The present invention relates to methods and apparatus for mixing dairy animal treatment chemicals and, in particular, for mixing dairy animal teat dips at or near a point of use.
In dairy harvesting facilities, dairy animals are commonly treated with antimicrobial teat dips before and/or after milking. Most teat dips are premixed at a chemical mixing plant and shipped to dairies as ready-to-use products.
Premixed teat dips often include a large percentage of water that adds bulk and weight to the product and requires substantial shipping and storage costs. Further, some teat dips are unstable and have short shelf lives. Unstable teat dips are sold and shipped with unmixed components that are mixed in batches at a dairy facility or a dairy dealership near the dairy for use while it is still effective.
To avoid some of these problems, mixing systems have been described for use in dairy facilities to make cleaning and hygiene products for use on dairy cows. Some of these systems require various scale, meter and pump configurations to accomplish accurate measuring and mixing of chemicals. Flow measurement and gravimetric measurement are two of the primary measuring methods that have been used to combine individual components into a chemical product. Gravimetric means to blend products require precise weighing of chemical components on one or more scales before the components are mixed.
Another mixing system requires a vacuum for moving chemicals to a mixing vessel. Vacuum systems can be unreliable and imprecise because no monitoring of the flow rate is performed and delivery time for the ingredients is used to determine the amount of each component added at a mixing station.
There are also chemical dilution and dosing systems that use two flow meters, one on a single ingredient entering a mixing manifold and a second meter measuring flow of mixed material exiting the manifold. A disadvantage of this type of system is that it cannot measure more than one ingredient at a time as it enters a mixing manifold. Additionally, such systems typically use air to cause the ingredient to transfer into a mixing manifold, which can be unreliable and difficult to control.
Prior chemical mixing systems suffer from an inherent non-uniform mixing of the finished chemical product and may require an additional mixing step to make a homogenous finished chemical product.
For these reasons, dairy animal treatment chemicals, particularly teat dips, are generally mixed by a manufacturer at a primary chemical mixing facility to ensure complete mixing and teat dip quality. The premixed teat dips are usually shipped to dealers in dairy producing regions, and then sold to dairy harvesting facilities. Teat dips with short shelf lives are not sold this way because they lose efficacy during multiple stages of shipping. Teat dips that are chemically stable are sold and distributed this way, but as stated above, shipping and packaging costs are a substantial portion of a teat dip's volume and price.
Thus, there is a need for an accurate chemical mixer for use at dairy facilities or dealer facilities that are remote from large chemical batch plants.
The present invention eliminates the deficiencies of prior mixing and dispensing systems by mixing chemical teat dip additives and water at a dairy facility or a regional dealer's facility, using a mixing manifold. The invention includes various data feedback mechanisms to determine whether correct mixing ratios, flow rates, and ingredient quantities are being used, so that appropriate adjustments can be made by a system controller during the mixing process. Measuring, feeding, and mixing rates for water and additives are monitored and controlled using preset algorithms, meters, pumps, and sensors to obtain a finished teat dip product that has properties within desired tolerances.
More particularly, the present invention is located at or near a point of use to accurately mix ingredients in desired ratios, and includes, a mixing manifold for receiving water and at least one additive for mixing. Quantities of water and additives are monitored by meters that can be located between the fluid sources and the mixing manifold. For optimum mixing, a controller can energize and de-energize ingredient pumps so that precise quantities of ingredients are supplied to the mixing manifold. This can be done using a preset algorithm wherein the pumps preferably begin and end pumping each ingredient at substantially the same time and at a substantially predetermined rate for each ingredient. The rate of pumping can be controlled by the controller using data feedback from the meter and/or quality control sensors that detect mixed teat dip quality or other devices that monitor ingredients, the system components or ambient conditions.
Teat dip produced from the present invention can be used without further mixing, storage or processing. Alternately, the mixed chemical product can be dispensed into a storage container without further processing for later use in spraying, dipping, cleaning, rinsing or otherwise utilizing the teat dip. Mixed teat dip can be stored in a tank, drum, tote or any other container with which the teat dip product is compatible.
The present invention is also directed to a method for mixing teat dip ingredients using a mixing manifold for mixing water from a source at or near a point of use, and additives such as antimicrobial agents, surfactants, emollients, thickeners, fragrances, acids, bases, solvents, and alcohols, for example. The additives are obtained by a dairy chemical dealer or a dairy harvesting facility and then mixed with a local source of water or another type of carrier. Water is fed to the mixing manifold, and meters are used for monitoring and/or controlling the quantity of water, obtaining water flow data and transmitting that data to a controller. The water flow data is used by the controller to activate and control pumps to deliver at least one additive to the mixing manifold in a predetermined proportion to the water. Additive rate data is obtained by meters or other sensors and transmitted to the controller for comparison to a predetermined additive quantity and the additive data can then be used by the controller to determine whether the additive quantity being fed to the mixing manifold is within a predetermined range or if a pump or valve should be activated to increase or decrease additive flow quantities.
