 1996 | A |
5521501 | Dettmann et al. | May 1996 | A |
5551146 | Kawabata et al. | Sep 1996 | A |
5581170 | Mammano et al. | Dec 1996 | A |
5581179 | Engel et al. | Dec 1996 | A |
5621319 | Bilotti et al. | Apr 1997 | A |
5627315 | Figi et al. | May 1997 | A |
5631557 | Davidson | May 1997 | A |
5640090 | Furuya et al. | Jun 1997 | A |
5691637 | Oswald et al. | Nov 1997 | A |
5712562 | Berg | Jan 1998 | A |
5714102 | Highum et al. | Feb 1998 | A |
5719496 | Wolf | Feb 1998 | A |
5729128 | Bunyer et al. | Mar 1998 | A |
5757181 | Wolf et al. | May 1998 | A |
5781005 | Vig et al. | Jul 1998 | A |
5789658 | Henn et al. | Aug 1998 | A |
5789915 | Ingraham | Aug 1998 | A |
5818222 | Ramsden | Oct 1998 | A |
5818223 | Wolf | Oct 1998 | A |
5839185 | Smith et al. | Nov 1998 | A |
5841276 | Makino et al. | Nov 1998 | A |
5859387 | Gagnon | Jan 1999 | A |
5886070 | Honkura et al. | Feb 1999 | A |
5883567 | Mullins, Jr. | Mar 1999 | A |
5912556 | Frazee et al. | Jun 1999 | A |
5963028 | Engel et al. | Oct 1999 | A |
6011770 | Tan | Jan 2000 | A |
6016055 | Jager et al. | Jan 2000 | A |
6136250 | Brown | Oct 2000 | A |
6175233 | McCurley et al. | Jan 2001 | B1 |
6180041 | Takizawa | Jan 2001 | B1 |
6184679 | Popovic et al. | Feb 2001 | B1 |
6198373 | Ogawa et al. | Mar 2001 | B1 |
6265865 | Engel et al. | Jul 2001 | B1 |
6278269 | Vig et al. | Aug 2001 | B1 |
6351506 | Lewicki | Feb 2002 | B1 |
6356068 | Steiner et al. | Mar 2002 | B1 |
6392478 | Mulder et al. | May 2002 | B1 |
6424018 | Ohtsuka | Jul 2002 | B1 |
6429640 | Daughton et al. | Aug 2002 | B1 |
6436748 | Forbes et al. | Aug 2002 | B1 |
6437558 | Li et al. | Aug 2002 | B2 |
6501270 | Opie | Dec 2002 | B1 |
6545332 | Huang | Apr 2003 | B2 |
6545457 | Goto et al. | Apr 2003 | B2 |
6545462 | Schott et al. | Apr 2003 | B2 |
6687644 | Zinke et al. | Feb 2004 | B1 |
6692676 | Vig et al. | Feb 2004 | B1 |
6707298 | Suzuki et al. | Mar 2004 | B2 |
6759843 | Furlong | Jul 2004 | B2 |
6770163 | Kuah et al. | Aug 2004 | B1 |
6781233 | Zverev et al. | Aug 2004 | B2 |
6781359 | Stauth et al. | Aug 2004 | B2 |
6798193 | Zimmerman et al. | Sep 2004 | B2 |
6853178 | Hayat-Dawoodi | Feb 2005 | B2 |
6896407 | Nomiyama et al. | Feb 2005 | B2 |
6902951 | Goller et al. | Jun 2005 | B2 |
6917321 | Haurie et al. | Jul 2005 | B1 |
7031170 | Daeche et al. | Apr 2006 | B2 |
7038448 | Schott et al. | May 2006 | B2 |
7132825 | Martin | Nov 2006 | B2 |
7190784 | Li | Mar 2007 | B2 |
7193412 | Freeman | Mar 2007 | B2 |
7259545 | Stauth et al. | Aug 2007 | B2 |
7265531 | Stauth et al. | Sep 2007 | B2 |
7269992 | Lamb et al. | Sep 2007 | B2 |
7292095 | Burt et al. | Nov 2007 | B2 |
7319319 | Jones et al. | Jan 2008 | B2 |
7323780 | Daubenspeck et al. | Jan 2008 | B2 |
7323870 | Tatschl et al. | Jan 2008 | B2 |
7325175 | Momtaz | Jan 2008 | B2 |
7361531 | Sharma et al. | Apr 2008 | B2 |
7385394 | Auburger et al. | Jun 2008 | B2 |
7425821 | Monreal et al. | Sep 2008 | B2 |
7474093 | Ausserlechner | Jan 2009 | B2 |
7476953 | Taylor et al. | Jan 2009 | B2 |
7518354 | Stauth et al. | Apr 2009 | B2 |
7573112 | Taylor | Aug 2009 | B2 |
7598601 | Taylor et al. | Oct 2009 | B2 |
7605647 | Romero et al. | Oct 2009 | B1 |
7635993 | Boeve | Dec 2009 | B2 |
7676914 | Taylor | Mar 2010 | B2 |
7687882 | Taylor et al. | Mar 2010 | B2 |
7694200 | Forrest et al. | Apr 2010 | B2 |
7701208 | Nishikawa | Apr 2010 | B2 |
7729675 | Krone | Jun 2010 | B2 |
7746056 | Stauth et al. | Jun 2010 | B2 |
7746065 | Pastre et al. | Jun 2010 | B2 |
7764118 | Kusuda et al. | Jul 2010 | B2 |
7768083 | Doogue et al. | Aug 2010 | B2 |
7769110 | Momtaz | Aug 2010 | B2 |
7800389 | Friedrich et al. | Sep 2010 | B2 |
7808074 | Knittl | Oct 2010 | B2 |
7816772 | Engel et al. | Oct 2010 | B2 |
7816905 | Doogue et al. | Oct 2010 | B2 |
7839141 | Werth et al. | Nov 2010 | B2 |
