The present disclosure relates to methods for manufacturing absorbent articles, and more particularly, to apparatuses and methods for making elastomeric laminates that may be used as components of absorbent articles.
Along an assembly line, various types of articles, such as for example, diapers and other absorbent articles, may be assembled by adding components to and/or otherwise modifying an advancing, continuous web of material. For example, in some processes, advancing webs of material are combined with other advancing webs of material. In other examples, individual components created from advancing webs of material are combined with advancing webs of material, which in turn, are then combined with other advancing webs of material. In some cases, individual components created from an advancing web or webs are combined with other individual components created from other advancing webs. Webs of material and component parts used to manufacture diapers may include: backsheets, topsheets, leg cuffs, waist bands, absorbent core components, front and/or back ears, fastening components, and various types of elastic webs and components such as leg elastics, barrier leg cuff elastics, stretch side panels, and waist elastics. Once the desired component parts are assembled, the advancing web(s) and component parts are subjected to a final knife cut to separate the web(s) into discrete diapers or other absorbent articles.
Some absorbent articles have components that include elastomeric laminates. Such elastomeric laminates may include an elastic material bonded to one or more nonwovens. The elastic material may include an elastic film and/or elastic strands. In some laminates, a plurality of elastic strands are joined to a nonwoven while the plurality of strands are in a stretched condition so that when the elastic strands relax, the nonwoven gathers between the locations where the nonwoven is bonded to the elastic strands, and in turn, forms corrugations. The resulting elastomeric laminate is stretchable to the extent that the corrugations allow the elastic strands to elongate.
In some assembly processes, stretched elastic strands may be advanced in a machine direction and adhered between two advancing substrates, wherein the stretched elastic strands are spaced apart from each other in a cross direction. Some assembly processes are also configured to drawing elastic strands from rotating spools arranged along a cross direction on a surface unwinding device. However, problems can be encountered in manufacturing processes when drawing elastic strands from spools. For example, when elastic strands are completely drawn from a spool, a new spool of elastics will be needed to replace the empty spool. As such, in some configurations, an entire manufacturing line may need to be temporarily stopped while the empty spool is replaced. Some manufacturing lines may operate at relatively slow speeds, and as such, these manufacturing lines can be temporarily stopped to replace empty spools and may not result in a major disruption to production. However, some manufacturing lines, such as disposable absorbent article manufacturing lines, may operate at high speeds and/or would require depleted spools of elastics to be replaced relatively often. As such, it can be inefficient and/or cost prohibitive to frequently stop and restart high speed manufacturing operations to replace empty spools.
Consequently, it would be beneficial to provide a method and apparatus for producing elastomeric laminates with spools of elastic strands that can be replaced without having to stop the assembly process.
In one form, a method for making an elastomeric laminate comprises the steps of: providing first spools, each first spool comprising an outer circumferential surface defined by an elastic strand wound onto a core; positioning the outer circumferential surface of each first spool in rolling contact with a first roll; providing second spools, each second spool comprising an outer circumferential surface defined by an elastic strand wound onto a core; positioning the outer circumferential surface of each second spool in rolling contact with a second roll; unwinding elastic strands from the first spools by advancing the elastic strands from between each first spool and the first roll; combining the elastic strands from the first spools with a first substrate and a second substrate; unwinding elastic strands from the second spools by advancing the elastic strands from between each second spool and the second roll; connecting the elastic strands from the second spools with a splicer member; combining the splicer member and the elastic strands from the second spools with the elastic strands from the first spools between the first and second substrates; and subsequently discontinuing unwinding of the elastic strands from the first spools.
In another form, a method for making an elastomeric laminate comprises the steps of: providing first spools, each first spool comprising an outer circumferential surface defined by an elastic strand wound onto a core; positioning the outer circumferential surface of each first spool in rolling contact with a first roll; providing second spools, each second spool comprising an outer circumferential surface defined by an elastic strand wound onto a core; positioning the outer circumferential surface of each second spool in rolling contact with a second roll; rotating a roller about a first axis of rotation extending in a cross direction, the roller comprising an outer circumferential surface; providing a first substrate and a second substrate, each comprising a first surface and an opposing second surface; advancing the first surface of the first substrate onto the outer circumferential surface of the roller; rotating the first spools and the first roll in opposite directions; unwinding elastic strands from the first spools by advancing the elastic strands from between each rotating first spool and the rotating first roll; advancing the first surface of the second substrate onto the second surface of the first substrate such that the elastic strands from the first spools and the first substrate are positioned between the second substrate and the outer circumferential surface of the roller; advancing the combined first substrate, second substrate, and the elastic strands from the first spools in the machine direction from the roller; rotating the second spools and the second roll in opposite directions; unwinding elastic strands from the second spools by advancing the elastic strands from between each rotating second spool and the rotating second roll; advancing the elastic strands from the second spools in between the second surface of the first substrate and the first surface of the second substrate such that the elastic strands from the first and second spools and the first substrate are positioned between the second substrate and the outer circumferential surface of the roller; and subsequently discontinuing advancement of the elastic strands from the first spools onto the second surface of the first substrate.
In yet another form, a method for making an elastomeric laminate comprises the steps of: advancing a first substrate and a second substrate in a machine direction, the first and second substrates each comprising a first surface and an opposing second surface; providing first spools, each first spool comprising an outer circumferential surface defined by an elastic strand wound onto a cylindrical core, each cylindrical core extending axially through each first spool; providing a first roll comprising an outer circumferential surface; positioning the outer circumferential surface of each first spool in rolling contact with the outer circumferential surface of the first roll; rotating the first spools and the first roll in opposite directions; unwinding elastic strands from the first spools by advancing the elastic strands from between each rotating first spool and the rotating first roll; positioning the elastic strands from the first spools between the second surface of the first substrate and the first surface of the second substrate; providing second spools, each spool comprising an outer circumferential surface defined by an elastic strand wound onto a cylindrical core, each cylindrical core extending axially through each second spool; providing a second roll comprising an outer circumferential surface; positioning the outer circumferential surface of each second spool in rolling contact with the outer circumferential surface of the second roll; connecting the elastic strands from the second spools with a splicer member; rotating the second spools and the second roll in opposite directions; unwinding elastic strands from the second spools by advancing the elastic strands from between each rotating second spool and the rotating second roll; combining the splicer member and the elastic strands from the second spools with the elastic strands from the first spools between the second surface of the first substrate and the first surface of the second substrate; and subsequently discontinuing advancement of the elastic strands from the first spools.
In yet another form, a method for making an elastomeric laminate comprises the steps of: providing first spools, each first spool comprising an outer circumferential surface defined by an elastic strand wound onto a core; positioning the cores of each first spool on a first mandrel; providing second spools, each second spool comprising an outer circumferential surface defined by an elastic strand wound onto a core; positioning the cores of each second spool on a second mandrel; unwinding elastic strands from the first spools by advancing the elastic strands from the outer circumferential surface of each first spool; combining the elastic strands from the first spools with a first substrate and a second substrate; unwinding elastic strands from the second spools by advancing the elastic strands from the outer circumferential surface of each second spool; connecting the elastic strands from the second spools with a splicer member; combining the splicer member and the elastic strands from the second spools with the elastic strands from the first spools between the first and second substrates; and subsequently discontinuing unwinding of the elastic strands from the first spools.
The following term explanations may be useful in understanding the present disclosure:
“Absorbent article” is used herein to refer to consumer products whose primary function is to absorb and retain soils and wastes. Absorbent articles can comprise sanitary napkins, tampons, panty liners, interlabial devices, wound dressings, wipes, disposable diapers including taped diapers and diaper pants, inserts for diapers with a reusable outer cover, adult incontinent diapers, adult incontinent pads, and adult incontinent pants. The term “disposable” is used herein to describe absorbent articles which generally are not intended to be laundered or otherwise restored or reused as an absorbent article (e.g., they are intended to be discarded after a single use and may also be configured to be recycled, composted or otherwise disposed of in an environmentally compatible manner).