The method further includes the steps of mixing the additive and the water in the mixing manifold to obtain a substantially mixed teat dip, obtaining quality control data about the mixed teat dip using a quality control sensor, transmitting the quality control data to the controller, comparing the quality control data in the controller to predetermined quality control data, and determining whether the mixed teat dip is within predetermined quality control parameters. If necessary, the controller can then adjust any of the system components to bring the mixed teat dip within the quality control parameters.
A fluid mixing system 100 of the present invention is shown in
The additive storage tanks 50 and 51 and water supply 42 are in fluid communication with the mixing manifold 6 via conduits 53, 54, 55, 56, 47, 48, 42, 43, 46, and 49 to feed water and additives to the mixing manifold 6. The mixing manifold 6 has an outlet 95 in communication with the teat dip storage tank 8 via a conduit 15. Water is described in most of the examples herein as a carrier for the additives, but other carriers or solvents can be used as well.
Additives 40 and 41 in the additive storage tanks 50 and 51 are fed to the mixing manifold 6 with pumps 82 and 83, respectively, and the pumps 82 and 83 are disposed in or between respective conduits 53, 55, 47, 54, 56, and 48. To ensure that accurate quantities of additives are pumped to the mixing manifold 6, meters 90 and 91 are used upstream or downstream of each pump 82 and 83, respectively. The meters 90 and 91 preferably measure mass or volume so that an accurate quantity of additive flows to the mixing manifold 6. The meters 90 and 91 are more accurate than relying on pump operation time, for example. The meters 90 and 91 can measure volume of the additive being pumped, but other properties including mass or flow rate can be measured.
Water is provided from any suitable local source and may or may not need a separate pump. The water is typically the largest portion of a teat dip mixed in the present invention, so it is obtained from a local source such as a municipal water supply or a well, thereby saving transportation and packaging costs for the water component. A water valve 28 and a water meter 92 are preferably used to measure and allow a precise quantity of water to flow to the mixing manifold 6. The water valve 28 and the water meter 92 are particularly desirable when no pump is used for the water. The water valve 28 can be any type of valve and it can include a regulator that controls water flow rate and/or pressure. The water valve 28 controls water flow rates and/or pressure so that additives can be added at rates and/or pressures that correspond to the regulated water flow. As used herein, “water valve” includes any type of flow regulator or device that controls the flow of water.
The additive pumps 82 and 83, and water inlet valve 28 are activated and controlled by the controller 20 based on predetermined quantities for the ingredients in the final mixed teat dip. The additive meters 90, 91 and the water meter 92 measure additives and water being pumped into the manifold 6, and transmit corresponding data to the controller 20 that is then used by the controller 20 for controlling pumps and valves throughout the system 100 and to ensure accurate chemical concentrations are used to mix teat dip.
The controller 20 can be any suitable programmable device that is either preprogrammed, programmable by an operator, programmed and re-programmed by a closed-loop logic system or preferably all of these are available on a single controller 20. Various types of operator interfaces can be included, such as keyboards, touch displays, keypads, switches, visual displays, audible sound generators, and others.
The controller 20 preferably uses Central Processing Unit (“CPU”) or other programmable device such as a Printed Circuit Board (“PCB”) to control the pumps, valves, and meters so that proper ratios, temperatures, and properties of water and additives are delivered to the mixing manifold 6. The starting formulation for each desired teat dip product is preferably programmed into the controller 20 to control the amount and/or rate at which each ingredient enters the mixing manifold 6. The controller 20 preferably starts the pumps 82 and 83 for each additive and opens the water valve 28 at substantially the same time. In one embodiment of the present invention the controller 20 activates and responds to pumps, valves and meters to control the flow rate of each additive to correspond to the amount and properties of water called for in the formula. To do so, the controller 20 can include computer code of a mixing algorithm, which preferably can be modified manually by an operator or modified automatically based on data received from any of the system's 100 components.