7923996 | Doogue et al. | Apr 2011 | B2 |
7936144 | Vig et al. | May 2011 | B2 |
7961823 | Kolze et al. | Jun 2011 | B2 |
7990209 | Romero | Aug 2011 | B2 |
8030918 | Doogue et al. | Oct 2011 | B2 |
8058870 | Sterling | Nov 2011 | B2 |
8063634 | Sauber et al. | Nov 2011 | B2 |
8128549 | Testani et al. | Mar 2012 | B2 |
8134358 | Charlier et al. | Mar 2012 | B2 |
8143169 | Engel et al. | Mar 2012 | B2 |
8559139 | Theuss | Oct 2013 | B2 |
20020024109 | Hayat-Dawoodi | Feb 2002 | A1 |
20020084923 | Li | Jul 2002 | A1 |
20020097639 | Ishizaki et al. | Jul 2002 | A1 |
20030038675 | Gailus et al. | Feb 2003 | A1 |
20030102909 | Motz | Jun 2003 | A1 |
20040032251 | Zimmerman et al. | Feb 2004 | A1 |
20040046248 | Waelti et al. | Mar 2004 | A1 |
20040080314 | Tsujii et al. | Apr 2004 | A1 |
20040155644 | Stauth et al. | Aug 2004 | A1 |
20040184196 | Jayasekara | Sep 2004 | A1 |
20040207398 | Kudo et al. | Oct 2004 | A1 |
20050167790 | Khor et al. | Aug 2005 | A1 |
20050280411 | Bicking | Dec 2005 | A1 |
20060033487 | Nagano et al. | Feb 2006 | A1 |
20060038561 | Honkura et al. | Feb 2006 | A1 |
20060068237 | Murphy | Mar 2006 | A1 |
20060125473 | Frachon et al. | Jun 2006 | A1 |
20060175674 | Taylor | Aug 2006 | A1 |
20060181263 | Doogue et al. | Aug 2006 | A1 |
20060202692 | Tatschl et al. | Sep 2006 | A1 |
20060261801 | Busch | Nov 2006 | A1 |
20070110199 | Momtaz et al. | May 2007 | A1 |
20070170533 | Doogue et al. | Jul 2007 | A1 |
20070247141 | Pastre et al. | Oct 2007 | A1 |
20070285089 | Ibuki et al. | Dec 2007 | A1 |
20080013298 | Sharma et al. | Jan 2008 | A1 |
20080094055 | Monreal et al. | Apr 2008 | A1 |
20080137784 | Krone | Jun 2008 | A1 |
20080143329 | Ishihara | Jun 2008 | A1 |
20080237818 | Engel et al. | Oct 2008 | A1 |
20080238410 | Charlier et al. | Oct 2008 | A1 |
20080258722 | Zon et al. | Oct 2008 | A1 |
20080270067 | Eriksen et al. | Oct 2008 | A1 |
20090001964 | Strzalkowski et al. | Jan 2009 | A1 |
20090001972 | Fernandez et al. | Jan 2009 | A1 |
20090085706 | Baarman et al. | Apr 2009 | A1 |
20090137398 | Bozovic et al. | May 2009 | A1 |
20090140725 | Ausserlechner | Jun 2009 | A1 |
20090152696 | Dimasacat et al. | Jun 2009 | A1 |
20090153138 | Theuss | Jun 2009 | A1 |
20090167301 | Ausserlechner | Jul 2009 | A1 |
20090168286 | Berkley et al. | Jul 2009 | A1 |
20090212765 | Doogue | Aug 2009 | A1 |
20090212771 | Cummings et al. | Aug 2009 | A1 |
20100026288 | Sauber | Feb 2010 | A1 |
20100033175 | Boeve et al. | Feb 2010 | A1 |
20100052667 | Kohama | Mar 2010 | A1 |
20100141249 | Ararao et al. | Jun 2010 | A1 |
20100188078 | Foletto et al. | Jul 2010 | A1 |
20100201356 | Koller et al. | Aug 2010 | A1 |
20100211347 | Friedrich | Aug 2010 | A1 |
20100237450 | Doogue et al. | Sep 2010 | A1 |
20100276769 | Theuss et al. | Nov 2010 | A1 |
20100295140 | Theuss et al. | Nov 2010 | A1 |
20100330708 | Engel et al. | Dec 2010 | A1 |
20110018533 | Cesaretti et al. | Jan 2011 | A1 |
20110031960 | Hohe et al. | Feb 2011 | A1 |
20110048102 | Fernandez et al. | Mar 2011 | A1 |
20110050220 | Bootle et al. | Mar 2011 | A1 |
20110248711 | Ausserlechner | Oct 2011 | A1 |
20110285384 | Nomura | Nov 2011 | A1 |
20110298448 | Foletto et al. | Dec 2011 | A1 |
20120013333 | Ararao et al. | Jan 2012 | A1 |
20120086090 | Sharma et al. | Apr 2012 | A1 |
20120091994 | Han et al. | Apr 2012 | A1 |
20120161759 | Pozzati et al. | Jun 2012 | A1 |
20120182010 | Lammel | Jul 2012 | A1 |
20120274314 | Cesaretti et al. | Nov 2012 | A1 |
20120293164 | Liou et al. | Nov 2012 | A1 |
20120293167 | Kitanaka | Nov 2012 | A1 |
20130093412 | Anelli et al. | Apr 2013 | A1 |
20130138372 | Ausserlechner | May 2013 | A1 |
20130241543 | Stenson et al. | Sep 2013 | A1 |
20130300406 | Pepka et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
683 469 | Mar 1994 | CH |