An “elastic,” “elastomer” or “elastomeric” refers to materials exhibiting elastic properties, which include any material that upon application of a force to its relaxed, initial length can stretch or elongate to an elongated length more than 10% greater than its initial length and will substantially recover back to about its initial length upon release of the applied force.
As used herein, the term “joined” encompasses configurations whereby an element is directly secured to another element by affixing the element directly to the other element, and configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
The term “substrate” is used herein to describe a material which is primarily two-dimensional (i.e. in an XY plane) and whose thickness (in a Z direction) is relatively small (i.e. 1/10 or less) in comparison to its length (in an X direction) and width (in a Y direction). Non-limiting examples of substrates include a web, layer or layers or fibrous materials, nonwovens, films and foils such as polymeric films or metallic foils. These materials may be used alone or may comprise two or more layers laminated together. As such, a web is a substrate.
The term “nonwoven” refers herein to a material made from continuous (long) filaments (fibers) and/or discontinuous (short) filaments (fibers) by processes such as spunbonding, meltblowing, carding, and the like. Nonwovens do not have a woven or knitted filament pattern.
The term “machine direction” (MD) is used herein to refer to the direction of material flow through a process. In addition, relative placement and movement of material can be described as flowing in the machine direction through a process from upstream in the process to downstream in the process.
The term “cross direction” (CD) is used herein to refer to a direction that is generally perpendicular to the machine direction.
The term “taped diaper” (also referred to as “open diaper”) refers to disposable absorbent articles having an initial front waist region and an initial back waist region that are not fastened, pre-fastened, or connected to each other as packaged, prior to being applied to the wearer. A taped diaper may be folded about the lateral centerline with the interior of one waist region in surface to surface contact with the interior of the opposing waist region without fastening or joining the waist regions together. Example taped diapers are disclosed in various suitable configurations U.S. Pat. Nos. 5,167,897, 5,360,420, 5,599,335, 5,643,588, 5,674,216, 5,702,551, 5,968,025, 6,107,537, 6,118,041, 6,153,209, 6,410,129, 6,426,444, 6,586,652, 6,627,787, 6,617,016, 6,825,393, and 6,861,571; and U.S. Patent Publication Nos. 2013/0072887 A1; 2013/0211356 A1; and 2013/0306226 A1, all of which are incorporated by reference herein.
The term “pant” (also referred to as “training pant”, “pre-closed diaper”, “diaper pant”, “pant diaper”, and “pull-on diaper”) refers herein to disposable absorbent articles having a continuous perimeter waist opening and continuous perimeter leg openings designed for infant or adult wearers. A pant can be configured with a continuous or closed waist opening and at least one continuous, closed, leg opening prior to the article being applied to the wearer. A pant can be preformed or pre-fastened by various techniques including, but not limited to, joining together portions of the article using any refastenable and/or permanent closure member (e.g., seams, heat bonds, pressure welds, adhesives, cohesive bonds, mechanical fasteners, etc.). A pant can be preformed anywhere along the circumference of the article in the waist region (e.g., side fastened or seamed, front waist fastened or seamed, rear waist fastened or seamed). Example diaper pants in various configurations are disclosed in U.S. Pat. Nos. 4,940,464; 5,092,861; 5,246,433; 5,569,234; 5,897,545; 5,957,908; 6,120,487; 6,120,489; 7,569,039 and U.S. Patent Publication Nos. 2003/0233082 A1; 2005/0107764 A1, 2012/0061016 A1, 2012/0061015 A1; 2013/0255861 A1; 2013/0255862 A1; 2013/0255863 A1; 2013/0255864 A1; and 2013/0255865 A1, all of which are incorporated by reference herein.
The present disclosure relates to methods for manufacturing absorbent articles, and in particular, to methods for making elastomeric laminates that may be used as components of absorbent articles. The elastomeric laminates may include a first substrate, a second substrate, and an elastic material located between the first substrate and second substrate. During the process of making the elastomeric laminate, the elastic material may be advanced and stretched in a machine direction and may be joined with either or both the first and second substrates advancing in the machine direction.
The methods and apparatuses according to the present disclosure may be configured with a first unwinder and a second unwinder. One or more first spools are positioned on the first unwinder, and one or more second spools are positioned on the second unwinder. The first and second unwinders each includes a roll rotatably connected with a frame. The first spools each comprise an outer circumferential surface defined by a first elastic strand wound onto a core, and the second spools each comprise an outer circumferential surface defined by a second elastic strand wound onto a core. The first spools are arranged on the first unwinder such that outer circumferential surface of each first spool is in rolling contact with the roll, and second spools are arranged on the second unwinder such that outer circumferential surface of each second spool is in rolling contact with the roll. During assembly of an elastomeric laminate, the first spools and the roll of the first unwinder are rotated in opposite directions, and the first elastic strands are unwound from the first spools by advancing the first elastic strands from between each first spool and the roll. The first elastic strands advance in a machine direction and are positioned between a first substrate and a second substrate to form the elastomeric laminate. The first elastic strands may also be stretched in the machine direction while advancing from the first spools to the first and second substrates. Before the first elastic strands are completely unwound from the first spools, the second spools and the roll of the second unwinder are rotated in opposite directions, and the second elastic strands are unwound from the second spools by advancing the second elastic strands from between each second spool and the roll. The second elastic strands are advanced in the machine direction from the second unwinder to between the first substrate and the second substrate such that the first and second elastic strands are positioned between the first and second substrates. Subsequently, the advancement of the first elastic strands from the first unwinder is discontinued. As such, the elastomeric laminate assembly process may continue uninterrupted while switching from an initially utilized elastic material drawn from the rotating first spools to a subsequently utilized elastic material drawn from the rotating second spools.
As previously mentioned, the elastomeric laminates made according to the processes and apparatuses discussed herein may be used to construct various types of components used in the manufacture of different types of absorbent articles, such as diaper pants and taped diapers. To help provide additional context to the subsequent discussion of the process embodiments, the following provides a general description of absorbent articles in the form of diapers that include components including the elastomeric laminates that may be produced with the methods and apparatuses disclosed herein.
With continued reference to
As shown in
As shown in
As previously mentioned, the diaper pant 100P may include a backsheet 136. The backsheet 136 may also define the outer surface 134 of the chassis 102. The backsheet 136 may also comprise a woven or nonwoven material, polymeric films such as thermoplastic films of polyethylene or polypropylene, and/or a multi-layer or composite materials comprising a film and a nonwoven material. The backsheet may also comprise an elastomeric film. An example backsheet 136 may be a polyethylene film having a thickness of from about 0.012 mm (0.5 mils) to about 0.051 mm (2.0 mils). Further, the backsheet 136 may permit vapors to escape from the absorbent core (i.e., the backsheet is breathable) while still preventing exudates from passing through the backsheet 136.
Also described above, the diaper pant 100P may include a topsheet 138. The topsheet 138 may also define all or part of the inner surface 132 of the chassis 102. The topsheet 138 may be liquid pervious, permitting liquids (e.g., menses, urine, and/or runny feces) to penetrate through its thickness. A topsheet 138 may be manufactured from a wide range of materials such as woven and nonwoven materials; apertured or hydroformed thermoplastic films; apertured nonwovens, porous foams; reticulated foams; reticulated thermoplastic films; and thermoplastic scrims. Woven and nonwoven materials may comprise natural fibers such as wood or cotton fibers; synthetic fibers such as polyester, polypropylene, or polyethylene fibers; or combinations thereof. If the topsheet 138 includes fibers, the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed as is known in the art. Topsheets 138 may be selected from high loft nonwoven topsheets, apertured film topsheets and apertured nonwoven topsheets. Exemplary apertured films may include those described in U.S. Pat. Nos. 5,628,097; 5,916,661; 6,545,197; and 6,107,539.
