The present disclosure relates to methods and apparatuses for removing polysilicon material from semiconductor workpieces.
Mechanical and chemical-mechanical polishing processes (collectively, “CMP”) remove material from the surfaces of semiconductor workpieces in the production of microelectronic devices and other products. For example, many conventional semiconductor workpieces include polysilicon as a component for forming conductive and/or semi-conductive microelectronic structures (e.g., plugs or damascene lines). These polysilicon structures are typically formed by depositing a blanket polysilicon layer on a workpiece and removing the excess polysilicon material external to the plugs or damascene lines using a CMP process.
One problem associated with polishing polysilicon is that it is difficult to efficiently clean the workpiece surface after polishing. It appears that particles (e.g., abrasive elements from a polishing liquid and/or a polishing pad, particles removed from the workpiece, or other contaminants) can be adsorbed to the workpiece surface after the polysilicon material has been removed. Such adsorption can be strong enough to render conventional physical treatments (e.g., de-ionized water rinsing, megasonification, and brush cleaning) ineffective for removing at least some of the adsorbed contaminants from the workpiece surface after polishing.
One approach to addressing this problem is to treat the workpiece surface with a chemical solution after polishing. The chemical solution typically includes organic surfactants, hydrogen fluoride, ammonia hydroxide, and/or other suitable chemical compounds. A drawback with this approach is that the additional chemical treatment adds to the cost of the overall manufacturing process and reduces the product throughput. A further drawback is that the chemical treatment may use compounds (e.g., organic surfactants) that are not environmentally friendly, and may therefore be costly to dispose of. Accordingly, there is a need for an efficient and cost-effective technique for removing polysilicon materials from semiconductor workpieces.
Specific details of several embodiments of the disclosure are described below with reference to semiconductor workpieces and systems for processing the workpieces. The workpieces can include micromechanical components, data storage elements, optics, read/write components, or other features. For example, the workpieces can include workpieces having dies including SRAM, DRAM (e.g., DDR-SDRAM), flash-memory (e.g., NAND flash-memory), processor, imager, and/or other dies. Moreover, several other embodiments of the invention can have configurations, components, or procedures different than those described in this section. A person of ordinary skill in the art, therefore, will accordingly understand that the invention may have other embodiments with additional elements, or the invention may have other embodiments without several of the elements shown and described below with reference to
A particular method for removing polysilicon material from a semiconductor workpiece includes contacting a polishing pad with a semiconductor workpiece having a surface polysilicon material. The method also includes disposing a polishing liquid between the polysilicon material and the polishing pad. The polishing liquid contains an oxidizer that does not include metal elements. The method further includes moving at least one of the semiconductor workpiece and the polishing pad relative to the other while the semiconductor workpiece contacts the polishing pad and the polishing liquid. As a result, at least some of the polysilicon material is removed while the polysilicon material is contacting the oxidizer in the polishing liquid, as at least one of the semiconductor workpiece and the polishing pad moves relative to the other.
Another particular method for polishing a semiconductor workpiece in a chemical-mechanical polishing process includes contacting a polishing pad and a polishing liquid with a portion of a semiconductor workpiece. The semiconductor workpiece has a polysilicon material at a surface facing toward the polishing pad, and the polishing liquid contains an oxidizer. The method also includes moving at least one of the semiconductor workpiece and the polishing pad relative to the other while the semiconductor workpiece contacts the polishing pad and the polishing liquid. At least a portion of the polysilicon material is removed from the surface of the semiconductor workpiece when at least one of the semiconductor workpiece and the polishing pad is moved relative to the other. The method further includes modifying an ability of the polysilicon material at the surface of the semiconductor workpiece to attract water, while removing at least a portion of the polysilicon material from the surface of the semiconductor workpiece.
The carrier head 130 has a lower surface 132 to which a semiconductor workpiece 150 can be attached, or the workpiece 150 can be attached to a resilient pad 134 under the lower surface 132. The carrier head 130 can be a weighted, free-floating workpiece carrier, or an actuator assembly 136 can be attached to the carrier head 130 to impart rotational motion (as indicated by arrow J) and/or reciprocal motion (as indicated by arrow I) to the semiconductor workpiece 150.