In the illustrated embodiment, three separate ingredients are supplied to the mixing manifold 6. The two additives 40 and 41 stored in the additive storage tanks 50 and 51 are individually fed to the mixing manifold 6 by their respective pumps 82 and 83 and conduits 55 and 56. Electronic signals from the controller 20 activate and control the pumps 82 and 83 through electrical connections 65 and 66, but wireless technology can also be used. The additives 40 and 41 preferably pass through the additive meters 90 and 91 after passing through the pumps 82 and 83, but the additive meters 90 and 91 can be positioned before the pumps 82 and 83. The additive meters 90 and 91 generate and send signals representing flow quantity or other measured property through the electrical connections 63 and 64 to the controller 20. The conduits 47 and 48 are of any suitable size, shape, and material and connect to the mixing manifold 6 through inlets 87 and 88. As used here, “additive tanks” includes any suitable containers, such as tanks, barrels, totes, bottles or boxes. The additive tanks 50 and 51 can be filled with additives at the mixing location or they could be filled at and transported from a central chemical supply plant for convenience.
It is also possible and may be desirable to control temperatures of the additives 40 and 41 with one or more heat exchangers 97 and 98. Suitable heat exchangers include heating pads or belts that are wrapped around or placed under additive storage tanks 50 and 51. Alternately or additionally, a heat exchanger can be disposed inside the additive storage tanks 50 and 51 Preferably; the heat exchanger is chemically and physically compatible with the additive. In addition, a heat exchanger (not illustrated) can be used to control water temperature. Additive tank pressure can also be controlled to cause or optimize additive flow toward the mixing manifold 6.
The additives 40 and 41 to be mixed with water can be any desired component of a teat dip, including individual chemicals, concentrates, solutions, suspensions, emulsions, solvents or combinations thereof.
Low level sensors 71 and 72 signal the controller 20 through electrical connections 67 and 68 or an operator with an alarm if there is a shortage of an additive within the additive storage tanks 50 and 51. The controller 20 can provide visual and/or audible warnings to an operator so that additive tanks can be re-filled, replaced or provide other attention to the system 100. If an additive is not replaced in a timely fashion, the controller 20 stops the mixing process.
Water is supplied directly from a water tap or an optional water treatment system (not illustrated) by opening and closing the water valve 28 using the controller 20. Water 42 passes through the conduit 46 and the meter 92 in controlled quantities. The rate, mass and/or volume of the water flow is controlled by the pressure of the water supply system, conduit size, and/or the water valve 28, and activation of these components by the controller 20. In an alternate embodiment, water can be supplied to the meter 92 using a container and a pump similar to the manner in which the additives are delivered to the mixing manifold 6. In one embodiment, water is supplied to a reservoir (not illustrated) and then to a pump before passing through the water meter 92. Water level in the reservoir can be controlled in any suitable way, including using a float mechanism that activates a water inlet valve until the desired water level is reached. The water in the reservoir can possibly be exposed to microorganisms and may accumulate a biofilm under certain circumstances. These conditions are preferably addressed with chemical additives, cleaners, or a device such as a germicidal lamp or other treatment device placed into or adjacent to the water and internal surfaces of the reservoir. Suitable germicidal lamps are available from UVC LLC, 1780 Bobcat Road, Minden, N.V. 89423 for use in various tanks and containers.
The water meter 92 is connected electronically to the controller 20 through electronic connection 62 or a suitable wireless device. Regardless of how water flow is controlled, water passes through conduit 49 to enter the mixing manifold 6 through inlet 89.
A water quality sensor 21 can monitor water characteristics and transmit water quality data to the controller 20 through the electronic connection 59 or a suitable wireless device. The water quality data can then be used by the controller 20 to determine the quality of the mixed teat dip or to divert the water to a pretreatment system before entering the mixing manifold 6. The water quality data is preferably used to correct or account for the properties of the incoming water as it affects the mixed teat dip properties. Water quality data from the sensor 21 can also be used in comparison to the quality of the final product 9, so that their relative qualities can be considered.
Water and additives are mixed inside the mixing manifold 6 to produce mixed teat dip 9 with a predetermined chemical composition. A static mixer (not illustrated) such as a flow vane, screen or the like, or one or more separate mixing chambers can be incorporated into the mixing manifold 6 (such as at location 94) to accelerate, augment or improve mixing of the fluids. One example of a suitable static mixer is distributed by Stamixco located at 235 84th Street, Brooklyn N.Y. 11209. A heat exchanger can also be used to control the temperature of ingredients in the mixing manifold 6 to aid or control mixing. The mixing manifold 6 is preferably sized to produce substantial mixing of the ingredients for a variety of flow rates. For example, the mixing manifold 6 can be several liters or larger when used in the present invention.