As mentioned above, the diaper pant 100P may also include an absorbent assembly 140 that is joined to the chassis 102. As shown in
Some absorbent core embodiments may comprise fluid storage cores that contain reduced amounts of cellulosic airfelt material. For instance, such cores may comprise less than about 40%, 30%, 20%, 10%, 5%, or even 1% of cellulosic airfelt material. Such a core may comprise primarily absorbent gelling material in amounts of at least about 60%, 70%, 80%, 85%, 90%, 95%, or even about 100%, where the remainder of the core comprises a microfiber glue (if applicable). Such cores, microfiber glues, and absorbent gelling materials are described in U.S. Pat. Nos. 5,599,335; 5,562,646; 5,669,894; and 6,790,798 as well as U.S. Patent Publication Nos. 2004/0158212 A1 and 2004/0097895 A1.
As previously mentioned, the diaper 100P may also include elasticized leg cuffs 156. It is to be appreciated that the leg cuffs 156 can be and are sometimes also referred to as leg bands, side flaps, barrier cuffs, elastic cuffs or gasketing cuffs. The elasticized leg cuffs 156 may be configured in various ways to help reduce the leakage of body exudates in the leg regions. Example leg cuffs 156 may include those described in U.S. Pat. Nos. 3,860,003; 4,909,803; 4,695,278; 4,795,454; 4,704,115; 4,909,803; and U.S. Patent Publication No. 2009/0312730 A1.
As mentioned above, diaper pants may be manufactured with a ring-like elastic belt 104 and provided to consumers in a configuration wherein the front waist region 116 and the back waist region 118 are connected to each other as packaged, prior to being applied to the wearer. As such, diaper pants may have a continuous perimeter waist opening 110 and continuous perimeter leg openings 112 such as shown in
As previously mentioned, the ring-like elastic belt 104 may be defined by a first elastic belt 106 connected with a second elastic belt 108. As shown in
As shown in
The first and second elastic belts 106, 108 may also each include belt elastic material interposed between the outer substrate layer 162 and the inner substrate layer 164. The belt elastic material may include one or more elastic elements such as strands, ribbons, films, or panels extending along the lengths of the elastic belts. As shown in
In some configurations, the first elastic belt 106 and/or second elastic belt 108 may define curved contours. For example, the inner lateral edges 107b, 109b of the first and/or second elastic belts 106, 108 may include non-linear or curved portions in the first and second opposing end regions. Such curved contours may help define desired shapes to leg opening 112, such as for example, relatively rounded leg openings. In addition to having curved contours, the elastic belts 106, 108 may include elastic strands 168, 172 that extend along non-linear or curved paths that may correspond with the curved contours of the inner lateral edges 107b, 109b.
As previously mentioned, apparatuses and methods according to the present disclosure may be utilized to produce elastomeric laminates that may be used to construct various components of diapers, such as elastic belts, leg cuffs, and the like. For example,
It is to be appreciated that the elastomeric laminates 302 can be used to construct various types of absorbent article components. It also to be appreciated that the methods and apparatuses herein may be adapted to operate with various types of absorbent article assembly processes, such as disclosed for example in U.S. Patent Publication Nos. 2013/0255861 A1; 2013/0255862 A1; 2013/0255863 A1; 2013/0255864 A1; and 2013/0255865 A1. For example, the elastomeric laminates 302 may be used as a continuous length of elastomeric belt material that may be converted into the first and second elastic belts 106, 108 discussed above with reference to
As discussed in more detail below, the converting apparatuses 300 may include metering devices arranged along a process machine direction MD, wherein the metering devices may be configured to stretch the advancing elastic material and/or join stretch elastic material with one or more advancing substrates. In some configurations, a metering device may comprise an unwinder with spools of elastic strands positioned thereon. During operation, elastic material may advance in a machine direction from rotating first spools on a first unwinder to a downstream metering device to be joined with one or more advancing substrates. Before the elastic material is completely drawn from or removed from the first spools, elastic material may also be advanced in the machine direction from rotating second spools on a second unwinder to the downstream metering device to be joined with one or more advancing substrates. Subsequently, advancement of the elastic material from the first spools to the downstream metering device may be discontinued. As such, the elastomeric laminate assembly process continues uninterrupted while replacing elastic material unwound from the first spools with elastic material unwound from the second spools. Thus, the empty first unwinder may be replaced with another unwinder with spools of elastic material positioned thereon without interrupting and/or stopping the assembly of the elastomeric laminate.
With continued reference to
As shown in
As shown in
As shown in
As shown in
With continued reference to
As previously discussed, the second unwinder 500b includes second elastic strands 318b positioned thereon and configured to replace the first elastic stands 318a once the first spools 316a on the first unwinder 500a are completely depleted or nearly depleted of first elastic strands 318a. As shown in
When introducing the second elastic strands 318b into the assembly operation, the second elastic strands 318b may first be connected with a splicer member 354. As shown in
As shown in
It is to be appreciated that the apparatus 300 can be configured to operate in various ways to advance the leading ends 356 of the second elastic strands 318b between the first and second substrates 306, 308. For example, the splicer member 354 discussed above with reference to
In some configurations, as opposed to being connected with the first elastic strands 318a, the splicer member 354 and/or second elastic strands 318b may be connected with the first substrate 306 or the second substrate 308 upstream of the nip 336. For example, as shown in
It is to be appreciated that different components may be used to construct the elastomeric laminates 302 in accordance with the methods and apparatuses herein. For example, the first and/or second substrates 306, 308 may include nonwovens and/or films. In addition, the first and/or second elastic strands 318a, 318b may be configured in various ways and having various decitex values. In some configurations, the first and/or second plurality of elastic strands 318a, 318b may be configured with decitex values ranging from about 10 decitex to about 500 decitex, specifically reciting all 1 decitex increments within the above-recited range and all ranges formed therein or thereby. It is also to be appreciated the first unwinder 500a and the second unwinder 500b may be configured in various ways and with various quantities of spools 316 of elastic strands 318. Although
It is also to be appreciated that the elastic strands 318 advancing from the unwinder 500 may be separated from each other by various distances in the cross direction CD. In some configurations, the first elastic strands 318a and/or the second elastic strands 318b may be separated from each other by about 0.5 mm to about 4 mm in the cross direction, specifically reciting all 0.1 mm increments within the above-recited range and all ranges formed therein or thereby. It is also to be appreciated that the separation distance between the elastic strands 318 advancing the from the unwinder 500 may be changed after the elastic strands 318 advance from the respective spools 316. For example, as shown in
As discussed herein, the elastics in the elastic strands 318 may be pre-strained prior to joining the elastic strands 318 to the first or second substrate layers 306, 308. In some configurations, the elastic may be pre-strained from about 75% to about 300%, specifically reciting all 1% increments within the above-recited range and all ranges formed therein or thereby. Pre-strain refers to the strain imposed on an elastic or elastomeric material prior to combining it with another element of the elastomeric laminate or the absorbent article. Pre-strain is determined by the following equation: Pre-strain=((extended length of the elastic-relaxed length of the elastic)/relaxed length of the elastic)*100.