In the illustrated embodiment, the rotary CMP machine 110 can also include an optional dispense conduit 144 for dispensing an oxidizing solution 162 onto the polishing pad 140. The oxidizing solution 162 can contain hydrogen peroxide (H2O2), an organic peroxide ROOR′ (R and/or R′=CxHy, where x and y are positive integers), an organic hydroperoxide ROOH (R=CxHy where x and y are positive integers), other suitable oxidizers that do not include metal elements, and/or combinations of any of the foregoing compounds. For example, the oxidizing solution 162 can include a combination of hydrogen peroxide, di-methyl peroxide, di-ethyl peroxide, methyl-ethyl peroxide, di-tert-butyl peroxide, and/or other suitable peroxides and hydroperoxides.
The polishing pad 140, a polishing solution 160, and the oxidizing solution 162 define a polishing medium that mechanically and/or chemically-mechanically removes material from the workpiece surface. The polishing solution 160 can include abrasive particles and chemicals suspended and/or dissolved in a liquid carrier (e.g., water). The abrasive particles and chemicals etch and/or oxidize the workpiece surface. The polishing solution 160 can also be a “clean” nonabrasive solution without abrasive particles. In most CMP applications, abrasive slurries with abrasive particles are used on non-abrasive polishing pads, and clean non-abrasive solutions without abrasive particles are used on fixed-abrasive polishing pads. The polishing liquid 160 can have an alkaline pH. For example, the polishing liquid 160 can include an alkaline silica slurry having potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethyl ammonium hydroxide (N(CH3)4OH), and/or piperazine (C4H10N2). In other embodiments, the polishing liquid 160 can include other constituents that provide the appropriate pH.
To polish the semiconductor workpiece 150 with the CMP machine 110, the carrier head 130 presses the workpiece 150 facedown against the polishing pad 140. More specifically, the carrier head 130 generally presses the semiconductor workpiece 150 against the polishing solution 160 on a polishing surface 142 of the polishing pad 140, and the platen 120 and/or the carrier head 130 moves to rub the workpiece 150 against the polishing surface 142. As the semiconductor workpiece 150 rubs against the polishing surface 142, the polishing medium removes material from the face of the workpiece 150. The polishing liquid 160 mixed with the oxidizing solution 162 can also modify the surface chemistry of the semiconductor workpiece 150 while the polishing medium removes material from the face of the semiconductor workpiece 150, as described in more detail later with reference to
As illustrated in
As illustrated in
In other embodiments, the second polishing liquid 160b can be eliminated. Instead, the first polishing liquid 160a can be mixed with the oxidizing solution 162 prior to or during the CMP process. As a result, the process of polishing the workpiece 150 (e.g., for removing bulk material) and modifying its surface chemistry can occur generally simultaneously.
2Si+H2O→Si—H+Si—OH
As illustrated in
Si+Si—OH+H2O→Si—H+OH—Si—OH
As illustrated in
Si+OH—Si—OH+H2O→Si—H+Si—(OH)3
As illustrated in
Reacting the neighboring silicon atoms with water in a similar fashion can dislodge the other atoms in the first layer 159a from the workpiece surface 157.
After being polished with the first polishing liquid 160a, the semiconductor workpiece 150 can be polished with the second polishing liquid 160b to remove additional polysilicon material. As illustrated in
H2O2+Si—H→H2O+SiOH
Hydrogen peroxide can also react with surface silicon to form surface silicon oxide as follows:
2H2O2+Si→2H2O+SiO2
As illustrated in
The workpiece 150 can then be further polished when the wafer surface 157 undergoes additional reactions with water generally similar to those described above with reference to
Several embodiments of the foregoing process can reduce the operating costs associated with polishing polysilicon material because expensive post-CMP chemical treatments can be avoided, and simple physical treatments can be used. For example, de-ionized water rinsing, megasonification, brush cleaning, and/or other simple mechanical treatments can now be used to clean the workpiece surface 157. Moreover, several embodiments of the process can improve the quality of the CMP process. As described above, using conventional techniques typically results in adsorbed contaminants (e.g., abrasive elements) on the workpiece surface 157 that cannot be easily removed because of the hydrophobicity of the workpiece surface 157. The contaminants can scratch or otherwise damage the workpiece surface 157 when the workpiece 150 is rubbed against the polishing pad 140. Thus, at least reducing the hydrophobicity of the workpiece surface 157 can improve the contact between the polishing liquid and the workpiece surface 157, and thus reduce the amount of adsorbed contaminants on the workpiece surface 157. As a result, the risk of damaging the workpiece surface 157 during polishing can be reduced.
