The present disclosure relates generally to media monitoring and, more particularly, to methods and apparatus to collect media monitoring information.
Consuming media presentations generally involves listening to audio information and/or viewing video information such as, for example, radio programs, music, television programs, movies, still images, etc. Media-centric companies such as, for example, advertising companies, broadcasting networks, etc. are often interested in the viewing and listening interests of their audience to better allocate their advertising expenditures and better market their products.
A known technique often used to measure the exposure of audience members to media involves installing metering equipment within a household connected to one or more televisions and/or stereos throughout the household. When members of the household watch television or other video media content (e.g., digital video disks, video cassette recorders, personal video recorders, etc.) and/or listen to radio programming or audio from compact discs (CD's), tapes, etc., the metering equipment collects metering information such as, for example, video or audio signatures (e.g., samples of the monitored signals or proxies representative of such samples), identification codes (e.g., codes ancillary to the program content inserted into the program for the purpose of audience measurement), time/date stamps, user identities, demographic characteristics, etc.
In some cases, to extract the media monitoring data or information from the metering equipment, the metering equipment must be removed from the audience member's house by field personnel or otherwise shipped to a central processing facility. Damage to the metering equipment and/or the media monitoring information may occur during the removal and/or shipment. In addition, the equipment or information may otherwise be lost.
Furthermore, requiring the metering equipment to be removed from a household to extract the media monitoring data prevents an audience measurement company from obtaining further media monitoring information from a willing participate. This also adds costs associated with the removal of the media monitoring equipment, shipment, processing, securing of additional audience members, and reshipment of the media monitoring equipment to the additional audience members.
Although the following discloses example apparatus and systems including, among other components, software executed on hardware, it should be noted that such apparatus and systems are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of these hardware and software components could be embodied exclusively in hardware, exclusively in software, or in any combination of hardware and software. Accordingly, while the following describes example methods, apparatus, and systems, persons having ordinary skill in the art will readily appreciate that the examples provided are not the only way to implement such methods, apparatus, and systems.
In general, the example methods and apparatus described herein may be used to collect media monitoring information generated by media meters located at audience member households. As described below, a household participating in a market research program to meter video and/or audio presentations presented and/or consumed in that household is provided with a plurality of media meters, each of which is located proximate to a respective media presentation device (e.g., a television, a stereo, a computer, etc.). The media meters are configured to generate and store media monitoring information based on media presented by the media presentation devices and detected by the media meters. To analyze the media monitoring information, the example methods and apparatus described herein can be used to send the metering information to a collection facility using a peripheral memory device that can be removably communicatively coupled to each media meter in a household to transfer the media monitoring information from each of the meters to the peripheral memory device. In this way, an audience member of the household can ship the peripheral memory device storing the collected media monitoring information from all of the media meters in the household to the collection facility. Unlike traditional methods that require shipping every media meter (i.e., the entire meter) of the household to the collection facility to enable the collection facility to extract the media monitoring information, the example methods and apparatus described herein enable audience member households to keep the media meters installed and instead ship only the peripheral memory device with the media monitoring information from all of the meters in the household.
Using a single peripheral memory device per audience member household to collect media monitoring information is advantageous over known methods involving shipping entire meters back to a collection facility. In particular, not having to ship the entire meter back to a collection facility substantially reduces the amount of recruiting that a market research entity needs to do to recruit panel households. In other words, meters can remain installed in audience member households longer for relatively longer durations (e.g., two years instead of one month) and the example peripheral memory devices described herein can be used to send media monitoring information to the collection facility. In addition, the example methods and apparatus described herein reduce the likelihood of damage to the meters during transportation by requiring meters to be shipped less often. Also, the amount of hardware handling and processing at the collection facility is significantly reduced by only having to receive and process (e.g., download media monitoring information from) one peripheral memory device from each audience member household for each collection cycle instead of having to receive and process a plurality of media meters from each audience member household. The likelihood of failing to download data from a metering device at the collection facility is also reduced as is the likelihood of confusing or overlooking peripheral memory devices corresponding to different metering devices in a household.
To ensure media monitoring information is recoverable in the event that the memory contents of a peripheral memory device become corrupt or otherwise invalid during a shipping process or at any other time after the media monitoring information is transferred to the peripheral memory device, the example methods and apparatus described herein can be used to also store backup or archived copies of media monitoring information at the audience member households after the media monitoring information is stored in the peripheral memory device. As a results, should data become corrupt or unrecoverable from a peripheral memory device received at the collection facility, the collection facility can request that a corresponding audience member send a copy of the backup or archived copy of the media monitoring information stored at the audience member household.
In some example implementations, the example methods and apparatus described herein can be used to communicate media monitoring information from audience member households to a collection facility via the Internet. For example, an audience member household may be provided with a data cable or a communication cable to communicatively couple the media meters in that household to a computer connected to the Internet. The computer can be provided with software to retrieve the media monitoring information from the media meters and communicate the information to the collection facility. Additionally or alternatively, an audience member household may be provided with a peripheral memory device reader connected to a computer having an Internet connection. In this manner, an audience member of the household can collect the media monitoring information from every media meter of the household on a peripheral memory device. The audience member can subsequently couple the peripheral memory device to the computer via the peripheral memory device reader to upload the media monitoring information to the collection facility. In some example implementations, an audience member of the household may be required to navigate to a web page of a market research entity to communicate the media monitoring information to the collection facility via the web page interface.