It is to be appreciated that the apparatuses 300 herein may be configured in various ways. For example, in another configuration of the apparatus 300 shown in
With continued reference to
As previously discussed, the apparatus 300 includes the second elastic strands 318b configured to replace the first elastic stands 318a once the first spools 316a are completely depleted or nearly depleted of first elastic strands 318a. As shown in
As shown in
As discussed above and as shown in
As previously mentioned, the second elastic strands 318b may be introduced into the assembly operation without having to connect the second elastic strands 318b with a splicer member 354. Thus, the second elastic strands 318b may be connected directly with the first substrate 306. It is also to be appreciated that the splicer member 354 and/or the second elastic strands 318b may be connected with the first substrate 306 while partially wrapped around the outer circumferential surface 326 of the first roller 306. It is also to be appreciated that the splicer member 354 and/or the second elastic strands 318b may be connected with the second substrate 308 upstream of the second roller 330 or while partially wrapped around the outer circumferential surface 332 of the second roller 330.
In another configuration shown in
With continued reference to
As previously discussed, the apparatus 300 includes the second elastic strands 318b configured to replace the first elastic stands 318a once the first spools 316a are completely depleted or nearly depleted of first elastic strands 318a. As shown in
As shown in
It is to be appreciated that in the various process configurations discussed above, the second elastic strands 318b may be first connected with a splicer member 354 before advancing the elastic strands 318b in the assembly process. It is also to be appreciated that in the various process configurations discussed above, the second elastic strands 318b may be advanced directly into the assembly process without connecting the stands 318b to a splicer member. In some configurations, the second elastic strands 318b may be connected or tied to each other with a knot before advancing into the assembly process. In some configurations, the first substrate 306 and/or second substrate 308 may have an electrostatic charge that attracts the elastic strands 318b to the substrates 306, 308 before advancing into assembly process. Further, in some configurations, the elastic strands 318b may be directed into the assembly process by air flow, such as provided from a fan and/or a vacuum system.
It is to be appreciated that the apparatuses and processes may be configured such that elastic strands may be advanced from the unwinders 500 and directly to the assembly process without having to touch additional machine components, such as for example, guide rollers. It is also to be appreciated that in some configurations, elastic strands may be advanced from the unwinders and may be redirected and/or otherwise touched by and/or redirected before advancing to the assembly process. For example,
Although
As shown in
It is to be appreciated that the unwinder 500 discussed above with reference to
It is to be appreciated that a control system and/or an inspection system may be utilized to control various aspects of the splicing operations discussed herein. For example, as previously mentioned, the first roll 504 and/or the second roll 506 of the unwinder 500 may be connected with one or more motors, such as servo motors, to drive and control the rotation of the spools 316. As such, a control system may operate to control the acceleration and/or deceleration of the spools 316 during the splicing operation to achieve and/or maintain the desired tension in the elastic strands 318. In some configurations, the elastic strands 318 may be advanced from the unwinders 500 through a series of dancer rolls to help maintain desired tensions in the elastic strands 318 during splicing operations. As previously mentioned, the elastomeric laminate 302 may also be subject to additional converting processes. Such additional converting processes may incorporate the elastomeric laminate 302 into discrete absorbent articles 100. As such, in some embodiments, an inspection system may be configured to detect and/or track a defective length of the elastomeric laminate 302. With reference to
It is to be appreciated that the apparatuses 300 herein may be configured in various ways with various features described herein to assemble elastomeric laminates 302 having various stretch characteristics. For example, the apparatus 300 may be configured to assemble elastomeric laminates 302 with elastic strands 318 unwound from more than one unwinder 500 and/or in combination with elastic stands supplied from various types of elastic unwinder configurations, such as an overend unwinder and/or beams (also referred to as warp beams), such as disclosed in U.S. Pat. Nos. 6,676,054; 7,878,447; 7,905,446; 9,156,648; 4,525,905; 5,060,881; and 5,775,380; and U.S. Patent Publication No. 2004/0219854 A1. Additional examples of beam elastics and associated handling equipment are available from Karl Mayer Corporation.
In some configurations, the elastic strands 318 may be joined with the first and second substrates 306, 308 such that the elastomeric laminate 302 may have different stretch characteristics in different regions along the cross direction CD, such as disclosed in U.S. patent application Nos. 62/436,589; 62/483,965; 62/553,538; 62/553,149; 62/553,171; 62/581,278; and Ser. No. 15/839,896, which are all incorporated by reference herein. For example, when the elastomeric laminate 302 is elongated, some elastic strands may exert contraction forces in the machine direction MD that are different from contraction forces exerted by other elastic strands 318. Such differential stretch characteristics can be achieved by stretching some elastic strands 318 more or less than other elastic strands 318 before joining the elastic strands with the first and second substrates 306, 308. It is also to be appreciated that the elastic strands 318 may have various different material constructions and/or decitex values to create elastomeric laminates 302 having different stretch characteristics in different regions. In some configurations, the spools 316 of elastic strands 318 having different decitex values may be positioned on and advanced from an unwinder 500. In some configurations, the elastomeric laminate 302 may have regions where the elastic strands 318 are spaced relatively close to one another in the cross direction CD and other regions where the elastic strands 318 are spaced relatively far apart from each other in the cross direction CD to create different stretch characteristics in different regions. In some configurations, the elastic strands 318 may be supplied on the spool 316 in a stretched state, and as such, may not require additional stretching (or may require relatively less additional stretching) before being combined with the first substrate 306 and/or the second substrate 308. In some configurations, differential stretch characteristics in an elastomeric laminate may be created by bonding another elastomeric laminate and/or an elastic film to a particular region of an elastomeric laminate. In some configurations, differential stretch characteristics in an elastomeric laminate may be created by folding a portion of an elastomeric laminate onto itself in a particular region of the elastomeric laminate.
It is to be appreciated the elastic strands 318 may include various types of spin finish, also referred herein as yarn finish, configured as coating on the elastic strands 318 that may be intended to help prevent the elastics strands from adhering to themselves, each other, and/or downstream handling equipment. In some configurations, a spin finish may include various types of oils and other components, such as disclosed for example in U.S. Pat. Nos. 8,377,554; 8,093,161; and 6,821,301. In some configurations, a spin finish may include various types of silicone oils, such as for example, polydimethylsiloxane. In some configurations, a spin finish may include various types of mineral oils, including hydrogenated paraffinic and napthenic oils. In some configurations, the molecular weight of an oil may be adjusted to optimize adhesion properties of the elastic strands depending on the process configuration in which the elastic strands may be used. In some configurations, a spin finish may include various types of fatty amides, erucamide, behenamide, and oleamide. It is also to be appreciated that the amount of spin finish applied to elastic strands may be optimized depending on the process configuration in which the elastic strands may be used. For example, in process configurations wherein elastic strands have limited contact or do not contact downstream handling equipment, such as idlers, the amount of spin finish may be selected to help prevent the elastics strands from adhering to themselves and/or each other while wound on a beam without regard to whether elastic strands would adhere to downstream handling equipment. As such, it is to be appreciated that the elastic strands herein may include various amounts of spin finish that may be expressed in various ways. For example, a quantity of 10 grams of spin finish per 1 kilogram of elastic strand may be expressed as 1% spin finish. In some configurations, an elastic strand may include about 0.1% spin finish. In some configurations, a strand may include from about 0.01% to about 10% spin finish, specifically reciting all 0.01% increments within the above-recited range and all ranges formed therein or thereby. It is also to be appreciated that the methods and apparatuses herein may also be configured to remove some or all the spin finish from the elastic strands 318. Examples of spin finish removal processes and apparatuses are disclosed in U.S. Provisional Patent Application No. 62/483,965, which is incorporated by reference herein.
