This disclosure relates generally to electronic devices and, more particularly, to methods and apparatus to implement microphones in thin form factor electronic devices.
Many existing electronic devices include one or more microphones to detect sounds in a surrounding environment. In some instances, the location and/or placement of such microphones within an electronic device is constrained by the size and/or positioning of other components in the electronic device and/or by the overall form factor desired for the electronic device.
The figures are not to scale. Instead, the thickness of the layers or regions may be enlarged in the drawings. In general, the same reference numbers will be used throughout the drawing(s) and accompanying written description to refer to the same or like parts. As used in this patent, stating that any part (e.g., a layer, film, area, region, or plate) is in any way on (e.g., positioned on, located on, disposed on, or formed on, etc.) another part, indicates that the referenced part is either in contact with the other part, or that the referenced part is above the other part with one or more intermediate part(s) located therebetween. Connection references (e.g., attached, coupled, connected, and joined) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other. Stating that any part is in “contact” with another part means that there is no intermediate part between the two parts. Although the figures show layers and regions with clean lines and boundaries, some or all of these lines and/or boundaries may be idealized. In reality, the boundaries and/or lines may be unobservable, blended, and/or irregular.
Descriptors “first,” “second,” “third,” etc. are used herein when identifying multiple elements or components which may be referred to separately. Unless otherwise specified or understood based on their context of use, such descriptors are not intended to impute any meaning of priority, physical order or arrangement in a list, or ordering in time but are merely used as labels for referring to multiple elements or components separately for ease of understanding the disclosed examples. In some examples, the descriptor “first” may be used to refer to an element in the detailed description, while the same element may be referred to in a claim with a different descriptor such as “second” or “third.” In such instances, it should be understood that such descriptors are used merely for ease of referencing multiple elements or components.
More and more electronic devices are being implemented with voice assistant functionality that enables a user to control the device through voice commands. With a rise in the proliferation of voice assistant functionality, there is a need to improve the ability of microphones to capture and/or detect voice commands from users in a clear manner so that reliable voice recognition may be implemented. One way in which the ability of microphones to detect sound (e.g., a user's voice) may be improved relative to existing devices is by reconsidering the placement of the microphones in the devices.
The location and/or placement of microphones in many existing devices (whether to detect voice commands and/or for any other purpose) is determined based on a number of competing factors. One significant factor constraining the placement of a microphone is aesthetics. Typically, microphones are associated with a 1 mm hole or port defining an acoustic path for sound to pass through to reach the microphone. However, microphone holes are usually not aesthetically desirable and, therefore, microphones are often positioned so that the associated holes are in a less conspicuous location on the device. For example, laptops often include a microphone between the A cover and the B cover with the hole for the microphone located within the B cover so as to be concealed when the laptop is closed. As used herein, the A and B covers of a laptop refer to the casing, shell, or chassis of the laptop lid (containing the display screen) with the A cover being the side opposite the display screen and the B cover being on the same side as the display screen. The housing of the base of a laptop includes the C and D covers with the C cover associated with the keyboard and the D cover corresponding to the bottom surface of the laptop. Thus, the A and D covers typically for the outer clamshell when the laptop is closed.
Another significant factor affecting the placement of a microphone within an electronic device is the mechanical space needed for the microphone and associated components relative to a desired size and/or form factor for the device based on aesthetic and/or other considerations. For example, many laptops include a lid that is designed to be substantially no thicker than needed to house a display screen. As such, placing a microphone behind the display screen would add undesirable thickness to the lid (not to mention such a placement would undesirably result in a hole on the A cover as discussed above). Accordingly, microphones are often placed adjacent the display screen within the bezel surrounding the screen.
Another factor affecting microphone placement includes the expected position and/or orientation of the device relative to a source of sound to be detected by the microphone. For example, in situations where voice commands are to be detected from nearby people regardless of their position relative to the device, one or more microphones needs to be suitably placed to detect sounds from many directions (e.g., 360 degrees). Further, in some instances, it may be desirable to place microphones that can detect sound regardless of whether the laptop lid is opened or closed. In such situations, a microphone associated with a hole in the B cover may be insufficient because the hole would be substantially obstructed when the laptop lid is closed.