Turning to
To transfer the media monitoring information, the household is provided with a peripheral memory device 108 that can be removably communicatively coupled to any of the media meters 106a-c. In the illustrated example, an audience member 110 is instructed by a market research entity to send the media monitoring information from the media meters 106a-c to a collection facility 112 of the market research entity once per every data collection period (e.g., once per month, once every two months, etc.). The audience member 110 can carry the peripheral memory device 108 to each of the media meters 106a-c and copy the media monitoring information from the media meters 106a-c to the peripheral memory device 108. After copying the media monitoring information from all of the media meters 106a-c in the household 102, the audience member 110 can place the peripheral memory device 108 in a shipping package 114 (e.g., an envelope, a box, etc.) and ship the peripheral memory device 108 to the collection facility 112. At the collection facility 112, the media monitoring information can be transferred to a data store 116 (e.g., a database or some other data structure) for subsequent analysis by a processor system 118. Although the methods and apparatus are described herein in connection with using a single peripheral memory device, in alternative example implementations two or more peripheral memory devices may be used, each of which may be used to collect media monitoring information from a respective media meter in the household 102. In such example implementations, all of the peripheral memory devices can be shipped to the collection facility 112 in the same or separate packages.
In the illustrated example, the household 102 includes a computer 120 connected to the collection facility 112 via a communication network 122 (e.g., the Internet). In some example implementations, the audience member 110 may be instructed to transfer the media metering data to the collection facility 112 via the network 122 instead of using the peripheral memory device 108 to ship the media monitoring information to the collection facility 112. For example, the media meters 106a-c may be communicatively coupled to the computer 120 via a data cable. Alternatively, after the audience member 110 transfers the media monitoring information from all of the media meters 106a-c to the peripheral memory device 108, the peripheral memory device 108 may be communicatively coupled to the computer 120 to transfer the media monitoring information to the collection facility 112.
To communicatively couple the peripheral memory device 108 to the media meters 106a-c, the peripheral memory interface 108 is provided with a meter interface 304. The meter interface 304 is communicatively coupled to the physical data interface 204 of
To synchronize internal clocks of the media meters 106a-c used to generate timestamps for the collected media monitoring information, the peripheral memory device 108 is provided with a timing device 306. Clock devices (e.g., internal clocks of the media meters 106a-c) typically have an amount of drift that causes the clock devices to represent inaccurate time values over time. The timing device 306 can be resynchronized to an accurate global standard time keeper or national standard time keeper (e.g., an atomic clock, a time provided by the United States National Institute of Standards and Technology, etc.) when the peripheral memory device 108 is at the collection facility 112. Each time the peripheral memory device 108 is connected to a meter (e.g., one of the media meters 106a-c), in addition to receiving the media monitoring information from the meter 106a-c, the peripheral memory device 108 can resynchronize the clock of the media meter 106a-c based on the time of the timing device 306 to ensure that the meter 106a-c generates accurate timestamps. This synchronization process ensures that the timestamps generated by the media meters 106a-c accurately coincide with broadcast times of television and/or radio programs. The timing device 306 may be implemented using a clock (e.g., a real-time clock), a timer, a counter, or any combination thereof.
By using accurate timestamps, it is relatively easier to match the audio signatures generated by the media meters 106a-c with corresponding reference signatures corresponding to broadcast programs and stored at the collection facility 112. For example, if a timestamp of a signature indicates that the signature was generated at 8:01:30 AM, but there is some speculation that the timestamp is inaccurate by one minute, the collection facility 112 must search reference signatures of broadcast programs lying within a span of two minutes, which is the total time window of 8:01:30 AM, ±one minute. However, if the timestamp is assured to be accurate to fifteen seconds, then the collection facility 112 can find a reference signature matching the generated audio signature by searching data corresponding to a smaller window of time of thirty seconds, which is the total time window of 8:01:30 AM, ±fifteen seconds.
The processor 402 may be used to control and perform one or more operations or features of the media meter 106c, and may be implemented using any suitable processor, such as any general purpose processor, digital signal processor, or any combination thereof. For example, the processor 402 may be configured to generate audio signatures and generate media monitoring information by storing the audio signatures in the main memory 404 in association with respective timestamps generated by the timing device 410 and an identification of the media meter 106c. The processor 402 may also be configured to control the copying of media monitoring information to the peripheral memory device 108 and to archive media monitoring information in an archive memory 406 from a previous or one or more prior data collection periods.