41 41 386 | Jun 1993 | DE |
195 39 458 | Apr 1997 | DE |
103 14 602 | Oct 2004 | DE |
10 2006 037 226 | Feb 2008 | DE |
10 2007 018 238 | Oct 2008 | DE |
10 2007 041 230 | Apr 2009 | DE |
10 2007 044485 | Apr 2009 | DE |
10 2010 028 390 | Nov 2011 | DE |
10 2010 028390 | Nov 2011 | DE |
10 2011 102 483 | Nov 2012 | DE |
10 2011 102483 | Nov 2012 | DE |
0 289 414 | Nov 1988 | EP |
0 289 414 | Nov 1988 | EP |
0 357 013 | Mar 1990 | EP |
0 357 013 | Mar 1990 | EP |
0 361 456 | Apr 1990 | EP |
0 361 456 | Apr 1990 | EP |
0 680 103 | Nov 1995 | EP |
0 898 180 | Feb 1999 | EP |
1306687 | May 2003 | EP |
1 403 648 | Mar 2004 | EP |
1 443 332 | Aug 2004 | EP |
1 637 898 | Mar 2006 | EP |
1 679 524 | Jul 2006 | EP |
1 783 507 | May 2007 | EP |
1 850 143 | Oct 2007 | EP |
2 063 229 | May 2009 | EP |
2 108 966 | Oct 2009 | EP |
2 748 105 | Oct 1997 | FR |
2 276 727 | Oct 1994 | GB |
SHO 61-48777 | Mar 1986 | JP |
S63-051647 | Mar 1988 | JP |
363 084176 | Apr 1988 | JP |
63-263782 | Oct 1988 | JP |
H04-095817 | Mar 1992 | JP |
04-152688 | May 1992 | JP |
H04-357858 | Dec 1992 | JP |
08-097486 | Apr 1996 | JP |
H08-264569 | Oct 1996 | JP |
H08-511348 | Nov 1996 | JP |
09-166612 | Jun 1997 | JP |
H10-022422 | Jan 1998 | JP |
11-074142 | Mar 1999 | JP |
2000-183241 | Jun 2000 | JP |
2004-055932 | Feb 2001 | JP |
2001-141738 | May 2001 | JP |
2002-365350 | Dec 2002 | JP |
2003-177171 | Jun 2003 | JP |
2003-202365 | Jul 2003 | JP |
2003-287439 | Oct 2003 | JP |
2004-053499 | Feb 2004 | JP |
2004-177228 | Jun 2004 | JP |
2004-356338 | Dec 2004 | JP |
2006-3116 | Jan 2006 | JP |
2006-123012 | May 2006 | JP |
2006-275764 | Oct 2006 | JP |
2008-513762 | May 2008 | JP |
2008-151530 | Jul 2008 | JP |
2008-180550 | Aug 2008 | JP |
2009-222524 | Oct 2009 | JP |
2010-537207 | Dec 2010 | JP |
2011-052036 | Mar 2011 | JP |
2012-501446 | Jan 2012 | JP |
10-2010-0135747 | Dec 2010 | KR |
10-2011-0085725 | Jul 2011 | KR |
2012-0040247 | Apr 2012 | KR |
WO 9429672 | Dec 1994 | WO |
WO 9602849 | Feb 1996 | WO |
WO 9825148 | Jun 1998 | WO |
WO 2003107018 | Dec 2003 | WO |
WO 2004027436 | Apr 2004 | WO |
WO 2004072672 | Aug 2004 | WO |
WO 2006056829 | Jun 2006 | WO |
WO 2006083479 | Aug 2006 | WO |
WO 2007138508 | Dec 2007 | WO |
WO 2008008140 | Jan 2008 | WO |
WO 2008008140 | Jan 2008 | WO |
WO 2008048379 | Apr 2008 | WO |
WO 2008121443 | Oct 2008 | WO |
WO 2009108422 | Sep 2009 | WO |
WO 2009108422 | Sep 2009 | WO |
WO 2010027658 | Mar 2010 | WO |
WO 2010065315 | Jun 2010 | WO |
WO 2010096367 | Aug 2010 | WO |
WO 2011011479 | Jan 2011 | WO |
WO 2013141981 | Sep 2013 | WO |
Entry |
---|
PCT/US2014/018209 PCT Invitation to Pay Additional Fees dated Jul. 7, 2014 7 pages. |
Notification of transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, PCT/US2014/018209 dated Sep. 5, 2014, 10 pages. |
Written Opinion of the International Searching Authority, PCT/US2014/018209 dated Sep. 5, 2014, 12 pages. |
U.S. Appl. No. 12/840,324, filed Jul. 21, 2010, Cesaretti et al. |
U.S. Appl. No. 13/350,970, filed Jan. 16, 2012, Milano et al. |
U.S. Appl. No. 13/398,127, filed Feb. 16, 2012, Cesaretti et al. |
U.S. Appl. No. 13/468,478, filed May 10, 2012, Pepka et al. |
U.S. Appl. No. 13/743,451, filed Jan. 17, 2013, Friedrich et al. |
Notice of Allowance; dated Feb. 11, 2011; for U.S. Appl. No. 12/037,393; 7 pages. |
Office Action; dated Feb. 2, 201;1 from U.S. Appl. No. 12/959,672; 13 pages. |
Response to Office Action; filed May 25, 2011; for Office Action dated Feb. 2, 2011; from U.S. Appl. No. 12/959,672; 7 pages. |
Notice of Allowance; dated Jul. 19, 201;1 for U.S. Appl. No. 12/959,672; 8 pages. |
Office Action; dated Jun. 7, 2012; for U.S. Appl. No. 12/360,889; 9 pages. |
Response to Office Action; dated Sep. 27, 2012; for U.S. Appl. No. 12/360,889; 12 pages. |
Office Action; dated Jan. 18, 2013; for U.S. Appl. No. 12/360,889; 7 pages. |
