METHODS AND ASSAYS FOR DETECTION AND SUBTYPING OF MICROBIAL PATHOGENS

Information

  • Patent Application
  • 20220090172
  • Publication Number
    20220090172
  • Date Filed
    January 28, 2020
    4 years ago
  • Date Published
    March 24, 2022
    2 years ago
Abstract
The present invention provides methods of detecting a biothreat agent in a sample, comprising detecting at least one biothreat-specific amplicon in the sample. The methods also encompass confirming the absence of the biothreat agent by detecting Near Neighbor specific amplicons to avoid false positive results.
Description
REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY

The official copy of the sequence listing is submitted electronically via EFS-Web as an ASCII-formatted sequence listing with a file named “91482_239PCT_SeqList_ST25.txt” created on Jan. 27, 2020 and having a size of 83.2 kilobyte, and is filed concurrently with the specification. The sequence listing contained in this ASCII-formatted document is part of the specification and is herein incorporated by reference in its entirety.


TECHNICAL FIELD

This invention relates to methods, primers, assays, and kits for detecting the presence of microbial pathogens in a sample.


BACKGROUND

Throughout recent history, various aggressor nation states and terrorist groups have shown the willingness and/or capability to develop and use biological weapons against war fighters and civilian populations. The ability to detect the agents being developed as well as their virulence and antibiotic resistance profiles, in environmental and clinical materials, would further our capability to detect the development of these agents and their use.


The goal of several federal biosurveillance projects has been the early detection of biothreat agents to prevent or curtail mass civilian or military casualties. These systems have relied upon real-time-PCR to give a binary answer of presence or absence of the target. One challenge has been the complexity of the environmental samples, where tens of thousands of microorganisms exists, many of which are highly similar to the target pathogens. BioWatch is an example where numerous false positive results have been generated due to poorly known near-neighbor species confusing individual assays. While our knowledge of near-neighbors and of the target Biothreat agents is rapidly increasing, it is unrealistic to ever expect complete knowledge of either. DNA sequencing offers great potential, and there is a need for primers, methods, assays, and kits with greater ability to discriminate microbial pathogens in complex environmental and clinical sample matrices.


SUMMARY

Timely and accurate detection and characterization of bacterial biothreat agents is vital for our nation's safety. Current systems for early detection of these agents rely upon single locus Polymerase Chain Reaction (PCR) methods, giving only presence/absence results. This methodology can and has led to false positives due to limited signature validation. The Inventors have developed a multi-agent multi-locus amplicon sequencing protocol encompassing 79 targets aimed at detecting the presence or absence of 5 biothreat agents, as well as the presence and sequence of plasmids, virulence factors, antimicrobial resistance factors, and sequence variant loci for Near Neighbor species differentiation. The agents targeted are Burkholderia pseudomallei, Burkholderia mallei, Bacillus anthracis, Yersinia pestis, and Francisella tularensis.


The multi-agent assay, consisting of two multiplex amplification reactions, was validated against a diverse subset of target agent and near neighbor panels that were previously used to validate assays targeting individual agents. These panels consisted of 10-14 target agent strains and 11-48 NN strains. Sensitivity was 100% for all target agents, specificity was 91-100%. Targeted amplicon sequencing utilizing a universal amplicon indexing scheme provides a superior alternative to the current single locus PCR systems and enables the detection of multiple biothreat agents across multiple samples with a single sequencing run.


In certain aspects, the present invention provides A method of detecting Bacillus anthracis in a sample, comprising detecting at least one B. anthracis-specific amplicon in the sample using at least one primer pair selected from the group consisting of: SEQ ID NO: 1 and SEQ ID NO: 2; SEQ ID NO: 3 and SEQ ID NO: 4; SEQ ID NO: 5 and SEQ ID NO: 6; SEQ ID NO: 7 and SEQ ID NO: 8; SEQ ID NO: 9 and SEQ ID NO: 10; SEQ ID NO: 11 and SEQ ID NO: 12; SEQ ID NO: 13 and SEQ ID NO: 14; SEQ ID NO: 15 and SEQ ID NO: 16; SEQ ID NO: 17 and SEQ ID NO: 18; a pair of sequences which are at least 85% identical thereto; and RNA equivalents; wherein the presence of the B. anthracis-specific amplicon indicates the presence of B. anthracis in the sample, and the absence of the B. anthracis-specific amplicon indicates the absence of B. anthracis from the sample.


In other aspects, the method further comprises confirming the absence of B. anthracis by detecting at least one B. anthracis Near Neighbor-specific amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 19 and SEQ ID NO: 20; SEQ ID NO: 21 and SEQ ID NO: 22; SEQ ID NO: 23 and SEQ ID NO: 24; a pair of sequences which are at least 85% identical thereto; and RNA equivalents; wherein detecting the B. anthracis Near Neighbor-specific amplicon in the sample confirms the absence of B. anthracis.


In yet other aspects, the method further comprises confirming the absence of B. anthracis by detecting at least one B. anthracis Near Neighbor-specific sequence variant (SV) or single nucleotide polymorphism (SNP) using at least one primer pair selected from the group consisting of: SEQ ID NO: 25 and SEQ ID NO: 26; SEQ ID NO: 27 and SEQ ID NO: 28; SEQ ID NO: 49 and SEQ ID NO: 50; SEQ ID NO: 51 and SEQ ID NO: 52; SEQ ID NO: 53 and SEQ ID NO: 54; SEQ ID NO: 55 and SEQ ID NO: 56; SEQ ID NO: 57 and SEQ ID NO: 58; SEQ ID NO: 59 and SEQ ID NO: 60; a pair of sequences which are at least 85% identical thereto; and RNA equivalents; wherein detecting the B. anthracis Near Neighbor-specific SV in the sample confirms the absence of B. anthracis.


In some aspects, the method further comprises detecting a virulence locus or virulence plasmid in the sample by detecting a virulence-specific amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 29 and SEQ ID NO: 30; SEQ ID NO: 31 and SEQ ID NO: 32; SEQ ID NO: 33 and SEQ ID NO: 34; SEQ ID NO: 35 and SEQ ID NO: 36; a pair of sequences which are at least 85% identical thereto; and RNA equivalents; wherein the presence of the virulence-specific amplicon indicates the presence of the virulence locus or virulence plasmid in the sample.