After being mixed, the teat dip product passes through the teat dip quality sensor 22, which is in communication with the controller 20 through electrical connection 69 or a suitable wireless device. Mixed teat dip then passes through the dispense conduit 15 into the storage tank 8 or directly to a dispenser at a dairy milking stall, for example. The storage tank 8 preferably includes an outlet valve 14 for controlling flow of mixed teat dip, and the outlet valve 14 can be operated automatically by the controller 20, manually by an operator, or by an independent means.
The storage tank 8 can include a low level alarm 24 connected to the controller 20 through an electrical connection 76 or a wireless device to notify the controller 20 and/or an operator that the teat dip should be replenished by another mixing operation. The storage tank 8 also preferably includes a full level sensor 23 connected to the controller 20 through an electrical connection 75 or a wireless device that signals the controller 20 when to stop the mixing operation. Starting and stopping the mixing process can be based on other system activities, by manual activation of an operator or by a timer. Mixed teat dip product 9 can also be obtained by an operator from the outlet 10 by manually opening the valve 14.
As stated above, the mixing system 100 of the present invention produces ready-to-use teat dip at a location near where the product is used or stored for a relatively short time (collectively “a point of use”). One advantage of accurately blending water and teat dip chemical additives near the point of use is that local water can be used to make the mixed teat dip. Using water from local sources reduces transportation costs because only the additives need to be packaged and shipped. Further, teat dips that have relatively short shelf lives can be mixed and then used while they are still effective. Another advantage of producing ready to use teat dip at a point of use is that the chemical supplier's plant can reduce capital requirements necessary to mix, package, store, and ship large quantities of premixed teat dip.
Teat dip additives are delivered to a point of use through the normal modes of commerce. Additives used in the present invention can be liquids, but gases and solids (such as powder) can be used by themselves, or in mixtures or suspensions in a carrier. Chemical additives are preferably purchased and delivered directly to a dairy or a dairy chemical dealership in a condition ready to be used by the present invention. Suitable additives include, but are not limited to, antimicrobial agents, liquid surfactants, emollients, viscosity modifiers, fragrances, acids, bases, solvents, alcohols and combinations thereof. The additives can be or can contain water.
In some locations, water that is available at or near the point of use may need to be softened, treated by reverse osmosis or treated by other appropriate methods. The water supplied to the system 100 is preferably pressurized using normal local pressures that are typically between 10 psi and 100 psi. As stated above, the quality of the water can be important, and treatment systems can be employed to change water properties before it enters the mixing system. For example, water softeners reduce the amount of calcium and magnesium in the water, and reverse osmosis reduces unwanted ions from the water.
Also as stated above, the additives are typically not in pressurized tanks, but one or more of the additives can be stored in pressurized containers. When pressurized, additive flow rates can be controlled by a valve or a regulator (not illustrated) that can be opened and closed by the controller 20.
Preferred chemical and water conduits and storage tank materials include stainless steel and plastic. Appropriate filters, check-valves, pressure relief valves and other system components can also be used.
Preferably, the pumps used in the system 100 are self priming pumps, but they can be any type or configuration including positive displacement, rotodynamic pumps that are rotary or reciprocating, or variable speed pumps. The pumps can be controlled in a number of ways, including increasing or decreasing the electrical power supply. Preferably, the pumps are operated and sized to deliver ingredients to the mixing manifold 6 at precisely the desired time and ratio to mix the teat dip.
In another embodiment, the additive pumps 82 and 83 are pulsed by activating and deactivating the pumps in rapid succession thereby effectively delivering increased or decreased amounts of a chemical additive to the mixing manifold 6 at a relatively steady rate. This technique produces a result similar to a variable speed pump. A suitable pump for pulsating is a diaphragm pump available from Knight Industries located at 20531 Crescent Bay Drive, Lake Forest, Calif., Model No. EDP 7800.
One or more pumps can have a high pressure trip that allows the pumps to stop operation if line pressure becomes too high. The high pressure trip can inactivate the entire mixing system 100 or sound an alarm.
With the present invention, a precise chemical composition for a teat dip can be mixed in the mixing manifold 6 without additional mixing, by using pumps and valves that are activated and deactivated by the controller 20. One advantage of having a substantially mixed teat dip at the mixing manifold 6 outlet 95 is that the quality of the teat dip can be measured before it is put into the teat dip storage tank 8 or before it is used directly. If the controller 20 determines that teat dip quality does not meet predetermined standards, the teat dip can be diverted so that it is not used, or various types of alarms can alert an operator that quality standards have not been met.