This application claims the benefit of U.S. Provisional Application No. 62/436,589, filed on Dec. 20, 2016; 62/483,965, filed on Apr. 11, 2017; 62/553,538, filed on Sep. 1, 2017; 62/553,149, filed on Sep. 1, 2017; 62/553,171, filed on Sep. 1, 2017; and 62/581,278, filed on Nov. 3, 2017, the entireties of which are all incorporated by reference herein.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
This application is a continuation of, and claims priority under 35 U.S.C. § 120 to, U.S. patent application Ser. No. 15/846,382, filed on Dec. 19, 2017, which claims the benefit, under 35 USC 119(e), to U.S. Provisional Patent Application No. 62/436,589, filed on Dec. 20, 2016; U.S. Provisional Patent Application No. 62/483,965, filed on Apr. 11, 2017; U.S. Provisional Patent Application No. 62/553,149, filed on Sep. 1, 2017; U.S. Provisional Patent Application No. 62/553,171, filed on Sep. 1, 2017; U.S. Provisional Patent Application No. 62/553,538, filed on Sep. 1, 2017; and U.S. Provisional Patent Application No. 62/581,278, filed on Nov. 3, 2017; each of which are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3113225 | Kleesattel et al. | Dec 1963 | A |
3434189 | Buck et al. | Mar 1969 | A |
3508722 | Kohl | Apr 1970 | A |
3562041 | Robertson | Feb 1971 | A |
3575782 | Hansen | Apr 1971 | A |
3733238 | Long et al. | May 1973 | A |
3860003 | Buell | Jan 1975 | A |
3871378 | Duncan et al. | Mar 1975 | A |
4251587 | Mimura et al. | Feb 1981 | A |
4333979 | Sciaraffa et al. | Jun 1982 | A |
4525905 | Bogucki-Land | Jul 1985 | A |
4610678 | Weisman et al. | Sep 1986 | A |
4640859 | Hansen et al. | Feb 1987 | A |
4657539 | Hasse | Apr 1987 | A |
4673402 | Weisman et al. | Jun 1987 | A |
4695278 | Lawson | Sep 1987 | A |
4704115 | Buell | Nov 1987 | A |
4741941 | Englebert et al. | May 1988 | A |
4776911 | Uda et al. | Oct 1988 | A |
4795454 | Dragoo | Jan 1989 | A |
4834735 | Alemany et al. | May 1989 | A |
4854984 | Ball et al. | Aug 1989 | A |
4888231 | Angstadt | Dec 1989 | A |
4909803 | Aziz et al. | Mar 1990 | A |
4940464 | Van Gompel et al. | Jul 1990 | A |
4984584 | Hansen | Jan 1991 | A |
5003676 | McFalls | Apr 1991 | A |
5060881 | Bogucki-Land | Oct 1991 | A |
5092861 | Nomura et al. | Mar 1992 | A |
5110403 | Ehlert | May 1992 | A |
5167897 | Weber et al. | Dec 1992 | A |
5246433 | Hasse et al. | Sep 1993 | A |
5334289 | Trokhan et al. | Aug 1994 | A |
5342341 | Igaue et al. | Aug 1994 | A |
5360420 | Cook et al. | Nov 1994 | A |
5393360 | Bridges et al. | Feb 1995 | A |
5413849 | Austin et al. | May 1995 | A |
5514523 | Trokhan et al. | May 1996 | A |
5531729 | Coles et al. | Jul 1996 | A |
5558658 | Menard et al. | Sep 1996 | A |
5562646 | Goldman et al. | Oct 1996 | A |
5569234 | Buell et al. | Oct 1996 | A |
5575874 | Griesbach, III et al. | Nov 1996 | A |
5599335 | Goldman et al. | Feb 1997 | A |
5599420 | Yeo et al. | Feb 1997 | A |
5628097 | Benson et al. | May 1997 | A |
5643588 | Roe et al. | Jul 1997 | A |
5643653 | Griesbach, III et al. | Jul 1997 | A |
5669894 | Goldman et al. | Sep 1997 | A |
5674216 | Buell et al. | Oct 1997 | A |
5702551 | Huber et al. | Dec 1997 | A |
5775380 | Roelstraete et al. | Jul 1998 | A |
5827259 | Laux et al. | Oct 1998 | A |
5858504 | Steven | Jan 1999 | A |
5887322 | Hartzheim | Mar 1999 | A |
5895623 | Trokhan et al. | Apr 1999 | A |
5897545 | Kline et al. | Apr 1999 | A |
5916661 | Benson et al. | Jun 1999 | A |
5957908 | Kline et al. | Sep 1999 | A |
5968025 | Roe et al. | Oct 1999 | A |
5993433 | St. Louis et al. | Nov 1999 | A |
5997521 | Robles et al. | Dec 1999 | A |
6036796 | Halbert et al. | Mar 2000 | A |
6043168 | Colman et al. | Mar 2000 | A |
6107537 | Elder et al. | Aug 2000 | A |
6107539 | Palumbo et al. | Aug 2000 | A |
6118041 | Roe et al. | Sep 2000 | A |
6120487 | Ashton | Sep 2000 | A |
6120489 | Johnson et al. | Sep 2000 | A |
6139941 | Jankevics et al. | Oct 2000 | A |
6153209 | Vega et al. | Nov 2000 | A |
6248195 | Schmitz | Jun 2001 | B1 |
6248197 | Nakanishi et al. | Jun 2001 | B1 |
6291039 | Combe et al. | Sep 2001 | B1 |
6319239 | Daniels et al. | Nov 2001 | B1 |
6353431 | Poole et al. | Mar 2002 | B1 |
6361638 | Takai et al. | Mar 2002 | B2 |
6383431 | Dobrin et al. | May 2002 | B1 |
6395957 | Chen et al. | May 2002 | B1 |
6410129 | Zhang et al. | Jun 2002 | B2 |
6426444 | Roe et al. | Jul 2002 | B2 |
6475600 | Morman et al. | Nov 2002 | B1 |
6478785 | Ashton et al. | Nov 2002 | B1 |
6482191 | Roe et al. | Nov 2002 | B1 |
6508641 | Kubik | Jan 2003 | B1 |
6545197 | Muller et al. | Apr 2003 | B1 |
6554815 | Umebayashi | Apr 2003 | B1 |
6586652 | Roe et al. | Jul 2003 | B1 |
6617016 | Zhang et al. | Sep 2003 | B2 |
6627787 | Roe et al. | Sep 2003 | B1 |
6632504 | Gillespie et al. | Oct 2003 | B1 |
6645330 | Pargass et al. | Nov 2003 | B2 |
6673418 | DeOlivera et al. | Jan 2004 | B1 |
6676054 | Heaney et al. | Jan 2004 | B2 |
6702798 | Christoffel et al. | Mar 2004 | B2 |
6790798 | Suzuki et al. | Sep 2004 | B1 |
6821301 | Azuse et al. | Nov 2004 | B2 |
6825393 | Roe et al. | Nov 2004 | B2 |
6861571 | Roe et al. | Mar 2005 | B1 |
7008685 | Groitzsch et al. | Mar 2006 | B2 |
7118558 | Wu et al. | Oct 2006 | B2 |
7465367 | Day | Dec 2008 | B2 |
7569039 | Matsuda et al. | Aug 2009 | B2 |
7582348 | Ando et al. | Sep 2009 | B2 |
7642398 | Järpenberg et al. | Jan 2010 | B2 |