In other aspects, the method further comprises detecting at least one drug resistance single nucleotide polymorphism (SNP) from B. anthracis in the sample using at least one primer pair selected from the group consisting of: SEQ ID NO: 37 and SEQ ID NO: 38; SEQ ID NO: 39 and SEQ ID NO: 40; SEQ ID NO: 41 and SEQ ID NO: 42; SEQ ID NO: 43 and SEQ ID NO: 44; SEQ ID NO: 45 and SEQ ID NO: 46; SEQ ID NO: 47 and SEQ ID NO: 48; a pair of sequences which are at least 85% identical thereto; and RNA equivalents. In other aspects, the method further comprises detecting Burkholderia pseudomallei and/or Burkholderia mallei in the sample by detecting at least one B. pseudomallei or B. mallei-specific amplicon uses at least one primer pair selected from the group consisting of: SEQ ID NO: 61 and SEQ ID NO: 62; SEQ ID NO: 63 and SEQ ID NO: 64; SEQ ID NO: 65 and SEQ ID NO: 66; SEQ ID NO: 67 and SEQ ID NO: 68; SEQ ID NO: 69 and SEQ ID NO: 70; SEQ ID NO: 71 and SEQ ID NO: 72; SEQ ID NO: 73 and SEQ ID NO: 74; SEQ ID NO: 75 and SEQ ID NO: 76; SEQ ID NO: 77 and SEQ ID NO: 78; SEQ ID NO: 79 and SEQ ID NO: 80; SEQ ID NO: 81 and SEQ ID NO: 82; SEQ ID NO: 83 and SEQ ID NO: 84; SEQ ID NO: 85 and SEQ ID NO: 86; SEQ ID NO: 87 and SEQ ID NO: 88; SEQ ID NO: 89 and SEQ ID NO: 90; SEQ ID NO: 91 and SEQ ID NO: 92; SEQ ID NO: 93 and SEQ ID NO: 94; SEQ ID NO: 95 and SEQ ID NO: 96; SEQ ID NO: 97 and SEQ ID NO: 98; SEQ ID NO: 99 and SEQ ID NO: 100; SEQ ID NO: 101 and SEQ ID NO: 102; SEQ ID NO: 103 and SEQ ID NO: 104; SEQ ID NO: 103 and SEQ ID NO: 104; SEQ ID NO: 105 and SEQ ID NO: 106; SEQ ID NO: 107 and SEQ ID NO: 108; SEQ ID NO: 117 and SEQ ID NO: 118; SEQ ID NO: 119 and SEQ ID NO: 120; SEQ ID NO: 121 and SEQ ID NO: 122; SEQ ID NO: 123 and SEQ ID NO: 124; SEQ ID NO: 125 and SEQ ID NO: 126; a pair of sequences which are at least 85% identical thereto; and RNA equivalents wherein the presence of the B. pseudomallei or B. mallei-specific amplicon indicates the presence of B. pseudomallei and/or B. mallei in the sample, and an absence of the B. pseudomallei or B. mallei-specific amplicon indicates an absence of B. pseudomallei and B. mallei in the sample.


In certain aspects, the method further comprises confirming the absence of B. pseudomallei and B. mallei by detecting at least one B. pseudomallei or B. mallei Near Neighbor-specific amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 177 and SEQ ID NO: 178; SEQ ID NO: 179 and SEQ ID NO: 180; SEQ ID NO: 181 and SEQ ID NO: 182; SEQ ID NO: 183 and SEQ ID NO: 184; SEQ ID NO: 185 and SEQ ID NO: 186; SEQ ID NO: 187 and SEQ ID NO: 188; SEQ ID NO: 189 and SEQ ID NO: 190; SEQ ID NO: 191 and SEQ ID NO: 192; SEQ ID NO: 193 and SEQ ID NO: 194; SEQ ID NO: 195 and SEQ ID NO: 196; SEQ ID NO: 197 and SEQ ID NO: 198; SEQ ID NO: 199 and SEQ ID NO: 200; SEQ ID NO: 201 and SEQ ID NO: 202; SEQ ID NO: 203 and SEQ ID NO: 204; SEQ ID NO: 205 and SEQ ID NO: 206; SEQ ID NO: 207 and SEQ ID NO: 208; SEQ ID NO: 207 and SEQ ID NO: 208; SEQ ID NO: 209 and SEQ ID NO: 210; SEQ ID NO: 211 and SEQ ID NO: 212; SEQ ID NO: 213 and SEQ ID NO: 214; SEQ ID NO: 215 and SEQ ID NO: 216; SEQ ID NO: 217 and SEQ ID NO: 218; SEQ ID NO: 219 and SEQ ID NO: 220; SEQ ID NO: 221 and SEQ ID NO: 222; SEQ ID NO: 223 and SEQ ID NO: 224; SEQ ID NO: 225 and SEQ ID NO: 226; SEQ ID NO: 227 and SEQ ID NO: 228; SEQ ID NO: 229 and SEQ ID NO: 230; a pair of sequences which are at least 85% identical thereto; and RNA equivalents; wherein detecting the B. pseudomallei or B. mallei Near Neighbor-specific amplicon in the sample confirms the absence of B. pseudomallei and B. mallei.


In yet other aspects, the method further comprises confirming the absence of B. pseudomallei and B. mallei by detecting at least one B. pseudomallei or B. mallei Near Neighbor-specific SNP or SV using at least one primer pair selected from the group consisting of: SEQ ID NO: 109 and SEQ ID NO: 110; SEQ ID NO: 111 and SEQ ID NO: 112; SEQ ID NO: 113 and SEQ ID NO: 114; SEQ ID NO: 115 and SEQ ID NO: 116; a pair of sequences which are at least 85% identical thereto; and RNA equivalents; wherein detecting the B. pseudomallei or B. mallei Near Neighbor-specific SNP or SV in the sample confirms the absence of B. pseudomallei and B. mallei.