As previously stated, each additive meter 90, 91 is preferably positioned between its respective additive storage container and the mixing manifold 6 to monitor the amount of additive passing to the mixing manifold 6. More preferably, each of the additive meters 90, 91 is positioned between a respective pump and the mixing manifold 6. Alternatively, the meters 90, 91 and 92 can be placed between the additive pumps 82 and 83 and the additive storage tanks 50 and 51. The meters 90, 91 preferably monitor additive mass, volume or flow quantities and send corresponding data signals to the controller 20 corresponding to the quantity of fluid passing into the mixing manifold 6. Preferably, the meters 90, 91, and 92 are oval gear meters (such as those available from Knight Industries, 20531 Crescent Bay Drive, Lake Forest, Calif. Other types of meters can be used in the present invention. Alternately, proportioning valves with feedback loops can be used to control delivery of water and additives in precise quantities. The body and internal components of the meters 90, 91 are preferably manufactured from a chemically resistant plastic or resin and are injection molded. The meter body and oval gears can be manufactured from similar or dissimilar materials.
The meters 90, 91, and 92 can include one or more magnets in monitored spinners to activate a switch to measure the fluid flow. An example of an oval gear meter that can be used in the present invention is described in U.S. Pat. No. 7,523,660 by Albrecht et al. Various oval gear meters, manufactured by Knight Industries located at 20531 Crescent Bay Drive, Lake Forest, Calif., are suitable for the invention.
Preferably, the meters 90, 91, and 92 provide data to the controller 20 for processing, operating the pumps and valves, and, if necessary, adjusting pump and valve operation so that the correct amount of each ingredient reaches the mixing manifold 6 at the proper time. Adjustments can be made as described above by pulsing each pump independently or independently to adjust the output of a variable pump, for example. In this way, precise proportions of ingredients that correspond to the teat dip formula are provided.
The mixed teat dip quality sensor 22 can measure any desired teat dip property such as absorbance, transmittance, density, resistance, impedance, specific gravity, pH, refractive index, conductivity or combinations thereof.
A mixed teat dip quality sensor 22 is preferably employed in the dispense conduit 15 to provide teat dip quality data for recording and ensuring the quality of mixed teat dip 9. The quality data for mixed teat dip 9 can be automatically transmitted by the in-line sensor to the controller 20, so that accurate records for teat dip compositions can be stored and readily available. Additionally, an accurate record of the consumption of total mixed teat dip can be made, stored, and displayed. The teat dip quality and consumption data are preferably stored in any suitable electronic and/or printed form.
Teat dip data from the mixed teat dip quality sensor 22 can be recorded and/or utilized to adjust mixing ratios, to stop production, to activate an alarm, or to divert mixed teat dip that is outside of a predetermined specification away from the storage tank 8 to avoid contaminating previously mixed teat dip.
In one embodiment, the mixed teat dip quality sensor 22 measures the absorbance or transmittance of and a specific wavelength of UV or visible light. This is particularly useful for a dark colored chemical product or a chemical product that contains dye. A dye that is present in the active concentrate can serve as a specific indicator of product quality. The absorbance or transmission of the chemical product at the maximum or other strongly absorbing wavelength of the dye can be measured after the chemicals are mixed in the mixing manifold and a percent of active ingredients can be determined based on an experimentally generated standard curve. Naturally colored materials (such as iodine) containing chemical products can be measured and recorded in a similar manner. Suitable optical sensors are available from Optek located at 45346 Bergeborbeck, Essen, Germany, such as Model OPB733TR.
In another example, the mixed teat dip quality sensor 22 measures specific gravity of the mixed teat dip to determine the concentration of materials like glycerin that are incorporated into the chemical product. A typical specific gravity measuring device is produced by Princo Instruments located at 1020 Industrial Blvd., Southampton, Pa., USA, such as its Densitrol model. Further, the mixed teat dip quality sensor 22 can measure refractive index, which is a good overall indication of proper mixing of various chemicals. In-line refractive index measurement equipment is produced by K-patents located at 1804 Centre Point Circle #106, Naperville, Ill., 60563, USA, Model No. PR23A.
The mixed teat dip quality sensor 22 can also be a conductivity meter or an inductive probe for determining product quality when one of the components of the chemical product has an ionic nature. A conductivity sensor preferably contains a temperature compensation capacity that automatically adjusts the results based on temperatures of the fluids, mixing manifold, or ambient temperatures, for example. In-line conductivity measurement equipment is produced by ASTI located at 603 N. Poplar St., Orange, Calif., USA, Model No. AST50. In another example, the mixed teat dip quality sensor 22 can be a pH meter for determining product quality pH.