7708849 | McCabe | May 2010 | B2 |
7777094 | Mori et al. | Aug 2010 | B2 |
7861756 | Jenquin et al. | Jan 2011 | B2 |
7878447 | Hartzheim | Feb 2011 | B2 |
7901393 | Matsuda et al. | Mar 2011 | B2 |
7905446 | Hartzheim | Mar 2011 | B2 |
7954213 | Mizutani et al. | Jun 2011 | B2 |
8093161 | Bansal et al. | Jan 2012 | B2 |
8143177 | Noda et al. | Mar 2012 | B2 |
8186296 | Brown et al. | May 2012 | B2 |
8226625 | Turner et al. | Jul 2012 | B2 |
8308706 | Fukae | Nov 2012 | B2 |
8377554 | Martin et al. | Feb 2013 | B2 |
8388594 | Turner et al. | Mar 2013 | B2 |
8440043 | Schneider et al. | May 2013 | B1 |
8585666 | Weisman et al. | Nov 2013 | B2 |
8647319 | Een et al. | Feb 2014 | B2 |
8729332 | Takahashi et al. | May 2014 | B2 |
8778127 | Schneider et al. | Jul 2014 | B2 |
8853108 | Ahoniemi et al. | Oct 2014 | B2 |
8906275 | Davis et al. | Dec 2014 | B2 |
8939957 | Raycheck et al. | Jan 2015 | B2 |
9005392 | Schneider et al. | Apr 2015 | B2 |
9039855 | Schneider et al. | May 2015 | B2 |
9050213 | LaVon et al. | Jun 2015 | B2 |
9156648 | Yamamoto | Oct 2015 | B2 |
9168182 | Hargett et al. | Oct 2015 | B2 |
9198804 | Nakamura et al. | Dec 2015 | B2 |
9226861 | LaVon et al. | Jan 2016 | B2 |
9248054 | Brown et al. | Feb 2016 | B2 |
9265672 | Brown et al. | Feb 2016 | B2 |
9295590 | Brown et al. | Mar 2016 | B2 |
9370775 | Harvey et al. | Jun 2016 | B2 |
9440043 | Schneider et al. | Sep 2016 | B2 |
9453303 | Aberg et al. | Sep 2016 | B2 |
9539735 | Ferguson et al. | Jan 2017 | B2 |
9732454 | Davis et al. | Aug 2017 | B2 |
9758339 | Yanez, Jr. et al. | Sep 2017 | B2 |
9795520 | Kaneko et al. | Oct 2017 | B2 |
9877876 | Huang et al. | Jan 2018 | B2 |
10190244 | Ashraf et al. | Jan 2019 | B2 |
10596045 | Koshijima et al. | Mar 2020 | B2 |
10792194 | Hohm et al. | Oct 2020 | B2 |
10973699 | Schneider et al. | Apr 2021 | B2 |
20010030014 | Kwok | Oct 2001 | A1 |
20020026660 | Goda | Mar 2002 | A1 |
20020046802 | Tachibana et al. | Apr 2002 | A1 |
20020072723 | Ronn et al. | Jun 2002 | A1 |
20020099347 | Chen et al. | Jul 2002 | A1 |
20020103469 | Chen et al. | Aug 2002 | A1 |
20020134067 | Heaney et al. | Sep 2002 | A1 |
20020153271 | McManus et al. | Oct 2002 | A1 |
20020177829 | Fell et al. | Nov 2002 | A1 |
20030044585 | Taylor et al. | Mar 2003 | A1 |
20030070780 | Chen et al. | Apr 2003 | A1 |
20030087056 | Ducker et al. | May 2003 | A1 |
20030093045 | Jensen | May 2003 | A1 |
20030119404 | Belau et al. | Jun 2003 | A1 |
20030125687 | Gubernick et al. | Jul 2003 | A1 |
20030144643 | Järpenberg et al. | Jul 2003 | A1 |
20030203162 | Christopher et al. | Oct 2003 | A1 |
20030233082 | Kline et al. | Dec 2003 | A1 |
20040006323 | Hall et al. | Jan 2004 | A1 |
20040030317 | Torigoshi | Feb 2004 | A1 |
20040059309 | Nortman | Mar 2004 | A1 |
20040097895 | Busam et al. | May 2004 | A1 |
20040127881 | Stevens et al. | Jul 2004 | A1 |
20040133180 | Mori et al. | Jul 2004 | A1 |
20040158212 | Ponomarenko et al. | Aug 2004 | A1 |
20040158217 | Wu et al. | Aug 2004 | A1 |
20040219854 | Groitzsch | Nov 2004 | A1 |
20040230171 | Ando et al. | Nov 2004 | A1 |
20050013975 | Brock et al. | Jan 2005 | A1 |
20050107764 | Matsuda et al. | May 2005 | A1 |
20050148971 | Kuroda et al. | Jul 2005 | A1 |
20050230037 | Jenquin et al. | Oct 2005 | A1 |
20050244640 | Riswick et al. | Nov 2005 | A1 |
20050267431 | Sasaki et al. | Dec 2005 | A1 |
20060047260 | Ashton et al. | Mar 2006 | A1 |
20060069373 | Schlinz et al. | Mar 2006 | A1 |
20060087053 | O'Donnell et al. | Apr 2006 | A1 |
20060105075 | Otsubo | May 2006 | A1 |
20060189954 | Kudo et al. | Aug 2006 | A1 |
20060228969 | Erdman | Oct 2006 | A1 |
20060270302 | Ando et al. | Nov 2006 | A1 |
20070026753 | Neely et al. | Feb 2007 | A1 |
20070045143 | Clough et al. | Mar 2007 | A1 |
20070045144 | Wheeler et al. | Mar 2007 | A1 |
20070131335 | Zhou et al. | Jun 2007 | A1 |
20070141311 | Mleziva et al. | Jun 2007 | A1 |
20070179466 | Tremblay et al. | Aug 2007 | A1 |
20070196650 | Yamamoto et al. | Aug 2007 | A1 |
20080134487 | Hartono | Jun 2008 | A1 |
20080149292 | Scherb | Jun 2008 | A1 |
20080161768 | Baba et al. | Jul 2008 | A1 |
20080287897 | Guzman et al. | Nov 2008 | A1 |
20090177176 | Saito | Jul 2009 | A1 |
20090204093 | Vasic et al. | Aug 2009 | A1 |
20090312730 | LaVon et al. | Dec 2009 | A1 |
20100022151 | Malowaniec | Jan 2010 | A1 |
20100036346 | Hammons | Feb 2010 | A1 |
20100048072 | Kauschke | Feb 2010 | A1 |
20100075103 | Miyamoto | Mar 2010 | A1 |
20100076394 | Hayase et al. | Mar 2010 | A1 |
20100248575 | Malz | Sep 2010 | A1 |
20100307668 | Lange et al. | Dec 2010 | A1 |
20110092943 | Bishop et al. | Apr 2011 | A1 |
20110118689 | Een et al. | May 2011 | A1 |
20110120897 | Takahashi | May 2011 | A1 |
20110250378 | Eaton et al. | Oct 2011 | A1 |
20120004633 | Marcelo et al. | Jan 2012 | A1 |
20120061015 | LaVon et al. | Mar 2012 | A1 |
20120061016 | LaVon et al. | Mar 2012 | A1 |
20120071852 | Tsang et al. | Mar 2012 | A1 |
20120095429 | Kobayashi et al. | Apr 2012 | A1 |
20120271267 | Love et al. | Oct 2012 | A1 |
20120277713 | Raycheck et al. | Nov 2012 | A1 |
20120323206 | McMorrow et al. | Dec 2012 | A1 |
20130032656 | Yamamoto et al. | Feb 2013 | A1 |
20130072887 | LaVon et al. | Mar 2013 | A1 |
20130102982 | Nakano et al. | Apr 2013 | A1 |
20130112584 | Gaspari et al. | May 2013 | A1 |