In some aspects, the method further comprises detecting at least one drug resistance SNP or SV from Burkholderia spp. in the sample using at least one primer pair selected from the group consisting of: SEQ ID NO: 127 and SEQ ID NO: 128; SEQ ID NO: 129 and SEQ ID NO: 130; SEQ ID NO: 131 and SEQ ID NO: 132; SEQ ID NO: 133 and SEQ ID NO: 134; SEQ ID NO: 135 and SEQ ID NO: 136; SEQ ID NO: 137 and SEQ ID NO: 138; SEQ ID NO: 145 and SEQ ID NO: 146; SEQ ID NO: 147 and SEQ ID NO: 148; SEQ ID NO: 149 and SEQ ID NO: 150; SEQ ID NO: 151 and SEQ ID NO: 152; SEQ ID NO: 153 and SEQ ID NO: 154; a pair of sequences which are at least 85% identical thereto; and RNA equivalents.


In other aspects, the method further comprises detecting Francisella tularensis in the sample by detecting at least one F. tularensis-specific amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 265 and SEQ ID NO: 266; SEQ ID NO: 267 and SEQ ID NO: 268; SEQ ID NO: 269 and SEQ ID NO: 270; a pair of sequences which are at least 85% identical thereto; and RNA equivalents; wherein the presence of the F. tularensis-specific amplicon indicates that F. tularensis is present in the sample, and an absence of the F. tularensis-specific amplicon indicates that F. tularensis is absent in the sample.


In yet other aspects, the method further comprises confirming the absence of F. tularensis by detecting at least one F. tularensis Near Neighbor-specific amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 285 and SEQ ID NO: 286; SEQ ID NO: 287 and SEQ ID NO: 288; SEQ ID NO: 289 and SEQ ID NO: 290; SEQ ID NO: 291 and SEQ ID NO: 292; SEQ ID NO: 293 and SEQ ID NO: 294; a pair of sequences which are at least 85% identical thereto; and RNA equivalents; wherein detecting the F. tularensis Near Neighbor-specific amplicon in the sample confirms the absence of F. tularensis.


In one aspect, the method further comprises confirming the absence of F. tularensis by detecting at least one F. tularensis Near Neighbor-specific SNP or SV using at least one primer pair selected from the group consisting of: SEQ ID NO: 271 and SEQ ID NO: 272; SEQ ID NO: 273 and SEQ ID NO: 274; SEQ ID NO: 275 and SEQ ID NO: 276; SEQ ID NO: 277 and SEQ ID NO: 278; SEQ ID NO: 279 and SEQ ID NO: 280; SEQ ID NO: 281 and SEQ ID NO: 282; SEQ ID NO: 283 and SEQ ID NO: 284; a pair of sequences which are at least 85% identical thereto; and RNA equivalents; wherein detecting the F. tularensis Near Neighbor-specific SNP or SV in the sample confirms the absence of F. tularensis.


In another aspect, the method further comprises detecting Yersinia pestis in the sample by detecting at least one Y. pestis-specific amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 231 and SEQ ID NO: 232; SEQ ID NO: 233 and SEQ ID NO: 234; SEQ ID NO: 235 and SEQ ID NO: 236; SEQ ID NO: 237 and SEQ ID NO: 238; a pair of sequences which are at least 85% identical thereto; and RNA equivalents; wherein the presence of the Y. pestis-specific amplicon indicates the presence of Y. pestis in the sample, and an absence of the Y. pestis-specific amplicon indicates an absence of Y. pestis in the sample.


In still another aspect, the method further comprises confirming the absence of Y. pestis by detecting at least one Y. pestis Near Neighbor-specific SNP or SV using at least one primer pair selected from the group consisting of: SEQ ID NO: 249 and SEQ ID NO: 250; SEQ ID NO: 251 and SEQ ID NO: 252; SEQ ID NO: 253 and SEQ ID NO: 254; SEQ ID NO: 255 and SEQ ID NO: 256; SEQ ID NO: 257 and SEQ ID NO: 258; SEQ ID NO: 259 and SEQ ID NO: 260; SEQ ID NO: 261 and SEQ ID NO: 262; a pair of sequences which are at least 85% identical thereto; and RNA equivalents; wherein detecting the Y. pestis Near Neighbor-specific SNP or SV confirms the absence of Y. pestis.


In certain aspects, the method further comprises confirming the absence of Y. pestis by detecting at least one Y. pestis Near Neighbor-specific amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 263 and SEQ ID NO: 264; a pair of sequences which are at least 85% identical thereto; and RNA equivalents; wherein detecting the Y. pestis Near Neighbor-specific amplicon confirms the absence of Y. pestis.


In other aspects, the method further comprises characterizing and/or subtyping Y. pestis in the sample by detecting at least one amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 239 and SEQ ID NO: 240; SEQ ID NO: 241 and SEQ ID NO: 242; SEQ ID NO: 243 and SEQ ID NO: 244; SEQ ID NO: 245 and SEQ ID NO: 246; SEQ ID NO: 247 and SEQ ID NO: 248; a pair of sequences which are at least 85% identical thereto; and RNA equivalents.


In some aspects, the amplicons are generated with at least one multiplex amplification reaction. In other aspects, the amplicons are generated with at least two, at least three, at least four, or at least five multiplex amplification reactions.


In other aspects, the amplicon, SNP or SV is determined using next-generation sequencing. In one aspect, each primer in the at least one primer pair comprises a universal tail sequence. In some aspects, the universal tail sequence comprises SEQ ID NO: 301 or SEQ ID NO: 303.


In certain aspects, the amplicon is present when a locus read count of the amplicon is at least 10 sequence reads covering at least 75% of a corresponding amplicon reference sequence.


In other aspects, sequence analysis of sequence read alignments is performed to determine whether a target species, Near Neighbor species, virulence or antibiotic resistance allele is present in the sample, wherein the target species is Bacillus anthracis, Burkholderia pseudomallei, Burkholderia mallei, Francisella tularensis, or Yersinia pestis.


In one embodiment, the sample is an environmental sample. In another embodiment, the sample is a biological sample obtained from a subject.


In certain embodiments, the method further comprises administering an effective amount of at least one antibiotic to the subject, wherein the at least one antibiotic is selected from the group consisting of a fluoroquinolone, an aminoglycoside, a glycopeptide, a lincosamide, a macrolide/ketolide, a cephalosporin, a monobactam, a nitroimidazole, a penicillin, a streptogramin, a tetracycline, and a physiologically acceptable salt, prodrug, or combination thereof.