In addition to the meters and quality sensors described above, the system 100 can include a temperature sensor or thermocouple at one or more locations to measure the temperature of the additives, water or the mixed teat dip, for example. Temperature probes are often a part of other sensors like conductivity measuring equipment and temperatures can be recorded or otherwise used by the controller 20 as an independent quality measurement.
When the present invention is used in conditions where the ambient temperature changes significantly, ingredients or teat dip properties, such as viscosity, can be affected. Temperature data can be used by the controller 20 to adjust the output of the additive pumps 82 and 83 in relation to additive viscosity and pumping differences of the ingredients when the ambient temperature changes. Flow requirements for the additives can also change when the temperature changes and meter accuracy can be sensitive to changes in temperature and/or viscosity of a fluid. By measuring temperature or viscosity empirically beforehand, any change in flow characteristics determined in the controller 20 can automatically adjust the operation of the additive pumps 82 and 83.
As stated above, the temperature of one or more additives can be controlled with a heat exchanger, for example. This is particularly beneficial when the viscosity and flow characteristics are affected by temperature. Temperature can also be controlled using a heated exterior pad such as those manufactured by Omega Engineering located at One Omega Drive, Stamford, Conn. 06907, Model No. SREH600. The temperature can also be controlled by using an interior heating element that is placed in the container such as those made by F.N. Cuthbert Inc., 3151 South Ave., Toledo, Ohio 43609, Model No. ARMT 2154T1.
In another example of the flexibility of the present invention, the mixed teat dip quality sensor 21 that is installed the conduit 49 can be a conductivity measurement device to measure conductivity of incoming water. Using such a measurement in conjunction with a mixed teat dip quality sensor 22 allows the controller 20 to compensate for any changes in incoming water conductivity that could affect the conductivity of the mixed teat dip product. For example, the controller 20 can use data generated from the water sensor 21 to subtract out the water conductivity from the mixed teat dip conductivity and thereby neutralize the water's conductivity impact on the calculation of the mixed teat dip conductivity. This allows the conductivity reading from the mixed teat dip quality sensor 22 to give a true and accurate reading of the mixed teat dip relative to incoming water.
Similarly, other sensor types can be used to analyze incoming water quality for comparison with mixed teat dip quality. Using the comparison, the controller 20 can automatically change the formulation or simply adjust quality sensor readings to account for variances in water quality. This is particularly important because the source of water used to produce the ready to use teat dip can vary greatly. Local well water or municipal water supply can both be used at a single location, so system flexibility is important from location to location and also at a single location. The amount of ions in the water can vary greatly and if this is not compensated for when conductivity is used as a quality monitor, errors in accuracy of determining the quality of the finished teat dip can occur.
Other sensors that can supply data to the controller 20 about relevant conditions such as; ambient air temperature, incoming water temperature, ambient humidity, or other environmental conditions that affect additives or optimum mixing of teat dip chemicals. Further, ambient conditions can be used to adjust proportions of teat dip ingredients. For example, the proportion of skin conditioners can be automatically adjusted for dry or cold ambient conditions. Other sensors can be used to monitor herd health, and such data sent to the controller 20 can be used for adjusting the type or composition of the teat dip.
The mixing manifold 6 of the present invention is preferably configured to provide substantially complete mixing of all ingredients. As stated above, the mixing manifold 6 can include a static mixing element 94, that is preferably placed between the most downstream additive inlet openings 87 and the sensor 22, so that all of the ingredients are mixed together in the static mixing element 94 before they are sampled by the mixed teat dip quality sensor 22.
Once the proper amount of teat dip has been mixed, data from meters and/or fill gauges 24 is used by the controller 20 to stop all of the flow of all the ingredients at substantially the same time. Nonetheless, various ingredients can be stopped while others continue to flow depending on the mixing tolerances and the ability of the ingredients to mix. As much as plus or minus about 15% of pump or water valve operation time is possible depending on conditions and desired formulations. Mixing teat dip in the mixing manifold 6 eliminates the need for additional mixing after the teat dip exits the mixing manifold 6.
As stated above, the controller 20 can adjust the mixing process depending on conditions. One such condition occurs when one of the additive flow rates through its respective meter is lower than desired. In such a case, the controller 20 receives corresponding data from a pump or meter relating to that ingredient and automatically increases the additive flow rate by adjusting its pump operation and thereby increase that additive's flow rate. Conversely, the flow rates of other ingredients can be reduced to accommodate a flow reduction in any other ingredient.