Response to Office Action; dated Apr. 15, 2013; for U.S. Appl. No. 12/360,889; 7 pages. |
Office Action; dated Jul. 6, 2012; in U.S. Appl. No. 12/706,318; 29 pages. |
Response to Office Action; dated Jul. 6, 2012; filed Sep. 27, 2012; in U.S. Appl. No. 12/706,318; 12 pages. |
Supplemental Response to Office Action; dated Jul. 6, 2012; filed Oct. 2, 2012; ; in U.S. Appl. No. 12/706,318; 12 pages. |
U.S. Notice of Allowance; dated Dec. 10, 2012; for U.S. Appl. No. 12/706,318, 9 pages. |
Office Action; dated Sep. 11, 2012; from U.S. Appl. No. 12/840,324, 30 pages. |
Response to Office Action; filed Dec. 11, 2012; Office Action dated Sep. 11, 2012; in U.S. Appl. No. 12/840,324; 15 pages. |
Final Office Actio;n dated Feb. 12, 201;3 for U.S. Appl. No. 12/840,324; 19 pages. |
Response to Office Action; filed May 13, 2013; Office Action dated Feb. 12, 2013; in U.S. Appl. No. 12/840,324; 16 pages. |
Notice of Allowance; dated May 24, 2013; for U.S. Appl. No. 12/840,324; 12 pages. |
Allegro “Two-Wire True Zero Speed Miniature Differential Peak-Detecting Gear Tooth Sensor;” ATS645LSH; 2004; Allegro MicroSystems, Inc., Worcester, MA 01615; pp. 1-14. |
Allegro MicroSystems, Inc., Hall-Effect IC Applications Guide, http://www.allegromicro.com/en/Products/Design/an/an27701.pdf, Copyright 1987, 1997, pp. 1-36. |
Alllegro “True Zero-Speed Low-Jitter High Accuracy Gear Tooth Sensor;” ATS625LSG; 2005; Allegro MicroSystems, Inc. Worcester, MA 01615; pp. 1-21. |
Ausserlechner et al.; “Compensation of the Piezo-Hall Effect in Integrated Hall Sensors on (100)-Si;” IEEE Sensors Journal, vol. 7, No. 11; Nov. 2007; ISBN: 1530-437X; pp. 1475-1482. |
Ausserlechner et al.; “Drift of Magnetic Sensitivity of Small Hall Sensors Due to Moisture Absorbed by the IC-Package;” Proceedings of IEEE Sensors, 2004; vol. 1; Oct. 24, 2004; ISBN:0-7803-8692-2; pp. 455-458. |
Ausserlechner; “Limits of Offset Cancellation by the Principle of Spinning Current Hall Probe;” Proceedings of IEEE Sensors; Oct. 2004; pp. 1117-1120. |
Ausserlechner; “The piezo-Hall effect in n-silicon for arbitrary crystal orientation;” Proceedings of IEEE Sensors; vol. 3; Oct. 24, 2004; ISBN: 0-7803-8692-2; pp. 1149-1152. |
Bahreyni, et al.; “A Resonant Micromachined Magnetic Field Sensor;” IEEE Sensors Journal; vol. 7, No. 9, Sep. 2007; pp. 1326-1334. |
Barrettino, et al.; “CMOS-Based Monolithic Controllers for Smart Sensors Comprising Micromembranes and Microcantilevers;” IEEE Transactions on Circuits and Systems-I Regular Papers vol. 54, No. 1; Jan. 2007; pp. 141-152. |
Baschirotto et al.; “Development and Analysis of PCB Vector 2-D Magnetic Field Sensor System for Electronic Compass;” IEEE Sensors Journal vol. 6, No. 2; Apr. 2006; pp. 365-371. |
Bilotti et al.; “Monolithic Magnetic Hall Sensor Using Dynamic Quadrature Offset Cancellation;” IEEE Journal of Solid-State Circuits; vol. 32, Issue 6; Jun. 1997; pp. 829-836. |
Bowers et al., “Microfabrication and Process Integration of Powder-Based Permanent Magnets”, Interdisciplinary Microsystems Group, Dept. Electrical and Computer Engineering, University of Florida, USA; Technogies for Future Micro-Nano Manufacturing Workshop, Napa, California, Aug. 8-10, 2011, pp. 162-165. |
Cesaretti et al.; “Effect of Stress Due to Plastic Package Moisture Absorption in Hall Sensors;” IEEE Transactions on Magnets; vol. 45; No. 10; Oct. 2009; pp. 4482-4485. |
Demierre, et al.; “Reference Magnetic Actuator for Self-Calibration of a Very Small Hall Sensor Array;” Sensors and Actuators A97-98; Apr. 2002; pp. 39-46. |
Dwyer, “Back-Biased Packaging Advances (SE, SG & SH versus SA & SB)” http://www.allegromicro.com/en/Products/Design/packaging_advances/index.asp, Copyright 2008, pp. 1-5. |