Further, several embodiments of the process can improve the robustness of the CMP process. For example, adding an oxidizer to the polishing liquid can enable other process parameters (e.g., processing temperatures, pH, amount of polishing force, etc.) to have values outside of the operating ranges associated with conventional processes. By increasing the available operating ranges for these parameters, the processes may be less sensitive to perturbations in these parameter values.
In several embodiments of the process, the oxidizer does not include any metal elements. Metal elements, if included with the oxidizer, could cause silicon contamination that interferes with subsequent metal deposition and processing and/or impacts the electrical property (e.g., the semi-conductive property) of the workpiece. As a result, by using an oxidizer that does not include metal elements, the likelihood of silicon contamination can be reduced or eliminated.
Several embodiments of the process can be at least partially “self-cleaning.” It is believed that the Si—OH functional groups at the wafer surface 157 can undergo hydrolysis in a basic solution to become negatively charged as follows:
H2O+Si—OH→H3O++Si—O−
It is also believed that contaminants (e.g., abrasive particles) also typically have negatively charged surfaces in a basic solution. The negatively charged wafer surface 157 can thus repel the negatively charged contaminants and reduce the amount of contaminants aggregated, stuck, or otherwise adsorbed onto the wafer surface 157.
In one embodiment, the polysilicon material 154 is removed while remaining in contact with the same polishing pad 140 during the entire process (e.g., as shown in
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the invention. For example, the processes described with reference to the Figures are used to remove the polysilicon material 154 from the workpiece 150. In other embodiments, these processes can also be used to remove amorphous silicon or single grain silicon. In any of the processes described above, the polishing liquid 160 can include dilute Hydrogen Fluoride (HF), Ammonia Hydroxide (NH4OH), or other types of cleaning agents in addition to the compounds described above. Certain aspects of the invention described in the context of particular embodiments may be combined or eliminated in other embodiments. For example, the dispense conduit 144 can be eliminated in some embodiments. Further, while features and/or characteristics associated with certain embodiments of the invention have been described in the context of those embodiments, other embodiments may also exhibit such features and/or characteristics, and not all embodiments need necessarily exhibit such features and/or characteristics to fall within the scope of the invention. Accordingly, the invention is not limited, except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5081796 | Schultz | Jan 1992 | A |
5209816 | Yu et al. | May 1993 | A |
5225034 | Yu et al. | Jul 1993 | A |
5232875 | Tuttle et al. | Aug 1993 | A |
5234867 | Schultz et al. | Aug 1993 | A |
5240552 | Yu et al. | Aug 1993 | A |
5244534 | Yu et al. | Sep 1993 | A |
5245790 | Jerbic | Sep 1993 | A |