Preferably, each meter and pump is monitored and controlled independently by the controller 20. In one embodiment, one additive is set to run at a maximum flow rate so that ingredients can be added in different proportions. In another embodiment, the ingredient of greatest proportion (typically water or other carrier) is usually the largest quantity of all components, so that additive flow rates are adjusted by the controller 20 relative to the flow rate of the water. Since the flow rate of the water can vary significantly due to pressure, valve size, system wear, component malfunction or other influences, the adjusting of the flow rates of the additives by the controller 20 allows the mixed teat dip to be made with the proper ratios. Varying water flows can occur within a single production cycle of the chemical product, and immediate adjustments can be made by constantly or intermittently analyzing data from the water meter 21.
The controller 20 can also be used to control the flow rate of one or more of the ingredients by monitoring the quality of the mixed teat dip with the finished product quality sensor 22 or sensors. In one embodiment, the concentration of mixed dip's ionic strength is measured using an in-line conductivity meter or inductive probe. If the ionic strength is outside of a predetermined specification that has been preprogrammed into the controller 20, then the controller 20 increases or decreases the amount of one or more ingredients until the ionic strength is within specifications. If the system cannot be adjusted by the controller 20 to correct a problem and the teat dip does not meet predetermined standards the controller 20 can activate a valve to divert teat dip away from the storage tank 8 so that it is not used on animals.
In another embodiment, the controller 20 increases or decreases the flow rate for one or more ingredients based on a data signal from a temperature sensor. The response of temperature and the flow rate needed for each individual ingredient can be preprogrammed into the controller 20 such that when its temperature increases or decreases, the controller 20 increases or decreases ingredient quantities to maintain the proper ratio of ingredients in the teat dip.
Preferably, the storage container 8 stores teat dip 9 that can be used in normal dairy operations in about one to thirty days. In a preferred embodiment, the storage container 8 is sized to contain enough teat dip for about five to ten days of dairy operation to ensure adequate supply if ingredients are expended and cannot be delivered to the dairy or dairy chemical dealer within several days. If the teat dip contains highly labile ingredients or colorants, the amount of mixed teat dip stored can be less than one day's supply or used immediately to ensure adequate efficacy. Preferably, after each shift or at the end of the day's work, the storage container 8 is replenished with freshly mixed teat dip. The full level sensor 23 results in substantially the same amount of the teat dip being used each time the system mixes teat dip, but the full level sensor 23 can be adjusted to change the amount of teat dip being mixed. A secondary shut off sensor (not shown) can be installed at a higher location within the storage container 8 in case the primary fill level sensor 23 fails. In a preferred embodiment, an alarm would be activated if the secondary fill level sensor is activated and/or the system 100 will be automatically shut down.
In a preferred embodiment, the mixed teat dip is filled at one level in the storage tank 8 and mixed teat dip 9 is removed for use at a second and different level through conduit 10 by opening the valve 14 to promote a first in first out supply and to minimize storage time for mixed teat dip. The preferred inlet position to fill the storage container 8 is at an upper level in the storage tank 8 and the teat dip is removed from the lower portion of the storage tank 8 for use. This is one way to ensure a first in, first out procedure.
The present invention can mix any number of ingredients and in one example mixes four ingredients such as water, iodine concentrate, emollient, and a thickener to make a low drip teat dip. In another embodiment, four ingredients, such as water, iodine concentrate, emollient, and a solution of poly vinyl pyrrolidone can be mixed to yield a barrier teat dip. Further, one ingredient can be an emollient and a second fluid can be a concentrated iodine solution containing between about 2% to about 10% iodine.
The present invention, therefore, can contain “n” number of meters and “p” number of pumps. When pressurized sources of additives are used in the present invention, then n will be greater than p. If one pressurized source of an ingredient is used in the present invention, that source should preferably be controlled by a valve that is activated by the controller 20. For example, if a pressurized ingredient is entering the mixing manifold 6 at percent volume “x” of the total volume of the pressurized ingredient required for that formulation, then all other ingredients entering the mixing manifold 6 at a rate greater than x of their respective percent volume required for the formulation. The formula for mixing a teat dip can be based on relative volumes of ingredients, relative weights of ingredients or any other property that indicates a proper quantity for the ingredients in any given teat dip. In one embodiment of the present invention, the pressurized ingredient is water, but other carrier fluids can be used in place of or in addition to water. For example, municipal water can be provided through the conduit 42 and the sensor 21 to the mixing manifold 6 at a flow rate determined by the provided water pressure. When the flow rate of the local water source is low, a water reservoir can be installed to provide a suitable supply of water to the system. Alternatively, a surge tank may be placed in line to provide a more even water supply.