Other factors affecting microphone placement include the effect of fan noise and/or speaker playback on the microphone. Another factor includes the proximity of the microphone to an antenna in the electronic device. Another factor includes the ability to protect the microphone from water splash and/or being affected by dust. Often, water splash protection is provided by a filter placed between the microphone and the hole in the device housing or chassis through which sound is to pass. While such a filter can reduce concerns for water or dust affecting the microphone, the filter adds to the z-height of the microphone stack-up thereby creating concerns for the mechanical space needed to provide sufficient room for the microphone as discussed above.
Examples disclosed herein overcome some of the challenges and tradeoffs described above in connection with the placement of microphones. More particularly, instead of implementing a 1 mm hole for a microphone as is commonly done in many existing devices, examples disclosed herein include a plurality of much smaller holes (e.g., less than 0.2 mm). These small holes are distributed within a circular area having a diameter of 1 mm. In some examples, the holes are approximately 0.1 mm in diameter. As used herein, the term “approximately” used with reference to the diameter of holes means within +/−0.05 mm. Thus, in some examples, the holes range from 0.05 mm and 0.15 mm in diameter. Holes that are approximately 0.1 mm are not easily visible to a human without the aid of a microscope, magnifying glass, or other vision enhancing device. As such, the placement of microphones in accordance with teachings disclosed herein are not limited by aesthetic concerns based on the appearance of a microphone hole. Furthermore, holes that are approximately 0.1 mm are sufficiently small that water splashed onto such holes will not leak through the holes because of the surface tension of the water. As a result, there is no need for a filter to be included in the microphone stack-up, thereby reducing the space required for the microphone.
In some examples, the z-height of the microphone stack-up is further reduced by eliminating the flexible printed circuit or printed circuit board on which a microphone is typically mounted in many existing electronic devices. Instead, in some examples, the electrical circuitry (e.g., electronic traces and contact pads) to which a microphone is electrical coupled are embedded into the casing or chassis containing the small plurality of holes with the microphone directly attached (soldered) to the chassis. Eliminating the components commonly included in a microphone stack-up and using a plurality of small holes as disclosed herein opens up many more possibilities in the placement of a microphone not previously possible based on typical design constraints.
Surrounding the hole 110 in the FPC 108 on the side opposite to the microphone 104 is a gasket 112, which may be affixed to the FPC 108 with an adhesive 114. The gasket 112 also includes a hole or opening 116 aligned with the hole 110 of the FPC 108. The gasket serves to reduce acoustic leakage as sound travels toward the microphone 104. As shown in
As shown in
A typical thickness of the filter 124 is about 0.2 mm. A typical thickness of the gasket 112 is about 0.3 mm. A typical thickness of the FPC 108 (with a stiffener) is about 0.2 mm. A typical thickness of the microphone 104 is about 0.95 mm. As a result, the total thickness of the microphone stack-up 102 of
Embedding the electrical circuit 208 within the chassis 206 enables the microphone 104 to be coupled to the chassis 206 without an FPC (e.g., eliminates the FPC 108 of
As described above, the implementation of the common microphone stack-up 102 of
Returning to
In some examples, the small holes 218 have a diameter of less than 0.2 mm. In some examples, the diameter of the small holes are approximately 0.1 mm (e.g., range from 0.05 mm to 0.15 mm). In some examples, the diameter of the small holes is no greater than 0.1 mm. Further, in some examples, the small holes 218 are positioned in a relatively dense arrangement. For example, adjacent holes 218 may be positioned with a distance between their centers being no more than 3 times the diameter of the holes (e.g., 0.3 mm) or less (e.g., only twice their diameter or even less). The compact arrangement of the holes 218 enables the combined area of opening of all the holes to provide an adequate acoustic path for sound to travel to the microphone. In some examples, the combined area of opening of the holes 218 corresponds to the area of a circle of at least 0.3 mm in diameter (e.g., approximately 0.071 mm2). In some examples, the combined area of opening of the holes 218 may be considerably higher (e.g., between 30% and 50% of the area of a 1 mm diameter circle within which the holes are distributed (e.g., between approximately 0.236 mm2 and 0.393 mm2)).