The timing device 410 may be implemented using a clock (e.g., a real-time clock) and may be used by the processor 402 to generate a timestamp for each audio signature to indicate the time of day at which that signature was generated. As discussed above, in connection with
The microphone 412 may be used to detect and receive audio emissions associated with media presented by the media delivery device 104c (
The visual interface 414 may be used to convey information to the audience members of the household 102. For example, the visual interface 414 may be a text-based display or indicator lights to indicate operational status (e.g., ready to transfer data, metering mode enabled, error messages, etc.). The input interface 416 can be used to receive commands from an audience member. For example, the input interface 416 may include a ‘data transfer’ button that initiates a data transfer of information from the media meter 106c to the peripheral memory device 108 when the audience member 110 depresses the button.
In some example implementations, the media meter 106c can be provided with the remote transceiver 418 to communicatively couple the media meter 106c to the household computer 120 to upload media monitoring information to the collection facility 112 via, for example, the Internet or other communication medium. In some example implementations, the remote transceiver 418 can be omitted and the media meter 106c can be communicatively coupled to the household computer 120 via the peripheral memory interface 408 via a data cable.
Turning to
When it is time to collect media monitoring information (block 502), the audience member 110 communicatively couples the peripheral memory device 108 to the first media meter 106a (block 504). The media meter 106a then copies the media monitoring information from the most recent metering period (i.e., the period that just ended) to the peripheral memory device 108 (block 506). An example method that may be used to implement the operation of block 506 is described below in connection with
If there is no other media meter from which to collect media monitoring information (block 510), the audience member 110 places the peripheral memory device 108 in the package 114 (
When no errors exist in the first or second peripheral device (block 518), the collection facility 112 uploads the media monitoring information from the peripheral memory device 108 to the collection facility server 118 (
The processor 402 then determines if it has received a transfer signal (block 612) to copy the media monitoring information. For example, when the audience member 110 presses a button on the input interface 416, the processor 402 can interpret the button press as a command to copy its media monitoring information to the peripheral memory device 108. If the processor 402 determines that it has received the transfer signal (block 612), the processor 402 determines whether the transfer signal is a request to transfer archived media monitoring information corresponding to a previous data collection cycle (block 614). For example, the input interface 416 may be provided with two buttons, one of which can be pressed by the audience member 110 to initiate a transfer of media monitoring information collected during the most recent data collection cycle and the other of which can be pressed by the audience member 110 to initiate a transfer of archived media monitoring information collected during a previous data collection cycle prior to the most recent one.
If the processor 402 determines that it is not to copy archived media monitoring information to the peripheral memory device 108 (block 614), the processor 402 copies the media monitoring information from the main memory 404 corresponding to the most recent data collection period to the peripheral memory device 108 (block 616) via the peripheral memory interface 408. The processor 402 then archives the media monitoring information corresponding to the most recent data collection period from the main memory 404 to the archive memory 406 (block 618). Referring back to block 614, if instead the processor 402 determines at block 614 that it is to copy archived media monitoring information to the peripheral memory device 108 (block 614), the processor 402 copies the archived media monitoring information from a prior data collection period from the archive memory 406 to the peripheral memory device 108 via the peripheral memory interface 408 (block 620).
After the processor 402 archives the media monitoring information at block 618 or copies the archived media monitoring information to the peripheral memory device 108 at block 620, the processor 402 presents a transfer complete signal (block 622) via the visual interface 414 indicating to the audience member 110 that the requested operation is complete. After the processor 402 presents the transfer complete signal (block 622) or if the processor 402 determines that it has not yet received an initiate data transfer signal (block 612) or if the processor 402 determines that it has not detected the connection of the peripheral memory device 108 (block 608), the processor 402 determines whether it should continue to monitor the audio emitted by the media presentation device 104c (block 624). If the processor 402 determines that it should continue to monitor, control returns to block 602. Otherwise, the process of
The processor 712 of
The system memory 724 may include any desired type of volatile and/or non-volatile memory such as, for example, static random access memory (SRAM), dynamic random access memory (DRAM), flash memory, read-only memory (ROM), etc. The mass storage memory 725 may include any desired type of mass storage device including hard disk drives, optical drives, tape storage devices, etc.
The I/O controller 722 performs functions that enable the processor 712 to communicate with peripheral input/output (IO) devices 726 and 728 and a network interface 730 via an I/O bus 732. The I/O devices 726 and 728 may be any desired type of I/O device such as, for example, a keyboard, a video display or monitor, a mouse, etc. The network interface 730 is communicatively coupled to the network 124 and may be, for example, an Ethernet device, an asynchronous transfer mode (ATM) device, an 802.11 device, a DSL modem, a cable modem, a cellular modem, etc. that enables the processor system 710 to communicate with another processor system.
While the memory controller 720 and the I/O controller 722 are depicted in
Although certain methods, apparatus, systems, and articles of manufacture have been described herein, the scope of coverage of this patent is not limited thereto. To the contrary, this patent covers all methods, apparatus, systems, and articles of manufacture fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.
This application claims priority to U.S. Provisional Patent Application No. 60/676,201, entitled “Methods and Apparatus to Collect Media Monitoring Information,” filed on Sep. 28, 2007, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60976201 | Sep 2007 | US |