Frick, et al.; “CMOS Microsystem for AC Current Measurement with Galvanic Isolation;” IEEE Sensors Journal; vol. 3, No. 6; Dec. 2003; pp. 752-760. |
“Gear-Tooth Sensor for Automotive Applications,” Allegro Microsystems, Inc., Aug. 3, 2001. |
Halg; “Piezo-Hall Coefficients of n-Type Silicon;” Journal of Applied Physics; vol. 64, No. 1; Jul. 1, 1988; pp. 276-282. |
Honeywell International, Inc., “Hall Effect Sensing and Application,” Micro Switch Sensing and Control, Chapter 3, http://content.honeywell.com/sensing/prodinfo/solidstate/technical/hallbook.pdf, date unavailable but believed to be before Jan. 2008, pp. 9-18. |
Hosticka; “CMOS Sensor Systems;” Sensors and Actuators A66; Apr. 1998; pp. 335-341. |
Infineon Product Brief, TLE 4941plusC, Differential Hall IC for Wheel Speed Sensing, Oct. 2010, www.infineon.com/sensors, 2 pages. |
Johnson et al., “Hybrid Hall Effect Device,” Appl. Phys. Lett., vol. 71, Aug. 1997, pp. 974-976. |
Kanda et el.; “The Piezo-Hall Effect in n-Silicon;” 22nd International Conference on the Physics of Semiconductors; vol. 1, Jan. 1995; pp. 89-92. |
Krammerer et al.: “A Hall effect sensors network insensitive to mechanical stress;” Proceedings of IEEE Sensors; vol. 3, Oct. 2004; pp. 1071-1074. |
Lagorce et al.; “Magnetic and Mechanical Properties of Micromachined Strontium Ferrite/Polyimide Composites;” Journal of Microelectromechanical Systems; vol. 6, No. 4; Dec. 1997; pp. 307-312. |
Lequesne et al.; “High-Accuracy Magnetic Position Encoder Concept;” IEEE Transactions on Industry Applications; vol. 35, No. 3; May/Jun. 1999; pp. 568-576. |
Mangnani et al.; “Mechanical Stress Measurement Electronics Based on Piezo-Resistive and Piezo-Hall Effects;” 9th International Conference on Electronics, Circuits and Systems 2002; vol. 1; SBN: 0-7803-7596-3; Dec. 2002; pp. 363-366. |
Manic et al.; “Short and Long-Term Stability Problems of Hall Plates in Plastic Packaging;” IEEE 38th Annual International Reliability Physics Symposium; Apr. 2000; pp. 225-230. |
Manic; “Drift in Silicon Integrated Sensors and Circuits Due to the Thermo-Mechanical Stresses;” Lausanne, École Polytechnique Fédérale De Lausanne 2000; 176 pages. |
Melexis Microelectronic Systems, Hall Applications Guide, Section 3—Applications, 1997 (48 pages). |
Motz et al.; “An Integrated Magnetic Sensor with Two Continuous-Time ΔΣ-Converters and Stress Compensation Capability;” IEEE International Solid-State Circuits Conference; Digest of Technical Papers; Feb. 6, 2006; ISBN: 1-4244-0079-1; pp. 1151-1160. |
Motz et al.; “A Chopped Hall Sensor with Small Jitter and Programmable “True Power-On” Function;” IEEE Journal of Solid-State Circuits; vol. 40, No. 7; Jul. 2005; pp. 1533-1540. |
Motz, et al.; “An Integrated Hall Sensor Platform Design for Position, Angle and Current Sensing;” IEEE Sensors 2006; Exco, Daegu, Korea / Oct. 22-25, 2006; pp. 1008-1011. |
Munter; “A Low-offset Spinning-current Hall Plate;” Sensors and Actuators A21-A23; 1990; pp. 742-746. |
Munter; “Electronic Circuitry for a Smart Spinning-current Hall Plate with Low Offset;” Sensors and Actuators A; Jun. 1991;.pp. 747-751. |
Oniku et al., “High-Energy-Density Permanent Micromagnets Formed From Heterogeneous Magnetic Powder Mixtures”, Interdisciplinary Microsystems Group, Dept. of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA; Preprint of MEMS 2012 Conf. Paper, 4 pages. |
Park et al.; “Ferrite-Based Integrated Planar Inductors and Transformers Fabricated at Low Temperature;” IEEE Transactions on Magnetics; vol. 33, No. 5; Sep. 1997; pp. 3322-3324. |
Partin et al.; “Temperature Stable Hall Effect Sensors;” IEEE Sensors Journal, vol. 6, No. 1; Feb. 2006; pp. 106-110. |
Pastre, et al.; “A Hall Sensor Analog Front End for Current Measurement with Continuous Gain Calibration;” IEEE Sensors Journal; vol. 7, No. 5; May 2007; pp. 860-867. |