20130139960 | Maruyama et al. | Jun 2013 | A1 |
20130171421 | Weisman et al. | Jul 2013 | A1 |
20130199696 | Schneider et al. | Aug 2013 | A1 |
20130199707 | Schneider | Aug 2013 | A1 |
20130211356 | Nishikawa et al. | Aug 2013 | A1 |
20130211363 | LaVon et al. | Aug 2013 | A1 |
20130255861 | Schneider | Oct 2013 | A1 |
20130255862 | Schneider et al. | Oct 2013 | A1 |
20130255863 | LaVon et al. | Oct 2013 | A1 |
20130255864 | Schneider et al. | Oct 2013 | A1 |
20130255865 | Brown et al. | Oct 2013 | A1 |
20130261589 | Fujkawa et al. | Oct 2013 | A1 |
20130306226 | Zink et al. | Nov 2013 | A1 |
20140000794 | Hamilton et al. | Jan 2014 | A1 |
20140005621 | Roe et al. | Jan 2014 | A1 |
20140018759 | Jayasinghe et al. | Jan 2014 | A1 |
20140041797 | Schneider | Feb 2014 | A1 |
20140107605 | Schroer, Jr. et al. | Apr 2014 | A1 |
20140127460 | Xu et al. | May 2014 | A1 |
20140136893 | Xie et al. | May 2014 | A1 |
20140148773 | Brown et al. | May 2014 | A1 |
20140234575 | Mitsuno et al. | Aug 2014 | A1 |
20140235127 | DeJesus et al. | Aug 2014 | A1 |
20140257231 | Wang et al. | Sep 2014 | A1 |
20140276517 | Chester et al. | Sep 2014 | A1 |
20140288521 | Wade et al. | Sep 2014 | A1 |
20140296815 | Takken et al. | Oct 2014 | A1 |
20140302286 | Okuda et al. | Oct 2014 | A1 |
20140305570 | Matsunaga et al. | Oct 2014 | A1 |
20140324009 | Lee et al. | Oct 2014 | A1 |
20140343525 | Roh et al. | Nov 2014 | A1 |
20140377506 | Eckstein et al. | Dec 2014 | A1 |
20140377513 | Galie et al. | Dec 2014 | A1 |
20150083309 | Long et al. | Mar 2015 | A1 |
20150126956 | Raycheck et al. | May 2015 | A1 |
20150136893 | Koskol | May 2015 | A1 |
20150164708 | Hashimoto et al. | Jun 2015 | A1 |
20150167207 | Bongartz et al. | Jun 2015 | A1 |
20150173967 | Kreuzer et al. | Jun 2015 | A1 |
20150230995 | Kaneko et al. | Aug 2015 | A1 |
20150245958 | Chmielewski et al. | Sep 2015 | A1 |
20150257941 | Eckstein et al. | Sep 2015 | A1 |
20150282999 | Arizti et al. | Oct 2015 | A1 |
20150320612 | Seitz et al. | Nov 2015 | A1 |
20150320613 | Seitz et al. | Nov 2015 | A1 |
20150320619 | Seitz et al. | Nov 2015 | A1 |
20150320620 | Seitz et al. | Nov 2015 | A1 |
20150320622 | Seitz et al. | Nov 2015 | A1 |
20150328056 | Een et al. | Nov 2015 | A1 |
20150351972 | Bing-Wo | Dec 2015 | A1 |
20160058624 | Hohm et al. | Mar 2016 | A1 |
20160058627 | Barnes et al. | Mar 2016 | A1 |
20160067119 | Weisman et al. | Mar 2016 | A1 |
20160100989 | Seitz et al. | Apr 2016 | A1 |
20160100997 | Seitz et al. | Apr 2016 | A1 |
20160106633 | Nagata et al. | Apr 2016 | A1 |
20160129661 | Arora et al. | May 2016 | A1 |
20160136009 | Weisman et al. | May 2016 | A1 |
20160228305 | Gualtieri et al. | Aug 2016 | A1 |
20160270977 | Surushi et al. | Sep 2016 | A1 |
20160331600 | Polidori et al. | Nov 2016 | A1 |
20170014281 | Xie et al. | Jan 2017 | A1 |
20170027774 | Ashraf et al. | Feb 2017 | A1 |
20170029993 | Ashraf et al. | Feb 2017 | A1 |
20170029994 | Ashraf et al. | Feb 2017 | A1 |
20170056256 | Smith et al. | Mar 2017 | A1 |
20170065461 | Schneider | Mar 2017 | A1 |
20170079852 | Fujima et al. | Mar 2017 | A1 |
20170119595 | Carla et al. | May 2017 | A1 |
20170191198 | Ashraf et al. | Jul 2017 | A1 |
20170258650 | Rosati et al. | Sep 2017 | A1 |
20170281417 | Ishikawa | Oct 2017 | A1 |
20170319403 | Bewick-Sonntag et al. | Nov 2017 | A1 |
20170348163 | Lakso et al. | Dec 2017 | A1 |
20180092784 | Wade et al. | Apr 2018 | A1 |
20180140473 | Koshijima et al. | May 2018 | A1 |
20180168874 | LaVon et al. | Jun 2018 | A1 |
20180168875 | LaVon et al. | Jun 2018 | A1 |
20180168876 | LaVon et al. | Jun 2018 | A1 |
20180168877 | Schneider et al. | Jun 2018 | A1 |
20180168878 | Schneider et al. | Jun 2018 | A1 |
20180168879 | Schneider et al. | Jun 2018 | A1 |
20180168880 | Schneider et al. | Jun 2018 | A1 |
20180168885 | Zink, II et al. | Jun 2018 | A1 |
20180168887 | LaVon et al. | Jun 2018 | A1 |
20180168888 | Zink, II et al. | Jun 2018 | A1 |
20180168889 | LaVon et al. | Jun 2018 | A1 |
20180168890 | LaVon et al. | Jun 2018 | A1 |
20180168891 | Wise et al. | Jun 2018 | A1 |
20180168892 | LaVon et al. | Jun 2018 | A1 |
20180168893 | Ashraf et al. | Jun 2018 | A1 |
20180169964 | Schneider et al. | Jun 2018 | A1 |
20180170026 | Schneider et al. | Jun 2018 | A1 |
20180170027 | Schneider et al. | Jun 2018 | A1 |
20180214318 | Ashraf et al. | Aug 2018 | A1 |
20180214321 | Ashraf et al. | Aug 2018 | A1 |
20180216269 | Ashraf et al. | Aug 2018 | A1 |
20180216270 | Ashraf et al. | Aug 2018 | A1 |
20180216271 | Ashraf et al. | Aug 2018 | A1 |
20180333311 | Maki et al. | Nov 2018 | A1 |
20190003079 | Ashraf et al. | Jan 2019 | A1 |
20190003080 | Ashraf et al. | Jan 2019 | A1 |
20190070041 | Schneider et al. | Mar 2019 | A1 |
20190070042 | LaVon et al. | Mar 2019 | A1 |
20190112737 | Ashraf et al. | Apr 2019 | A1 |
20190254881 | Ishikawa et al. | Aug 2019 | A1 |
20190298586 | Ashraf et al. | Oct 2019 | A1 |
20190298587 | Ashraf et al. | Oct 2019 | A1 |
20190246196 | Han et al. | Dec 2019 | A1 |
20190374392 | Ninomiya et al. | Dec 2019 | A1 |
20190374404 | Ninomiya et al. | Dec 2019 | A1 |
20200155370 | Ohtsubo et al. | May 2020 | A1 |
20200155371 | Ohtsubo et al. | May 2020 | A1 |
20200206040 | Andrews et al. | Jul 2020 | A1 |
20200214901 | Andrews et al. | Jul 2020 | A1 |