5245796 | Miller et al. | Sep 1993 | A |
RE34425 | Schultz | Nov 1993 | E |
5354490 | Yu et al. | Oct 1994 | A |
5421769 | Schultz et al. | Jun 1995 | A |
5433651 | Lustig et al. | Jul 1995 | A |
5449314 | Meikle et al. | Sep 1995 | A |
5486129 | Sandhu et al. | Jan 1996 | A |
5489557 | Jolley | Feb 1996 | A |
5514245 | Doan et al. | May 1996 | A |
5533924 | Stroupe et al. | Jul 1996 | A |
5540810 | Sandhu et al. | Jul 1996 | A |
5616069 | Walker et al. | Apr 1997 | A |
5618381 | Doan et al. | Apr 1997 | A |
5643060 | Sandhu et al. | Jul 1997 | A |
5645682 | Skrovan | Jul 1997 | A |
5655951 | Meikle et al. | Aug 1997 | A |
5658183 | Sandhu et al. | Aug 1997 | A |
5658190 | Wright et al. | Aug 1997 | A |
5664988 | Stroupe et al. | Sep 1997 | A |
5679065 | Henderson | Oct 1997 | A |
5679169 | Gonzales et al. | Oct 1997 | A |
5702292 | Brunelli et al. | Dec 1997 | A |
5725417 | Robinson | Mar 1998 | A |
5730642 | Sandhu et al. | Mar 1998 | A |
5747386 | Moore | May 1998 | A |
5779522 | Walker et al. | Jul 1998 | A |
5782675 | Southwick | Jul 1998 | A |
5792709 | Robinson et al. | Aug 1998 | A |
5795495 | Meikle | Aug 1998 | A |
5801066 | Meikle | Sep 1998 | A |
5807165 | Uzoh et al. | Sep 1998 | A |
5827781 | Skrovan et al. | Oct 1998 | A |
5830806 | Hudson et al. | Nov 1998 | A |
5833519 | Moore | Nov 1998 | A |
5846336 | Skrovan | Dec 1998 | A |
5851135 | Sandhu et al. | Dec 1998 | A |
5868896 | Robinson et al. | Feb 1999 | A |
5879226 | Robinson | Mar 1999 | A |
5882248 | Wright et al. | Mar 1999 | A |
5893754 | Robinson et al. | Apr 1999 | A |
5894852 | Gonzales et al. | Apr 1999 | A |
5895550 | Andreas | Apr 1999 | A |
5910043 | Manzonie et al. | Jun 1999 | A |
5916819 | Skrovan et al. | Jun 1999 | A |
5934980 | Koos et al. | Aug 1999 | A |
5945347 | Wright | Aug 1999 | A |
5954912 | Moore | Sep 1999 | A |
5967030 | Blalock | Oct 1999 | A |
5972792 | Hudson | Oct 1999 | A |
5975994 | Sandhu et al. | Nov 1999 | A |
5980363 | Meikle et al. | Nov 1999 | A |
5981396 | Robinson et al. | Nov 1999 | A |
5990012 | Robinson et al. | Nov 1999 | A |
5994224 | Sandhu et al. | Nov 1999 | A |
5997384 | Blalock | Dec 1999 | A |
6004196 | Doan et al. | Dec 1999 | A |
6007406 | Custer et al. | Dec 1999 | A |
6039633 | Chopra | Mar 2000 | A |
6040245 | Sandhu et al. | Mar 2000 | A |
6054015 | Brunelli et al. | Apr 2000 | A |
6059920 | Nojo et al. | May 2000 | A |
6060395 | Skrovan et al. | May 2000 | A |
6066030 | Uzoh | May 2000 | A |
6074286 | Ball | Jun 2000 | A |
6077785 | Andreas | Jun 2000 | A |
6083085 | Lankford | Jul 2000 | A |
6110820 | Sandhu et al. | Aug 2000 | A |
6116988 | Ball | Sep 2000 | A |
6120354 | Koos et al. | Sep 2000 | A |
6124207 | Robinson et al. | Sep 2000 | A |
6125255 | Litman | Sep 2000 | A |
6135856 | Tjaden et al. | Oct 2000 | A |
6136218 | Skrovan et al. | Oct 2000 | A |
6139402 | Moore | Oct 2000 | A |
6143123 | Robinson et al. | Nov 2000 | A |
6143155 | Adams et al. | Nov 2000 | A |
6152808 | Moore | Nov 2000 | A |
6176763 | Kramer et al. | Jan 2001 | B1 |
6176992 | Talieh | Jan 2001 | B1 |
6187681 | Moore | Feb 2001 | B1 |
6191037 | Robinson et al. | Feb 2001 | B1 |
6193588 | Carlson et al. | Feb 2001 | B1 |