Pastre, et al.; “A Hall Sensor-Based Current Measurement Microsystem With Continuous Gain Calibration;” Research in Microelectronics and Electronics, IEEE vol. 2; Jul. 25, 2005; ISBN: 0-7803-9345-7; pp. 95-98. |
Popovic; “Sensor Microsystems;” Proc. 20th International Conference on Microelectronics (MWIL 95); vol. 2, NIS, Serbia, Sep. 12-14, 1995; pp. 531-537. |
Randhawa; “Monolithic Integrated Hall Devices in Silicon Circuits;” Microelectronics Journal; vol. 12, No. 6; Sep. 14-17, 1981; pp. 24-29. |
Ruther et al.; “Integrated CMOS-Based Sensor Array for Mechanical Stress Mapping;” 5th IEEE Conference on Sensors, Oct. 2007; pp. 1131-1134. |
Ruther et al.; “Theromagnetic Residual Offset in Integrated Hall Plates;” IEEE Sensors Journal; vol. 3, No. 6; Dec. 2003; pp. 693-699. |
Sargent; “Switched-capacitor IC controls feedback loop;” EDN; Design Ideas; Feb. 17, 2000; pp. 154 and 156. |
Schneider, et al.; “Temperature Calibration of CMOS Magnetic Vector Probe for Contactless Angle Measurement System;” IEDM; Dec. 1996; pp. 533-536. |
Schott et al.; “Linearizing Integrated Hall Devices;” 1997 International Conference on Solid-State Sensors and Actuators, Jun. 16-19, 1997; pp. 393-396. |
Schott, et al.; “CMOS Single-Chip Electronic Compass with Microcontroller;” IEEE Journal of Solid-State Circuits; vol. 42, No. 12; Dec. 2007; pp. 2923-2933. |
Simon et al.; “Autocalibration of Silicon Hall Devices;” 8th International Conference on Solid-State Sensors and Actuators; vol. 2; Jun. 25, 1995; pp. 237-240. |
Steiner et al.; “Double-Hall Sensor with Self-Compensated Offset;” International Electron Devices Meeting; Dec. 7, 1997; ISBN: 0-7803-4100-7; pp. 911-914. |
Steiner et al; Offset Reduction in Hall Devices by Continuous Spinning Current Method; Sensors and Actuators A66; 1998; pp. 167-172. |
Stellrecht et al.; Characterization of Hygroscopic Swelling Behavior of Mold Compounds and Plastic Packages; IEEE Transactions on Components and Packaging Technologies; vol. 27, No. 3; Sep. 2004; pp. 499-506. |
Tian et al.; “Multiple Sensors on Pulsed Eddy-Current Detection for 3-D Subsurface Crack Assessment;” IEEE Sensors Journal, vol. 5, No. 1; Feb. 2005; pp. 90-96. |
Trontelj et al; “CMOS Integrated Magnetic Field Source Used as a Reference in Magnetic Field Sensors on Common Substrate;” WEP 1-6; IMTC; May 1994; pp. 461-463. |
Wu, et al.; “A Chopper Current-Feedback Instrumentation Amplifier with a 1mHz 1/f Noise Corner and an AC-Coupled Ripple-Reduction Loop;” IEEE International Solid-State Circuits Conference; Feb. 10, 2009; pp. 322-324. |
Zou et al.; “Three-Dimensionas Die Surface Stress Measurements in Delaminated and Non-Delaminated Plastic Packages;” 48th Electronic Components and Technology Conference; May 25, 1998; pp. 1223-1234. |
U.S. Appl. No. 13/438,478, filed May 10, 2012, Pepka et al. |
Smith et al.; “Low Magnetic Field Sensing with GMR Sensors;” Sensor Magazine; Part 1; Sep. 1999; http://archives.sensorsmag.com/articles/0999/76mail.shtml; pp. 1-8. |
Smith et al.; “Low Magnetic Field Sensing with GMR Sensors;” Sensor Magazine; Part 2; Oct. 1999; http://archives.sensorsmag.com/articles/1099/84/mail.shtml; pp. 1-11. |
Park et al.: “Batch-Fabricated Microinductors with Electroplated Magnetically Anisotropic and Laminated Alloy Cores”, IEEE Transactions on Magnetics, vol. 35, No. 5, Sep. 1999, 10 pages. |
U.S. Appl. No. 13/438,478 Office Action dated Jan. 15, 2014, 36 pages. |
U.S. Appl. No. 13/438,478 Amendment as filed Jun. 12, 2014, 11 pages. |
U.S. Appl. No. 13/438,478 Final Office Action dated Jul. 17, 2014, 13 pages. |
U.S. Appl. No. 13/438,478 RCE and Response as filed Jan. 19, 2015, 15 pages. |
U.S. Appl. No. 13/438,478 Office Action dated Feb. 12, 2015, 14 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, PCT/US2013/037065, dated Jul. 17, 2013, 4 pages. |