In another embodiment, the at least one antibiotic is not a fluoroquinolone if a gyrA drug resistance SNP is detected; and/or the at least one antibiotic is not a fluoroquinolone if a parC drug resistance SNP is detected; and/or the at least one antibiotic is not a fluoroquinolone or an aminocoumarin if a gyrB drug resistance SNP is detected; and/or the at least one antibiotic is not a rifamycin if a rpoB drug resistance SNP is detected; and/or the at least one antibiotic is not a β-lactam if a penA drug resistance SNP is detected; and/or the at least one antibiotic is not a trimethoprim and sulfamethoxazole combination, co-trimoxazole, if a folM drug resistance SV is detected; and/or the at least one antibiotic is not a trimethoprim and sulfamethoxazole combination, co-trimoxazole, if a bpeT drug resistance SV is detected; and/or the at least one antibiotic is not a trimethoprim and sulfamethoxazole combination, co-trimoxazole, if a bpeS drug resistance SV is detected.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B depict a universal index multiplex amplicon sequencing assay (UI-AmpSeq). Gene-specific primers containing universal tails (UT) amplify gene-specific targets. An ILLUMINA® extension PCR is run on these tailed PCR amplicons using ILLUMINA® indices containing complementary sequences to the UT, which allow for amplicon sequencing on an ILLUMINA® platform. FIG. 1A depicts sequence ready multi-locus amplification. The universal indexing strategy comprising universal tails is described in U.S. Publication No. 2016/0326572, the contents of which are incorporated herein by reference. FIG. 1B depicts sequencing and bioinformatic analysis.



FIG. 2 depicts an ASAP analysis. Enhanced Amplicon Sequencing Analysis pipeline (ASAP) allows the user to quickly analyze read data for specific targets and provides a detailed report output file. The ASAP bioinformatics method is described in U.S. Publication No. 2018/0173843, the contents of which are incorporated herein by reference.



FIGS. 3A-3E. An ASAP output result table, showing a subset of results from a large diverse sample set (693 isolates). The ASAP output demonstrates a general presence/absence for each select agent isolate or near neighbor isolate tested using UI-AmpSeq assays specific for B. anthraces, known virulence determinants, near neighbor (NN) species, and antimicrobial resistance (AMR) targets.



FIGS. 4A-4D An ASAP output result table, showing a subset of results from a large diverse sample set (693 isolates). The ASAP output demonstrates a general presence/absence for each select agent isolate or near neighbor isolate tested using UI-AmpSeq assays specific for Y. pestis, known virulence determinants, near neighbor (NN) species, and antimicrobial resistance (AMR) targets.



FIGS. 5A-5E An ASAP output result table, showing a subset of results from a large diverse sample set (693 isolates). The ASAP output demonstrates a general presence/absence for each select agent isolate or near neighbor isolate tested using UI-AmpSeq assays specific for F. tularensis, known virulence determinants, near neighbor (NN) species, and antimicrobial resistance (AMR) targets.



FIGS. 6A-6C An ASAP output result table, showing a subset of results from a large diverse sample set (693 isolates). The ASAP output demonstrates a general presence/absence for each select agent isolate or near neighbor isolate tested using UI-AmpSeq assays specific B. pseudomallei, B. mallei, known virulence determinants, near neighbor (NN) species, and antimicrobial resistance (AMR) targets.



FIG. 7. Sensitivity and specificity results for B. anthracis assay, including amplicon yield (locus read count % of total sample library read count) for representative target and NN species.



FIGS. 8A-8C. Sensitivity and specificity results for B. pseudomallei/mallei assay, including amplicon yield (locus read count % of total sample library read count) for representative target and NN species.



FIG. 9. Sensitivity and specificity results for Y. pestis assay, including amplicon yield (locus read count % of total sample library read count) for representative target and NN species.



FIG. 10. Sensitivity and specificity results for F. tularensis assay, including amplicon yield (locus read count % of total sample library read count) for representative target and NN species.





DETAILED DESCRIPTION
Definitions

As used herein, the verb “comprise” as is used in this description and in the claims and its conjugations are used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded.


As used herein, reference to an element by the indefinite article “a” or “an” does not exclude the possibility that more than one of the elements are present, unless the context clearly requires that there is one and only one of the elements. The indefinite article “a” or “an” thus usually means “at least one.”


The sample in this method is preferably a biological sample from a subject. The term “sample” or “biological sample” or “environmental sample” is used in its broadest sense. Depending upon the embodiment of the invention, for example, a sample may comprise a bodily fluid including whole blood, serum, plasma, urine, saliva, cerebral spinal fluid, semen, vaginal fluid, pulmonary fluid, tears, perspiration, mucus and the like; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print, or any other material isolated in whole or in part from a living subject or organism. Biological samples may also include sections of tissues such as biopsy and autopsy samples, and frozen sections taken for histologic purposes such as blood, plasma, serum, sputum, stool, tears, mucus, hair, skin, and the like. Biological samples also include explants and primary and/or transformed cell cultures derived from patient tissues. In some embodiments, sample may comprise a portion of a non-animal organism, such as a plant (e.g., castor beans or derivatives thereof). In other embodiments, the sample comprises soil, water, air or other environmental material.


In some embodiments, sample or biological sample may include a bodily tissue, fluid, or any other specimen that may be obtained from a living organism that may comprise additional living organisms. By way of example only, in some embodiments, sample or biological sample may include a specimen from a first organism (e.g., a human) that may further comprise an additional organism (e.g., bacteria, including pathogenic or non-pathogenic/commensal bacteria, viruses, parasites, fungi, including pathogenic or non-pathogenic fungi, etc.). In some embodiments, the additional organism may be separately cultured after isolation of the sample to provide additional starting materials for downstream analyses, in some embodiments, the sample or biological sample may comprise a direct portion of the additional, non-human organism and the host organism (e.g., a biopsy or sputum sample that contains human cells and bacteria).


Some embodiments of the invention may comprise a multiplex assay. As used herein, the term “multiplex” refers to the production of more than one amplicon, PCR product, PCR fragment, amplification product, etc. in a single reaction vessel. In other words, multiplex is to be construed as the amplification of more than one target-specific sequences within a PCR reaction or assay within the same PCR assay mixture (e.g., more than one amplicon is produced within a single vessel that contains all of the reagents necessary to perform a PCR reaction). In some embodiments, a step prior to performing the PCR (or RT-PCR, quantitative RT-PCR, etc.) reaction can occur such that sets of primers and/or primers and probes are designed, produced, and optimized within a given set of reaction conditions to ensure proper amplicon production during the performance of the PCR.