As shown in the illustrated example, the electrical circuit 208 is positioned so as to be around the array of holes 218 in the chassis 206 to enable the microphone 104 to be attached to the chassis 206 in alignment with the holes 218. In this manner, the array of holes 218 define an acoustic path for sound to pass through the chassis to be sensed by the microphone 104. Further, the soldered connection between the microphone 104 and the chassis 206 provides an acoustic seal between the microphone 104 and the chassis 206. As such, the microphone 104 can be coupled to the chassis 206 without a gasket (e.g., eliminating the gasket 112 of
In some examples, the diameter of the holes 218 are sufficiently small to be substantially imperceptible to the unaided eye of a human. As a result, there is less concern of affecting the aesthetic appearance of the device 200 relative to a visible 1 mm hole commonly used in known microphone arrangements. That is, in accordance with teachings disclosed herein, the placement of the microphone 104 is not limited to discrete locations and/or locations that align with other features of the device (e.g., other holes associated with different microphones). That is, for many known electronic devices, when a microphone hole cannot be hidden, the hole is placed in a position that is at least geometrically aligned with other holes and/or other visible features on a device. By contrast, the holes 218 of the illustrated example may be placed at any location where the microphone 104 would fit regardless of whether such a location is aligned with visible features of the associated device 200.
Furthermore, the diameter of the holes 218 are sufficiently small to substantially reduce the likelihood of water splashed on an exterior surface 222 of the chassis 206 from leaking through to the microphone 104. More particularly, it is expected that a 0.1 mm hole can withstand being submerged under approximately 25 cm of water. In some examples, the surface of the holes 218 may be treated with a hydrophobic material to further reduce the likelihood of water passing through the holes due to the surface tension of the water. The small diameter of the holes 218 also blocks dust and other particles that are greater in size than the diameter of the holes 218 (e.g., greater 0.1 mm). The ability of the holes 218 to protect the microphone 104 from water splash and dust eliminates the need for a filter (e.g., eliminating the filter 124 of
Additionally, the smaller diameter holes (relative to traditional microphone holes) may reduce surface turbulence and the associated wind noise that may be detected by the microphone.
As described above and shown in the illustrated example of
In some examples, the inner surface 204, to which the microphone 104 is attached, corresponds to a recess 224 that is inset from a main interior surface 226 of the chassis 206. The depth of the recess results in a further reduction of the distance between the main interior surface 226 and the distal surface 130 of the microphone 104 to less than the thickness of the microphone 104. In some examples, the distance between the main interior surface 226 of the chassis 206 and the distal surface 130 of the microphone 104 is less than 0.6 mm.
Another advantage of eliminating the filter, gasket, and FPC from being positioned between the microphone 104 and the chassis 206 is that these elements shorten the total microphone duct length corresponding to the distance between the exterior surface 222 of the chassis 206 and a proximal surface 228 of the microphone 104 (e.g., the surface closest to the chassis 206). More particularly, in some examples, the total microphone duct length corresponds to the thickness of the chassis 206, which may be less than 1 mm. Such a short duct length for the microphone provides an improved (e.g., higher) frequency response relative to other microphone arrangements with a longer duct. Further, the shortened duct length may reduce audible frequency Helmholtz resonances.
All of the tests were performed in a 250 Hz rated full anechoic chamber. As such, the results below 250 Hz can be disregarded. As can be seen by a comparison of the graphs in
The placement of the microphones in the illustrated example of
Independent of aesthetic concerns associated with the appearance of microphone holes, existing laptops do not include microphones in the lid that open through the A cover as shown in the illustrated examples because there is not sufficient space to fit the microphone stack-up. That is, many laptops include relatively thin lids that are not much thicker than the display screen housed therein such that there is no room for a microphone to be positioned behind the display. However, with the significantly reduced z-height of the example microphone stack-ups disclosed herein, fitting a microphone behind a display screen is much easier to do. A specific example implementation of a microphone in the lid of a laptop is shown and described in connection with
In the illustrated example of
As described above, the relatively small z-height for the microphone stack-up is achieved, in part, due to the small holes 1304 fulfilling the purpose of a filter so that a filter does not need to be positioned between the microphone 1402 and the chassis 1406. Further, the relatively small z-height is achieved by embedding an electrical circuit within the inner surface 1404 of the chassis 1406 on to which the microphone 1402 is soldered. Directly soldering the microphone 1402 to the chassis 1406 in this manner provides an acoustic seal between the microphone 1402 and chassis 1406, thereby eliminating the need for a gasket to be positioned between the microphone 1402 and chassis 1406. Further still, the electrical circuit in the chassis 1406 enables an FPC 1414 (or a PCB) to be electrically coupled to the microphone 1402 while being spaced apart from and adjacent to the microphone 1402. As a result, the FPC 1414 does not need to be included in the microphone stack-up, thereby further reducing the z-height of the microphone stack-up.