Another advantage of the present invention is that it is very compact and occupies a very small footprint. The individual components are easily placed onto a cart or frame that can be transported easily to an end use site. The complete system 100 is low cost because of the efficient use of pumps, meters, and static mixers to provide substantially mixed teat dip that requires no secondary mixing. The present invention can also be manufactured as a module, that can be easily exchanged for an identical module or an upgraded module if a defect or improvement becomes available.
The compact, simple and inexpensive nature of the present invention makes it ideal to be used in a location that is distant from a primary manufacturing location and close to the end use location. Preferably, the system is installed in a dairy facility near the milking parlor. Alternatively, the system can be installed at a dealership location that is closer to the dairy than the primary teat dip manufacturing location. Water that is available at the dairy or dealer is used to make the ready-to-use teat dip to save processing time at the primary teat dip manufacturing location and transportation and packaging costs associated with shipping a premixed ready to use teat dip to a dairy or other remote distant location like a dealer. Mixed teat dip from the invention can be transferred directly into a use conduit if preferred by the user because all teat dip mixed in the present invention is properly ratioed and mixed before leaving the mixing manifold 6. This feature eliminates the requirement of a storage tank or separate mixing feature. While a storage tank or separate mixing feature can be used in certain circumstances, it is not a requirement for mixing quality teat dip using the present invention.
When it is advantageous to change the mixed teat dip formula according to seasonal or environmental conditions at the dairy, a clock or other type of sensor detecting seasonal or environmental changes can be used to send data to the controller 20 to automatically adjust the teat dip formulation. For example, during the summer, a standard low emollient and high iodine teat dip formula can be used, and during the winter a high emollient and lower iodine teat dip can be mixed due to the environmental stress of the cold weather. In one embodiment, this change is activated by a clock function that is synchronized with seasonal changes. In other examples, when unusually cold weather occurs and the system detects this through an ambient temperature sensor, the teat dip formula can be automatically adjusted to a cold weather formula. Other environmental factors that might require specialized formulas include precipitation, humidity or extreme temperatures. In another example, a fly repellant and/or sunscreen is included in the teat dip in response to seasonal and environmental conditions.
Temperature changes of some teat dip additives as well as system hardware such as, meters, and other system components can change how an additive's flow rate is measured by a meter. In such cases, a temperature response factor can be used in the controller 20 to accommodate such an environmental influence. The graph in
In one embodiment of the present invention, a teat dip is mixed that is labile, that is, one having constantly changing properties. This occurs when the separate fluids have good long term stability when store separately, but are unstable when combined. This instability prevents teat dip mixing at a location that requires long delivery and storage times before reaching a point of use. An example of this type of a teat dip is a chlorine dioxide teat dip that is preferably mixed at the dairy or nearby dealer because of its short shelf life. For example, within twelve hours to two weeks after mixing, these types of teat dips may no longer be effective and may need to be discarded. In chlorine dioxide teat dip mixtures, one ingredient contains a metal chlorite and another includes an activator for the chlorite. When the ingredients are mixed in the mixing manifold 6 they produce a teat dip that is stable for approximately twelve hours to two weeks. Thus, the system 100 is used to mix no more unstable teat dip than will be used within the stable period of time (“shelf life”).
The controller 20 can also be used to accumulate and store information regarding the frequency, quantity, and quality of teat dip that is produced during a period of time and the type of teat dip produced. Product quality information including sensor readings and flow meter readings are accumulated, stored and assigned a specific and unique batch identification number or code in the controller 20 that can be assigned to produce a historical and statistical analysis of the information. The analysis can be downloaded or a user can retrieve the information directly from the controller 20 from a memory card or other removable data storage element, for example. This can be accomplished, for example, by inserting a removable memory device into an appropriate controller port and downloading all or a portion of the information stored within the controller onto the removable memory device. The removable memory device can then be sent to another location and downloaded onto a computer for further analysis and viewing. The transfer of the information and processed information can also be downloaded from the system 100 to a computer using a wireless interface or a cable connection. The internet can also be used to transmit data, preferably over secure lines and/or with encrypted data.
The controller 20 is preferably preprogrammed to perform the following steps:
1. Record beginning and ending meter reading for all meters.
2. Determine temperature of some or all fluids, identify any applicable temperature response factor and apply the response factor to the initial pumping rates if needed at the beginning of each batch production.
3. Preset all pumps to pulse flow at a rate that is predetermined by the expected water flow rate and the formula corrected by temperature response factor for the finished product.
This application claims the benefit of Provisional Application No. 61/280,163 filed Oct. 30, 2009, the disclosure of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61280163 | Oct 2009 | US |