BioThreatSeq

Currently, there are two approaches being used to identifying specimens in the environment. The first approach, metagenomics, tries to sequence “all” of the DNA in a sample and then to unravel its content computationally. Sequencing “all” of the DNA is difficult, slow, and very expensive. The computational approaches are improving but still contain many flaws that lead to false conclusions. A recent sensationalized report of DNA from anthrax and plague bacteria in the NYC subways illustrates the pitfalls of such endeavors (Mason et al., Cell Systems). Significant amounts of data are produced with metagenomics but frequently not enough for informative signatures to differentiate pathogens from near neighbors. Deep sequencing of single specimens may cost nearly $1,000 and take several weeks to generate. It is clearly not ready at this time for implementation for biosurveillance.


The second approach, amplicon sequencing, involves the deep (>5,000X) sequencing of the 16S gene PCR amplicon to identify individual components of mixed bacterial communities. While the PCR primers are not specific, the intervening sequences can be highly informative and can be used to discriminate among bacterial taxa. Unfortunately for biothreat detection, the 16S gene has insufficient discrimination power to differentiate biothreat pathogens from their near neighbors. Discrimination power is a function of gene diversity and the 16S has low or no diversity among closely related bacteria. It cannot effectively identify a biothreat agent or distinguish from near-neighbor species.


Increasing the amplicon discrimination power can be accomplished through comparative genomic analysis to identify diverse genomics regions. This is most effective when large genome databases are available and can be highly predictive of success once implemented. In clinical diagnostics, this approach is being used to identify multiple pathogens and to predict their virulence and resistance to antibiotics. PCR primers specific to a pathogen genera or species is sufficient, if there is additional DNA sequence information that can be leveraged for precise agent identification. Multiplex systems of several hundred amplicons are becoming common and provide coverage for dozens of pathogens. Sample preparation that works for real-time-PCR also works for this technology, so currently sampling schemes would adapt well to this type of assay. A multiple amplicon sequencing system would be easily adapted to changing targets with addition of new amplicons. Because of the multiplex nature of the assay, redundant amplicons can easily be included to verify the identification of a biothreat agent and even provide a differential identification of a near-neighbor species. Variation within the amplicons can be analyzed to identify drug resistance, virulence factors and subtype to the strain level.


The ideal multiple amplicon sequencing system for identifying major biothreat agents should distinguish between the biothreat agent and its near-neighbor species using both amplification positive/negative criteria and qualitative analysis of sequence within the amplicons. This latter analysis provides strain identification and drug susceptibility identification. The analytical system should be supported by an automated interpretive software that generates actionable reports. Such a system includes quality assurance data to identify sample and/or process issues rapidly, to limit the effect of QC issues on final results.


“BioThreatSeq” detects a presence, an absence, and/or a clinically important characteristic of nucleic acids from one or more microbial pathogens. BioThreatSeq is based upon very discriminating genetic regions bioinformatically identified using public and private genome sequences from microbial pathogens including but not limited to Bacillus anthracis, Burkholderia pseudomallei, Burkholderia mallei, Francisella tularensis, Yersinia pestis and Near Neighbor (NN) species. BioThreatSeq can be used to screen environmental samples for presence of target agent DNA, as well as war fighter and civilian patients for target agent carriage in the event of suspected exposure.


In an embodiment, BioThreatSeq comprises a highly multiplexed amplicon sequencing assay. The assay is a highly informative screening tool capable of simultaneously detecting a presence of a microbial pathogen and a clinically important characteristic of the microbial pathogen without a live culturing step. Non-limiting examples of the clinically important characteristics include: virulence, or antibiotic resistance genetic signatures, etc.


The utility of this assay has been demonstrated on several complex environmental and clinical specimen types including urine, wound swabs, sputum, air, soil, water samples. The superiority of BioThreatSeq over traditional typing techniques include high sensitivity (e.g., a low limit of detection) and high specificity (e.g., discriminating among strains, detecting antimicrobial resistance, and profiling virulence signatures, etc.) in target agent detection. BioThreatSeq is also highly adaptable to new content, which allows for the flexibility to detect new biothreats agents and signatures. Thus, the assay methodology allows for the expansion of this tool to be used for several other BioThreat agents or applications.


Target Specific Amplicon

The Inventors used comparative genomics to identify a first genomic region that differentiates a target agent from its near neighbor relatives. In the first scenario, the first genomic region is present in all known target strains, and a lack of the first genomic region indicates an absence of the target agent in the sample. In the second scenario, the first genomic region not only is present in all known target strains, but is also absent in near-neighbor species. Thus, a presence of the first genomic region indicates a presence of the target agent in the sample.


In certain non-limiting embodiments, the presence or absence of the first genomic region in the nucleic acids of the sample is determined by PCR using a first forward primer and a first reverse primer. The first forward primer and the first reverse primer amplify a Target Specific Amplicon, i.e., all strains of the threat agent, but not the near neighbors.


Differential Target Amplicons

The Inventors also used comparative genomics to identify a second genomic region that differentiates a target agent from its near neighbor relatives. The second genomic region is present in all strains of the near-neighbor relatives, but will not be in the target. Thus, a presence of the second genomic region indicates an absence of the target agent in the sample.


In certain non-limiting embodiments, the presence or absence of the second genomic region in the nucleic acids of the sample is determined by PCR using a second forward primer and a second reverse primer. The second forward primer and second reverse primer amplify Differential Target Amplicons, i.e., all strains of the near neighbors, but not the threat agent. Differential identification assays can be included in the multiplex assay to help nullify any false positive results. This optional step offers interpretive value in complex species.


The Inventors determined the exclusivity and inclusivity of the first forward and the first reverse primers in silico across all available threat agents (Bacillus anthracis, Burkholderia pseudomallei, Burkholderia mallei, Francisella tularensis, and Yersinia pestis) and near neighbor genomes. The in-silico validation included genomes from common contaminants such as humans. Because a large number of genomics sequences exist for both target and non-target organisms, the in-silico validation step eliminates any primers that are non-exclusive to the biothreat target. The assay primers were tested against the target and near-neighbor DNA templates to validate them under actual assay conditions.