6196899 | Chopra et al. | Mar 2001 | B1 |
6200196 | Custer et al. | Mar 2001 | B1 |
6200901 | Hudson et al. | Mar 2001 | B1 |
6203404 | Joslyn et al. | Mar 2001 | B1 |
6203413 | Skrovan | Mar 2001 | B1 |
6206756 | Chopra et al. | Mar 2001 | B1 |
6206757 | Custer et al. | Mar 2001 | B1 |
6210257 | Carlson | Apr 2001 | B1 |
6213845 | Elledge | Apr 2001 | B1 |
6218316 | Marsh | Apr 2001 | B1 |
6220934 | Sharples et al. | Apr 2001 | B1 |
6227955 | Custer et al. | May 2001 | B1 |
6234874 | Ball | May 2001 | B1 |
6234877 | Koos et al. | May 2001 | B1 |
6234878 | Moore | May 2001 | B1 |
6237483 | Blalock | May 2001 | B1 |
6238270 | Robinson | May 2001 | B1 |
6244944 | Elledge | Jun 2001 | B1 |
6250994 | Chopra et al. | Jun 2001 | B1 |
6251785 | Wright | Jun 2001 | B1 |
6261151 | Sandhu et al. | Jul 2001 | B1 |
6261163 | Walker et al. | Jul 2001 | B1 |
6267650 | Hembree | Jul 2001 | B1 |
6271139 | Alwan et al. | Aug 2001 | B1 |
6273101 | Gonzales et al. | Aug 2001 | B1 |
6273786 | Chopra et al. | Aug 2001 | B1 |
6273796 | Moore | Aug 2001 | B1 |
6273800 | Walker et al. | Aug 2001 | B1 |
6276996 | Chopra | Aug 2001 | B1 |
6306008 | Moore | Oct 2001 | B1 |
6306012 | Sabde | Oct 2001 | B1 |
6306014 | Walker et al. | Oct 2001 | B1 |
6306768 | Klein | Oct 2001 | B1 |
6312486 | Sandhu et al. | Nov 2001 | B1 |
6312558 | Moore | Nov 2001 | B2 |
6313038 | Chopra et al. | Nov 2001 | B1 |
6328632 | Chopra | Dec 2001 | B1 |
6331139 | Walker et al. | Dec 2001 | B2 |
6331488 | Doan et al. | Dec 2001 | B1 |
6350180 | Southwick | Feb 2002 | B2 |
6350691 | Lankford | Feb 2002 | B1 |
6352466 | Moore | Mar 2002 | B1 |
6352470 | Elledge | Mar 2002 | B2 |
6354917 | Ball | Mar 2002 | B1 |
6354923 | Lankford | Mar 2002 | B1 |
6354930 | Moore | Mar 2002 | B1 |
6358122 | Sabde et al. | Mar 2002 | B1 |
6358127 | Carlson et al. | Mar 2002 | B1 |
6358129 | Dow | Mar 2002 | B2 |
6361411 | Chopra et al. | Mar 2002 | B1 |
6361413 | Skrovan | Mar 2002 | B1 |
6361417 | Walker et al. | Mar 2002 | B2 |
6364757 | Moore | Apr 2002 | B2 |
6368190 | Easter et al. | Apr 2002 | B1 |
6368193 | Carlson et al. | Apr 2002 | B1 |
6368194 | Sharples et al. | Apr 2002 | B1 |
6368197 | Elledge | Apr 2002 | B2 |
6375548 | Andreas | Apr 2002 | B1 |
6376381 | Sabde | Apr 2002 | B1 |
6383934 | Sabde et al. | May 2002 | B1 |
6387289 | Wright | May 2002 | B1 |
6395620 | Pan et al. | May 2002 | B1 |
6402884 | Robinson et al. | Jun 2002 | B1 |
6407000 | Hudson | Jun 2002 | B1 |
6428386 | Bartlett | Aug 2002 | B1 |
6431959 | Mikhaylich et al. | Aug 2002 | B1 |
6447369 | Moore | Sep 2002 | B1 |
6498101 | Wang | Dec 2002 | B1 |
6511576 | Klein | Jan 2003 | B2 |
6520834 | Marshall | Feb 2003 | B1 |
6527818 | Hattori et al. | Mar 2003 | B2 |
6533893 | Sabde et al. | Mar 2003 | B2 |
6547640 | Hofmann | Apr 2003 | B2 |
6548407 | Chopra et al. | Apr 2003 | B1 |
6579799 | Chopra et al. | Jun 2003 | B2 |
6592443 | Kramer et al. | Jul 2003 | B1 |
6609947 | Moore | Aug 2003 | B1 |
6623329 | Moore | Sep 2003 | B1 |
6640816 | Gonzales et al. | Nov 2003 | B2 |
6652764 | Blalock | Nov 2003 | B1 |
6666749 | Taylor | Dec 2003 | B2 |
7040965 | Taylor et al. | May 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20080233749 A1 | Sep 2008 | US |