At block 1506, an electrical circuit (e.g., the electrical circuit 208 of
At block 1512, an FPC or a PCB is attached to the chassis to be in electrical contact with the electrical circuit. In this manner, the FPC or PCB is electrically coupled to the microphone. At block 1514, other components of the electronic device are connected. The types of components that are connected may depend on the nature of the electronic device being manufactured. In the illustrated example of
As used herein, the phrase “in communication,” including variations thereof, encompasses direct communication and/or indirect communication through one or more intermediary components, and does not require direct physical (e.g., wired) communication and/or constant communication, but rather additionally includes selective communication at periodic intervals, scheduled intervals, aperiodic intervals, and/or one-time events.
“Including” and “comprising” (and all forms and tenses thereof) are used herein to be open ended terms. Thus, whenever a claim employs any form of “include” or “comprise” (e.g., comprises, includes, comprising, including, having, etc.) as a preamble or within a claim recitation of any kind, it is to be understood that additional elements, terms, etc. may be present without falling outside the scope of the corresponding claim or recitation. As used herein, when the phrase “at least” is used as the transition term in, for example, a preamble of a claim, it is open-ended in the same manner as the term “comprising” and “including” are open ended. The term “and/or” when used, for example, in a form such as A, B, and/or C refers to any combination or subset of A, B, C such as (1) A alone, (2) B alone, (3) C alone, (4) A with B, (5) A with C, (6) B with C, and (7) A with B and with C. As used herein in the context of describing structures, components, items, objects and/or things, the phrase “at least one of A and B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, and (3) at least one A and at least one B. Similarly, as used herein in the context of describing structures, components, items, objects and/or things, the phrase “at least one of A or B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, and (3) at least one A and at least one B. As used herein in the context of describing the performance or execution of processes, instructions, actions, activities and/or steps, the phrase “at least one of A and B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, and (3) at least one A and at least one B. Similarly, as used herein in the context of describing the performance or execution of processes, instructions, actions, activities and/or steps, the phrase “at least one of A or B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, and (3) at least one A and at least one B.
As used herein, singular references (e.g., “a”, “an”, “first”, “second”, etc.) do not exclude a plurality. The term “a” or “an” entity, as used herein, refers to one or more of that entity. The terms “a” (or “an”), “one or more”, and “at least one” can be used interchangeably herein. Furthermore, although individually listed, a plurality of means, elements or method actions may be implemented by, e.g., a single unit or processor. Additionally, although individual features may be included in different examples or claims, these may possibly be combined, and the inclusion in different examples or claims does not imply that a combination of features is not feasible and/or advantageous.
From the foregoing, it will be appreciated that example methods, apparatus and articles of manufacture have been disclosed that enable one or more microphones to be placed in nonconventional locations within an electronic device by reducing the total z-height of the microphone stack (thereby enabling the microphone to fit in thinner form factors) and by creating microphone ports with a plurality of small holes that are not readily visible to the naked eye (thereby enabling the microphone to be placed in any suitable location without concerns regarding the aesthetics of the electronic device).
Example methods, apparatus, systems, and articles of manufacture to implement microphones in thin form factor electronic devices are disclosed herein. Further examples and combinations thereof include the following:
Example 1 includes an electronic device comprising a chassis having an exterior surface and an interior surface, the chassis including a plurality of holes extending through the chassis, the plurality of holes within a 1 mm diameter circular area of the chassis, and a microphone coupled to the interior surface of the chassis adjacent the circular area of the chassis.
Example 2 includes the electronic device of example 1, wherein at least one of the plurality of holes has a diameter of approximately 0.1 mm.
Example 3 includes the electronic device of any one of examples 1 or 2, wherein a distance between centers of different ones of the plurality of holes is less than 0.3 mm.
Example 4 includes the electronic device of any one of examples 1-3, wherein a combined area of the openings associated with the plurality of holes corresponds to at least 30% of the circular area.
Example 5 includes the electronic device of any one of examples 1-4, wherein the microphone is coupled to the chassis without a filter between the microphone and the circular area of the chassis.
Example 6 includes the electronic device of any one of examples 1-5, wherein the microphone is coupled to the chassis without a gasket between the microphone and the circular area of the chassis.