Primer Design

The design of the first forward primer, the first reverse primer, the second forward primer, and the second reverse primer is consistent with a standard PCR method but is amendable to analysis using next-generation sequencing methods. This requirement includes the addition of “barcodes” to allow for indexing of samples for combining into single DNA sequencing batches. The technical details are provided in the PCT Patent Application entitled “Systems And Methods for Universal Tail-Based Indexing Strategies for Amplicon Sequencing” (International Application Number: PCT/US2014/064890; International Publication Number: WO 2015/070187 A2), the contents of which are hereby incorporated in their entirety.


The Inventors determined the exclusivity and inclusivity of the second forward and the second reverse primers in silico across all available threat agents (Bacillus anthracis, Burkholderia pseudomallei, Burkholderia mallei, Francisella tularensis, and Yersinia pestis) and near neighbor genomes. The in-silico validation included genomes from common contaminants such as humans and soil DNA. Because a large number of genomics sequences exist for both target and non-target organisms, the in-silico validation step eliminates any primers that are non-exclusive to the near-neighbor species. The assay primers were tested against the target and near-neighbor DNA templates to validate them under actual assay conditions.


In the third scenario, the first genomic region is present in all known target strains and at least one near-neighbor species. In this case, producing an exclusive amplicon is not feasible and the combination of amplification and internal sequence is needed to distinguish target from near-neighbors. In the absence of exclusive-target amplification, the amplicon sequence could provide definitive identification of the target and non-target agents.


The Inventors has defined the phylogenetic structure of the first genomic region that includes both the target agent and its near neighbors and identified a variable internal sequence region which allows for: (1) differentiation of near neighbor from target species, (2) strain identification, (3) drug susceptibility identification, and/or (4) virulence prediction.


Performance of the Multiplex Assays

The Inventors have developed combined multi-agent amplicon sequencing assays for 2, 3, 4, 5, 6, or 7 biothreat agents and validated them under laboratory conditions. For the combined biothreat agent assays, important test parameters such as linearity, LOD, sensitivity, specificity, quantitative performance (absolute and relative), contaminant interference, performance with environmental samples (spikes), etc. have been determined.


Software

The Inventors have developed software that analyzes B. anthracis amplicon sequence data and provides actionable information (i.e., agent presence with confidence metrics, presence of virulence and antibiotic resistance factors, phylogenetic classification, etc.). The Inventors have also developed software that analyzes B. anthracis and other target agent (F. tularensis, Y. pestis, B. mallei, B. pseudomallei, Brucella melitensis, and B. abortus) and allow for on-site and remote reporting.


BTSeq comprises target agent and near neighbor (NN) species identification assays, antimicrobial resistance (AMR) assays, virulence gene assays, and uses TGen North's amplicon sequencing analysis pipeline (ASAP) to report results.


Use of the disclosed amplicon sequencing tool can be used to screen environmental samples for presence of target agent DNA, as well as war fighter and civilian patients for target agent carriage in the event of suspected exposure.


In some embodiments, the present invention relates to a method of detecting Bacillus anthracis in a sample, comprising detecting at least one B. anthracis-specific amplicon selected from the group consisting of: CP008853.1_5309, CP008853.1_5316, CP012725.1_3629, CP012725.1_5103, CP012725.1_5107, JSZQ01000034.1_220, JSZS01000036.1_5, LGCC01000010.1_232, and LGCC01000048.1_280 in the sample, wherein the presence of the B. anthracis-specific amplicon indicates the presence of B. anthracis in the sample, and an absence of the B. anthracis-specific amplicon indicates an absence of B. anthracis in the sample.


In other embodiments, the disclosed methods further comprise confirming the absence of B. anthracis by detecting at least one B. anthracis Near Neighbor-specific amplicon selected from the group consisting of: NN_LOMU01000090.1_49, NN_LOQC01000013.1_3, and ChimpKiller_9-159 in the sample, wherein detecting the B. anthracis Near Neighbor-specific amplicon confirms the absence of B. anthracis.


In yet other embodiments, the disclosed methods further comprise characterizing and/or subtyping B. anthracis by detecting at least one amplicon, single nucleotide polymorphism (SNP) or sequence variant (SV) selected from the group consisting of: ChimpKiller_91-320, ChimpKiller_481-698, plcR, pagA, pX01, pX01, gyrA, parC, gyrB, rpoB, AA_2502, AA_2503, Ba_AmesAnc_4669915, Ba_AmesAnc_4001578, Ba_AmesAnc_1069024, Ba_AmesAnc_3668548, Ba_AmesAnc_371913, and Ba_AmesAnc_999035 in the sample.


In certain aspects, the disclosed methods further comprise characterizing and/or subtyping B. anthracis by detecting at least one amplicon, single nucleotide polymorphism (SNP) or sequence variant (SV) selected from the group consisting of: ChimpKiller_91-320, ChimpKiller_481-698, plcR, pagA, pX01, pX01, gyrA, parC, gyrB, rpoB, AA_2502, AA_2503, Ba_AmesAnc_4669915, Ba_AmesAnc_4001578, Ba_AmesAnc_1069024, Ba_AmesAnc_3668548, Ba_AmesAnc_371913, and Ba_AmesAnc_999035 in the sample.


In other aspects, the present invention relates to a method of detecting Burkholderia pseudomallei and/or Burkholderia mallei in a sample by detecting at least one B. pseudomallei or B. mallei-specific amplicon selected from the group consisting of: LWWC01000187.1_18, LWWB01000125.1_17183_17602, LXAY01000367.1_0_640, LWVY01000190.1_17226_17689, and LXAD01000059.1_24760_25075, wherein the presence of the B. pseudomallei or B. mallei-specific amplicon indicates the presence of B. pseudomallei and/or B. mallei in the sample, and an absence of the B. pseudomallei or B. mallei-specific amplicon indicates an absence of B. pseudomallei and B. mallei in the sample.