Written Opinion of the International Searching Authority, PCT/US2013/037065, dated Jul. 17, 2013, 9 pages. |
Notification Concerning Transmittal of International Preliminary Report on Patentability (Chapter 1 of the Patent Cooperation Treaty), PCT/US2013/037065, dated Nov. 20, 2014, 2 pages. |
Written Opinion of the International Searching Authority, PCT/US2013/037065, dated Nov. 20, 2014, 9 pages. |
PCT International Preliminary Report on Patentablility and Written Opinion of the ISA dated Sep. 24, 2015; For PCT Pat. App. No. PCT/US2014/018209; 14 pages. |
U.S. Appl. No. 13/468,478 Response to Final Office Action filed Jan. 14, 2016, 18 pages. |
U.S. Appl. No. 13/468,478 Request for Continued Examination filed Jan. 14, 2016, 3 pages. |
U.S. Office Action dated May 10, 2016 corresponding to U.S. Appl. No. 13/468,478; 20 Pages. |
European Communication under Rule 71(3) EPC, Intention to Grant dated Jun. 2, 2016 corresponding to European Application No. 13722619.7; 7 Pages. |
U.S. Appl. No. 13/468,478 Final Office Action dated Sep. 16, 2015, 19 pages. |
Response filed Jun. 16, 2015; to Office Action dated Feb. 12, 2015; for U.S. Appl. No. 13/468,478; 11 pages. |
Decision to Grant dated Oct. 27, 2016; for European Pat. App. No. 13722619.7; 2 pages. |
European Extended Search Report dated Dec. 22, 2016; for European Pat. App. No. 16193227.2; 11 pages. |
Response filed Oct. 3, 2016 to the Office Action dated May 10, 2016; for U.S. Appl. No. 13/468,478; 17 pages. |
European Patent Application No. 14708772.0 Response to Office Action filed on Jul. 28, 2016, 30 pages. |
Response (with Amended Claims in English) to Japanese Office Action dated Feb. 13, 2017 for Japanese Application No. 2015-511491; Response filed on Apr. 11, 2017; 9 Pages. |
Notice of Allowance dated May 15, 2017 for U.S. Appl. No. 13/468,478; 15 Pages. |
Request for Continued Examination for U.S. Appl. No. 13/468,478, filed Jun. 5, 2017; 3 Pages. |
Japanese Office Action (with English Translation) dated May 18, 2017 for Japanese Application No. 2015-511491; 8 Pages. |
Japanese Office Action (with English Translation) dated Jan. 13, 2017 for Japanese Application No. 2015-511491; 11 Pages. |
U.S. Final Office Action dated Feb. 10, 2017 for U.S. Appl. No. 13/468,478; 27 Pages. |
Response to U.S. Final Office Action dated Feb. 10, 2017 for U.S. Appl. No. 13/468,478; Response filed May 3, 2017; 9 Pages. |
Response to Japanese Office Action dated Oct. 2, 2017 corresponding with Japanese Appl. No. 2016-500374; Response (with English set of Claims) filed Dec. 25, 2017; 15 Pages. |
Korean Office Action (with English Translation) dated Dec. 20, 2017 corresponding to Korean Appl. No. 10-2014-7032857; 14 Pages. |
U.S. Non-Final Office Action dated Jan. 9, 2018 corresponding to U.S. Appl. No. 15/709,739; 12 Pages. |
Appeal Brief dated Sep. 19, 2017 from Japanese Application No. 2015-511491 with English translations; 14 Pages. |
Pre-Trial Report dated Nov. 2, 2017 from Japanese Application No. 2015-511491 with English translations and Claims on File; 7 Pages. |
U.S. Appl. No. 15/709,739, filed Sep. 20, 2017, Pepka et al. |
Response to Official Communication dated Mar. 13, 2017 for European Application No. 16193227.2; Response filed Oct. 2, 2017; 7 Pages. |
Japanese Office Action with English translation dated May 18, 2017 for Japanese Application No. 2015-511491, 5 pages. |
Japanese Petition (with Machine English Translation) filed Jan. 24, 2018 for Japanese Application No. 2015-511491; 10 Pages. |
Response (with English Translation) to Korean Notice of Reasons for Refusal dated Dec. 20, 2017 for Korean Application No. 10-2014-7032857; Response filed Feb. 14, 2018; 47 Pages. |
Japanese Office Action (with English Translation) dated May 16, 2018 for Japanese Application No. 2015-511491; 6 Pages. |