20200298545 | Andrews et al. | Sep 2020 | A1 |
20210275362 | Schneider et al. | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
2158790 | Mar 1996 | CA |
1276196 | Jun 1999 | CN |
1685099 | Oct 2005 | CN |
101746057 | Jun 2010 | CN |
105997351 | Oct 2016 | CN |
0989218 | Mar 2000 | EP |
1305248 | May 2003 | EP |
1452157 | Sep 2004 | EP |
1473148 | Nov 2004 | EP |
1393701 | Jul 2013 | EP |
3056176 | Aug 2016 | EP |
3092997 | Aug 2017 | EP |
3251642 | Dec 2017 | EP |
3257488 | Dec 2017 | EP |
3563817 | Nov 2019 | EP |
3213543 | Sep 1991 | JP |
H 03213543 | Sep 1991 | JP |
H 0430847 | Feb 1992 | JP |
H 06254117 | Sep 1994 | JP |
8071107 | Mar 1996 | JP |
H 08071107 | Mar 1996 | JP |
H 08132576 | May 1996 | JP |
2000026015 | Jan 2000 | JP |
2000160460 | Jun 2000 | JP |
3086141 | Sep 2000 | JP |
2002035029 | Feb 2002 | JP |
2002178428 | Jun 2002 | JP |
2002248127 | Sep 2002 | JP |
2003521949 | Jul 2003 | JP |
2004081365 | Mar 2004 | JP |
2004229857 | Aug 2004 | JP |
2004237410 | Aug 2004 | JP |
2004254862 | Sep 2004 | JP |
2004298362 | Oct 2004 | JP |
2005320636 | Nov 2005 | JP |
2006149747 | Jun 2006 | JP |
2006149749 | Jun 2006 | JP |
2006204673 | Dec 2006 | JP |
2007190397 | Aug 2007 | JP |
2008029749 | Feb 2008 | JP |
2008055198 | Mar 2008 | JP |
2008104853 | May 2008 | JP |
2008105425 | May 2008 | JP |
2008154998 | May 2008 | JP |
2008148942 | Jul 2008 | JP |
2008179128 | Aug 2008 | JP |
2008194493 | Aug 2008 | JP |
2008229006 | Oct 2008 | JP |
2008229007 | Oct 2008 | JP |
2008253290 | Oct 2008 | JP |
2008260131 | Oct 2008 | JP |
2014188042 | Oct 2008 | JP |
2008264480 | Nov 2008 | JP |
2008272250 | Nov 2008 | JP |
2008272253 | Nov 2008 | JP |
2008296585 | Dec 2008 | JP |
2009000161 | Jan 2009 | JP |
2009039341 | Feb 2009 | JP |
2009056156 | Mar 2009 | JP |
2009106667 | May 2009 | JP |
2009172231 | Aug 2009 | JP |
2009240804 | Oct 2009 | JP |
2009241607 | Oct 2009 | JP |
2010131833 | Jun 2010 | JP |
2011015707 | Jan 2011 | JP |
2011111165 | Jun 2011 | JP |
2011178124 | Sep 2011 | JP |
2011225000 | Nov 2011 | JP |
2012050882 | Mar 2012 | JP |
2012050883 | Mar 2012 | JP |
2012115358 | Jun 2012 | JP |
2012521498 | Sep 2012 | JP |
5124187 | Nov 2012 | JP |
5124188 | Nov 2012 | JP |
2013138795 | Jul 2013 | JP |
2014111222 | Jun 2014 | JP |
2014097257 | Oct 2014 | JP |
2015510831 | Apr 2015 | JP |
2015521499 | Jul 2015 | JP |
2016013687 | Jan 2016 | JP |
2016016536 | Feb 2016 | JP |
5942819 | Jun 2016 | JP |
2016193199 | Nov 2016 | JP |
6149635 | Jun 2017 | JP |
2020054741 | Apr 2018 | JP |
2020054742 | Apr 2018 | JP |
2020054744 | Apr 2018 | JP |
2020054745 | Apr 2018 | JP |
2019081304 | May 2019 | JP |
2019166804 | Oct 2019 | JP |
2019181807 | Oct 2019 | JP |
WO 2017105997 | Mar 1996 | WO |
WO 9925296 | May 1999 | WO |
WO 03059603 | Jul 2003 | WO |
WO 2008123348 | Feb 2013 | WO |
WO 2003015681 | Jun 2013 | WO |
WO 2014084168 | Jun 2014 | WO |
WO 2013084977 | Nov 2014 | WO |
WO 2016047320 | Mar 2016 | WO |
WO 2016056092 | Apr 2016 | WO |
WO 2016056093 | Apr 2016 | WO |
WO 2016063346 | Apr 2016 | WO |
WO 2016067387 | May 2016 | WO |
WO 2016071981 | May 2016 | WO |
WO 2016075974 | May 2016 | WO |
WO 2016098416 | Jun 2016 | WO |
WO 2016104412 | Jun 2016 | WO |
WO 2016104422 | Jun 2016 | WO |
WO 2016158499 | Oct 2016 | WO |
WO 2016158746 | Oct 2016 | WO |
WO 2016208502 | Dec 2016 | WO |
WO 2016208513 | Dec 2016 | WO |
WO 2014196669 | Jun 2017 | WO |
WO 2018061288 | Apr 2018 | WO |
WO 2018084145 | May 2018 | WO |
2018118882 | Jun 2018 | WO |
WO 2018154680 | Aug 2018 | WO |
WO 2018154682 | Aug 2018 | WO |
WO 2018167836 | Aug 2018 | WO |
WO 2019046363 | Mar 2019 | WO |
WO 2019111203 | Jun 2019 | WO |
WO 2019150802 | Aug 2019 | WO |
WO 2020006996 | Jan 2020 | WO |
Entry |
---|
15040 PCT International Search Report, PCT/US2017/067251, dated Jun. 14, 2018, 13 pages. |
3D Nonwovens Developments for textured nonwovens; Detlef Frey; http://web.archive.org/web/20170919080326/https://www.reicofil.com/en/pages/3d_nonwovens, Sep. 19, 2017. |
All Office Actions, U.S. Appl. No. 15/831,448. |
All Office Actions, U.S. Appl. No. 15/831,464. |
All Office Actions, U.S. Appl. No. 15/832,929. |
All Office Actions, U.S. Appl. No. 15/833,057. |
All Office Actions, U.S. Appl. No. 15/838,405. |
All Office Actions, U.S. Appl. No. 15/839,896. |
All Office Actions, U.S. Appl. No. 15/846,382. |
All Office Actions, U.S. Appl. No. 16/115,617. |
American Cancer Society—What Cancer Patients Their Families and Caregivers Need to Know About COVID 19—Is Impacting Our Patient Services. |
ASTM—Standard Tables of Body Measurements for Adult Females Misses Figure Type Size Range 00-20. |
ASTM—Standard Tables of Body Measurements for Children Infant Size—Preemie to 24 Months. |
All Office Actions; U.S. Appl. No. 17/189,476. |
All Office Actions; U.S. Appl. No. 17/198,311. |
Unpublished U.S. Appl. No. 17/189,476, filed Mar. 2, 2021, to Uwe Schneider et al. |
Unpublished U.S. Appl. No. 17/198,311, filed Mar. 11, 2021, to Uwe Schneider et al. |
Number | Date | Country | |
---|---|---|---|
20210186767 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62581278 | Nov 2017 | US | |
62553149 | Sep 2017 | US | |
62553171 | Sep 2017 | US | |
62553538 | Sep 2017 | US | |
62483965 | Apr 2017 | US | |
62436589 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15846382 | Dec 2017 | US |
Child | 17191772 | US |