In some embodiments, the present invention provides a method of detecting Burkholderia pseudomallei and/or Burkholderia mallei in the sample by detecting at least one B. pseudomallei or B. mallei-specific amplicon selected from the group consisting of: LWWC01000187.1_18, LWWB01000125.1_17183_17602, LXAY01000367.1_0_640, LWVY01000190.1_17226_17689, and LXAD01000059.1_24760_25075, wherein the presence of the B. pseudomallei or B. mallei-specific amplicon indicates the presence of B. pseudomallei and/or B. mallei in the sample, and an absence of the B. pseudomallei or B. mallei-specific amplicon indicates an absence of B. pseudomallei and B. mallei in the sample.


In other embodiments, the present invention provides a method of detecting B. pseudomallei in a sample by detecting at least one B. pseudomallei-specific amplicon selected from the group consisting of: TTS1 BPSS1407, LXCC01000141.1 39296 39817, LXBY01000087.1_75760_76751, LXCD01000002.1_99652_100245, and LXCE01000123.1_34220_34747 (, wherein the presence of the B. pseudomallei-specific amplicon indicates the presence of B. pseudomallei in the sample, and an absence of the B. pseudomallei-specific amplicon indicates an absence of B. pseudomallei in the sample.


In yet other embodiments, the present invention provides a method of detecting B. mallei in the sample by detecting at least one B. mallei-specific amplicon selected from the group consisting of: Bm 11589 and Bm 11767, wherein the presence of the B. mallei-specific amplicon indicates the presence of B. mallei in the sample, and an absence of the B. mallei-specific amplicon indicates an absence of B. mallei in the sample.


In certain aspects, the disclosed methods further comprise characterizing and/or subtyping B. pseudomallei and/or B. mallei by detecting at least one one amplicon, single nucleotide polymorphism (SNP) or sequence variant (SV) selected from the group consisting of: K9penA378-529, K9penA575-761, K9penA949-1172, pbp3-1, and pbp3-2 in the sample.


In other aspects, the disclosed methods further comprise confirming the absence of B. pseudomallei and B. mallei by detecting at least one B. pseudomallei or B. mallei Near Neighbor-specific single nucleotide polymorphism (SNP) or sequence variant (SV) selected from the group consisting of: NC 006350 2289827, NC 006350 133027, NC 006350 2248145-2248193, and NC 006350 988041-988089 in the sample, wherein detecting the B. pseudomallei or B. mallei Near Neighbor-specific single nucleotide polymorphism (SNP) or sequence variant (SV) confirms the absence of B. pseudomallei and B. mallei.


In yet other aspects, the present invention provides a method of detecting Francisella tularensis in a sample by detecting at least one F. tularensis-specific amplicon selected from the group consisting of: F. tularensis_CP000915.1_1782, F. tularensis_CP000915.1-731, and Ft_dup_CP000915.1_197, wherein the presence of the F. tularensis-specific amplicon indicates that F. tularensis is present in the sample, and an absence of the F. tularensis-specific amplicon indicates that F. tularensis is absent in the sample.


In some aspects, the disclosed methods further comprise confirming the absence of F. tularensis by detecting at least one F. tularensis Near Neighbor-specific amplicon selected from the group consisting of: F. tnovicida_CP009607.1, F. philom_CP009444.1_569, and F. philom_CP009444.1_285 in the sample, wherein detecting the F. tularensis Near Neighbor-specific amplicon confirms the absence of F. tularensis.


In other aspects, the disclosed methods further comprise confirming the absence of F. tularensis by detecting at least one F. tularensis Near Neighbor-specific SNP or SV selected from the group consisting of: FtA1, FtA2, FtB, FtA, FtLVS_AM233362_1646546, FtLVS_AM233362_1643765, and FtLVS_AM233362_1562618 in the sample, wherein detecting the F. tularensis Near Neighbor-specific polymorphism confirms the absence of F. tularensis.


In yet other aspects, the present invention provides a method of detecting Yersinia pestis in the sample by detecting at least one Y. pestis-specific amplicon selected from the group consisting of: Y. pestis_LPQY01000176.1_7, AGJT01000065.1_0_338, and FAUR01000053.1_96407_96884, wherein the presence of the Y. pestis-specific amplicon indicates the presence of Y. pestis in the sample, and an absence of the Y. pestis-specific amplicon indicates an absence of Y. pestis in the sample.


In one embodiment, the disclosed methods further comprise confirming the absence of Y. pestis by detecting at least one Y. pestis Near Neighbor-specific SNP or SV selected from the group consisting of: YpCO92_NC_003143_113190, YpCO92_NC_003143_161621, YpCO92_NC_003143_152213, YpCO92_NC_003143_129539, YpCO92_NC_003143_91203, YpCO92_NC_003143_121812, and Yp_AL590842.1_RX_SNP in the sample, wherein detecting the Y. pestis Near Neighbor-specific SNP or SV confirms the absence of Y. pestis.


In another embodiment, the disclosed methods further comprise characterizing and/or subtyping Y. pestis by detecting at least one amplicon selected from the group consisting of: YpPGM_AL031866.1_81, YpPGM_31-205, Yp-p1202_42780-43194, Yp-p1202_126386-126750, and Yp-p1202_156402-156711 in the sample.


In some embodiments, the presence or absence of B. anthracis in a sample is detected by identifying a specific mutation in the PlcR gene, a single base change at position 640, a nonsense mutation, which creates a dysfunctional protein. In other embodiments, the presence or absence of B. anthracis in a sample is detected by identifying the pXO1 and/or pXO2 plasmids.


PlcR is a global transcriptional regulator which controls most of the secreted virulence factors in B. cereus and B. thuringiensis. It is chromosomally encoded and is ubiquitous throughout the cell (Agaisse, H. et al. (June 1999). “PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis”. Molecular Microbiology. 32 (5): 1043-53). In B. anthracis, however, the plcR gene contains a single base change at position 640, a nonsense mutation, which creates a dysfunctional protein. While 1% of the B. cereus group carries an inactivated plcR gene, none of them carries the specific mutation found only in B. anthracis (Slamti, L. et al. (June 2004). “Distinct mutations in PlcR explain why some strains of the Bacillus cereus group are nonhemolytic”. Journal of Bacteriology. 186 (11): 3531-8).