Example 7 includes the electronic device of any one of examples 1-6, wherein the microphone is coupled to the chassis without either of a printed circuit board or a flexible printed circuit between the microphone and the circular area of the chassis.
Example 8 includes the electronic device of any one of examples 1-7, further including an electrical circuit embedded on the interior surface of the chassis for electrical connection to the microphone.
Example 9 includes the electronic device of example 8, wherein the microphone is soldered to the electrical circuit in the chassis.
Example 10 includes the electronic device of any one of examples 8 or 9, further including at least one of a flexible printed circuit or a printed circuit board spaced apart from the microphone, the at least one of the flexible printed circuit or the printed circuit board electrically coupled to the microphone via the electrical circuit.
Example 11 includes the electronic device of any one of examples 1-10, further including a display screen adjacent the interior surface of the chassis opposite the exterior surface of the chassis, the microphone between the display screen and the chassis.
Example 12 includes the electronic device of example 1, wherein the interior surface includes a recess, the microphone within the recess.
Example 13 includes the electronic device of example 12, wherein a distal surface of the microphone farthest away from the chassis is less than 0.6 mm from the interior surface of the chassis surrounding the recess.
Example 14 includes the electronic device of any one of examples 1-13, wherein a duct length for the microphone corresponding to a distance between the exterior surface of the chassis and a proximal surface of the microphone is less than 1 mm.
Example 15 includes the electronic device of any one of examples 1-14, wherein the electronic device is a laptop and the chassis corresponds to an A cover of the laptop.
Example 16 includes an apparatus comprising a chassis having an inner surface and an outer surface, and a microphone coupled to the inner surface in alignment with an array of holes extending through the chassis to enable the microphone to detect sound generated beyond the outer surface of the chassis, the holes having diameters such that water will not pass through the holes due to surface tension of the water.
Example 17 includes the apparatus of example 16, wherein the microphone is attached directly to the inner surface of the chassis.
Example 18 includes the apparatus of any one of examples 16 or 17, wherein the microphone is coupled to the inner surface of the chassis without either a filter or a gasket between the microphone and the chassis.
Example 19 includes the apparatus of any one of examples 16-18, wherein the chassis includes a molded plastic with electronic traces and solder pads formed therein, the microphone directly soldered to the solder pads.
Example 20 includes the apparatus of example 19, further including at least one of a flexible printed circuit or a printed circuit board adjacent the microphone, the at least one of the flexible printed circuit or the printed circuit board electrically coupled to the microphone via the electronic traces.
Example 21 includes the apparatus of example 20, further including a spring contact connector on the at least one of the flexible printed circuit or the printed circuit board, the spring contact connector to electrical connect to a contact pad in the chassis and electrically coupled to the electronic traces.
Example 22 includes the apparatus of any one of examples 16-21, further including a display screen adjacent the chassis, the microphone between the display screen and the chassis.
Example 23 includes the apparatus of any one of examples 16-22, wherein a distance between the inner surface of the chassis on which the microphone is coupled and a distal surface of the microphone farthest away from the chassis is less than 1 mm.
Example 24 includes the apparatus of any one of examples 16-23, wherein the diameters of the holes are less than approximately 0.2 mm.
Example 25 includes a method to manufacture an electronic device, the method including molding a chassis for the electronic device, drilling holes in the chassis, the holes dimensioned and spaced relative one another to fit within a 1 mm diameter circular area of the chassis, and attaching a microphone to the chassis adjacent the holes, the holes providing an acoustic path to pass sound through the chassis to the microphone.
Example 26 includes the method of example 25, wherein the holes are approximately 0.1 mm in diameter.
Example 27 includes the method of any one of examples 25 or 26, further including forming an electrical circuit on an inner surface of the chassis adjacent the circular area of the chassis, and soldering the microphone to the electrical circuit.
Example 28 includes the method of example 27, further including attaching at least one of a printed circuit board or a flexible printed circuit to the chassis to be electrically coupled to the electrical circuit.
Example 29 includes the method of any one of examples 25-28, further including connecting a display screen to the chassis, the microphone to be between the display screen and the chassis.
Although certain example methods, apparatus and articles of manufacture have been disclosed herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all methods, apparatus and articles of manufacture fairly falling within the scope of the claims of this patent.
The following claims are hereby incorporated into this Detailed Description by this reference, with each claim standing on its own as a separate embodiment of the present disclosure.