Japanese Office Action (with English Translation) dated May 24, 2018 for Japanese Application No. 2016-500374; 7 Pages. |
Response to U.S. Non-Final Office Action dated Jan. 9, 2018 for U.S. Appl. No. 15/709,739; Response filed Jun. 25, 2018; 11 pages. |
Korean Notice of Allowance (with English translation and allowed claims) dated Jun. 29, 2018 for Korean Application No. 10-2014-7032857; 8 pages. |
Final Office Action dated Oct. 25, 2018 for U.S. Appl. No. 15/709,739; 14 Pages. |
Japanese Office Action with English Translations for Japanese Application No. 2017-178549 dated Jul. 30, 2018; 4 Pages. |
U.S. Non-Final Office Action dated Mar. 8, 2019 for U.S. Appl. No. 15/709,739; 15 Pages. |
Non-Final Office Action dated Mar. 8, 2019 for U.S. Appl. No. 15/709,739; 15 Pages. |
Response filed on Mar. 14, 2019 for Japanese Application No. 2015-511491 with English Machine Translation; 12 Pages. |
Response to Final Office Action dated Oct. 25, 2018 for U.S. Appl. No. 15/709,739, filed Jan. 18, 2019; 10 Pages. |
Japanese Notice of Allowance (with English Translation of Allowed Claims) dated May 16, 2019 for Japanese Application No. 2015-511491; 6 Pages. |
Response to U.S. Non-Final Office Action dated Mar. 8, 2019 for U.S. Appl. No. 15/709,739; Response filed Jun. 10, 2019; 15 Pages. |
Notice of Allowance dated Apr. 16, 2019 for Japanese Application No. 2017-178549 with English Translation of Allowed claims; 8 Pages. |
U.S. Final Office Action dated Sep. 19, 2019 for U.S. Appl. No. 15/709,739; 24 Pages. |
Korean Office Action (with English Translation) dated Sep. 18, 2019 for Korean Application No. 10-2015-7029243; 14 Pages. |
European Examination Report dated Jun. 14, 2019 for European Application No. 14708772.0; 8 Pages. |
Japanese Notice of Allowance (with Reporting Letter and Allowed Claims in English) dated Feb. 27, 2019 for Japanese Application No. 2016-500374; 9 Pages. |
Response to European 161/162 Communication dated Nov. 19, 2014 for European Application No. 13722619.7; Response filed May 21, 2015; 15 Pages. |
Appeal Brief (with Machine English Translation) filed on Sep. 19, 2017 for Japanese Application No. 2015-511491; 14 Pages. |
Japanese Pre-Trial Report (with English Translation and Claims) dated Nov. 2, 2017 for Japanese Application No. 2015-511491; 7 Pages. |
Response (with Machine English Translation) to 3rd Japanese Office Action dated May 16, 2018 for Japanese Application No. 2015-511491; Response filed Nov. 14, 2018; 11 Pages. |
4th Japanese Office Action (with English Translation) dated Dec. 17, 2018 for Japanese Application No. 2015-511491; 10 Pages. |
Response (with Machine English Translation) to Japanese Office Action dated Aug. 2, 2018 for Japanese Application No. 2017-178549; Response filed Nov. 14, 2018; 13 Pages. |
Response (with Machine English Translation) to 2nd Japanese Office Action dated May 24, 2018 for Japanese Application No. 2016-500374; Response filed Nov. 22, 2018; 10 Pages. |
Response (with Machine English Translation) to Korean Office Action dated Sep. 18, 2019 for Korean Application No. 10-2015-7029243; Response filed Nov. 15, 2019; 41 Pages. |
Korean 2nd Office Action (with Machine English Translation) dated Feb. 24, 2020 for Korean Application No. 10-2015-7029243; 12 Pages. |
Response to European Examination Report dated Jun. 14, 2019 for European Application No. 14708772.0; Response filed Dec. 12, 2019; 7 Pages. |
Appeal Brief filed Mar. 19, 2020 for U.S. Appl. No. 15/709,739; 18 Pages. |
Response (with Machine English Translation) to Korean 2nd Office Action dated Feb. 24, 2020 for Korean Application No. 10-2015-7029243; Response filed Apr. 22, 2020; 29 pages. |
European Examination Report dated May 15, 2020 for European Application No. 16193227.2; 8 pages. |
Number | Date | Country | |
---|---|---|---|
20140266181 A1 | Sep 2014 | US |