The lack of PlcR in B. anthracis is a principle characteristic differentiating it from other members of the B. cereus group. While B. cereus and B. thuringiensis depend on the plcR gene for expression of their virulence factors, B. anthracis relies on the pXO1 and pXO2 plasmids for its virulence (Kolsto, A. et al. (October 2009). “What Sets Bacillus anthracis Apart from Other Bacillus Species?” Annual Review of Microbiology. 63 (1): 451-476). Bacillus cereus biovar anthracis, i.e. B. cereus with the two plasmids, is also capable of causing anthrax.


In various embodiments, the disclosed methods identify an antibiotic resistance gene selected from a beta-lactamase gene, such as bIaOXA, encoding extended spectrum OM class D beta-lactamases, blaCTX-M 82, blaCFX A4, encoding extended spectrum class A serine beta-lactamases, and AmpC, encoding the extended spectrum cephalosporin-resistant class C beta-lactamases; a multidrug efflux transporter system gene such as acrE, encoding a component of the AcrEF-ToIC multidrug efflux transporter system (Lau and Zgurskaya, 2005, J. Bacteriol. 187:7815); baeR; encoding a response regulator of the MdtABC multidrug efflux transporter system (Nagakubo et al., 2002, J. Bacteriol. 184:4161); emrY, encoding a component of the EmrKY-ToIC multidrug efflux transporter system (Tanabe et al., 1997, J. Gen. Appl. Microbiol. 43:257); mdtD, encoding a component of the MdtABC multidrug efflux transporter system (Nagakubo et al., 2002, J. Bacteriol. 184:4161); and mdtN, encoding a multidrug resistance efflux pump from the major facilitator superfamily (Sulavik et al., 2001, Antimicrob. Agents Chemother. 45:1126); pbp2, encoding penicillin binding protein 2 (Bharat et al., 2015, Antimicrob. Agents Chemother. 59:5003); pbp4, encoding penicillin binding protein 4 (Sun et al., 2014, PLoS One 9:e97202); andaminoglycoside_strA (Scholz et al., 1989, Gene 75:271) encodes an aminoglycoside phosphotransferase, and Tetracycline_tet39 (Agerso and Guardabassi, 2005, J. Antimicrob. Chemother. 55:566) encodes a component of a tetracycline efflux pump.


Other antibiotic resistance genes are provided in the Antibiotic Resistance Genes Database (ARDB), see Nucl. Acids Res. (2009) 37 (suppl 1): D443-D447, the World Wide


Web (www) at ardb.cbcb.umd.edu, Antimicrob. Agents Chemother. July 2013 vol. 57 no. 7 3348-3357, and the NCBI database (the World Wide Web (www) at ncbi.nlm.nih.gov), the entire contents of which are hereby incorporated by reference.


In various embodiments, the antibiotic resistance gene is one or more of the genes shown below:


Aminocoumarins:


Aminocournarin-resistant DNA topoisomerases


Aminocournarin-resistant GyrB, ParE, ParY


Aminoglycosides:


Aminoglycoside acetyltransferases


AAC(1), AAC(2), AAC(3), AAC(6′)


Aminoglycosi de nucleotidyltransferases


ANT(2″), ANT(3″), ANT(4), ANT(6), ANT(9)


Aminoglycoside phosphotransferases


APH(2″), APH(3″), APH(3′), APH(4), APH(6), APH(7″),


APH(9)


16S rRNA methyltransferases


ArmA, RaitA, RrntB, RrniC, Sgrn


β-Lactams:


Class A p-lactamases


AER, BLA1, CTX-M, IUPC, SFR', TEM, etc.


Class B (metallo-)β-lactamases


BlaB, CcrA, IMP, NDM, VIM, etc.


Class C β-lactamases


ACT, AmpC, CMY, LAT, PDC, etc.


Class D β-lactamases


OXA β-lactamase


mecA (methicillin-resistant PBP2)


Mutant porin proteins conferring antibiotic resistance


Antibiotic-resistant Omp36, OmpF, PIB (por)


Genes modulating β-lactam resistance:


bla (blaI, blaR1) and mec (mecI, mecR1) operons


Chloramphenicol:


Chloramphenicol acetyitransferase (CAT)


Chloramphenicol phosphotransferase


Ethambutol:


Ethambutol-resistant arabinosyltransferase (FrnbB)


Mupirocin:


Mupirocin-resistant isoleucyl-tRNA synthetases


MupA, MupB


Peptide antibiotics:


Integral membrane protein MpriF


Phenicol:


Cfr 23S rRNA methyltransferase


Rifampin:


Rifampin ADP-ribosyitransferase (Arr)


Rifampin glycosyltransferase


Rifampin monooxygenase


Rifampin phosphotransferase


Rifampin resistance RNA polymerase-binding proteins


DnaA, RbpA


Rifampin-resistant beta-subunit of RNA polymerase


(RpoB)


Streptogramins:


Cfr 23S rRNA methyltransferase


Erm 23S rRNA methyltransferases


ErmA, ErmB, Erm(31), etc.


Streptogramin resistance ATP-binding cassette (ABC)


efflux pumps


Lsa, MsrA, Vga, VgaB


Streptogramin Vgb lyase


Vat acetyltransferase


Fitioroquirmiones:


Fluoroquinolone acetyltransferase


Fluoroquinolone-resistant DNA topoisomerases


Fluoroquinolone-resistant GyrA, GyrB, ParC


Quinolone resistance protein (Qnr)


Fosfomycin:


Fosfomycin phosphotransferases


FomA, FomB, FosC


Fosfomycin thiol transferases


FosA, FosB, FosX


Glycopeptides:


VanA, VanB, VanD, VanR, VanS, etc.


Lincosamides:


Cfr 235 rRNA methyltransferase


Erm 235 rRNA methyltransferases


ErmA, ErmB, Em (31), etc.


Lincosamide nucleotidyltransferase (Lin)


Linezolid:


Cfr 235 rRNA methyltransferase


Macrolides:


Cfr 235 rRNA methyltransferase


Erm 235 rRNA methyltransferases


ErmA, ErmB, Erm(31),


Macrolide esterases


EreA, EreB


Macrolide glycosyltransferases


GimA, Mgt, Ole


Macrolide phosphotransferases (MPH)


MPH(2′)-I, MPH(2′)-II


Macrolide resistance efflux pumps


MefA, MefE, Mel


Streptothricin:


Streptothricin acetyltransferase (sat)


Sulfonamides:


Sulfonamide-resistant dihydropteroate synthases


Sul1, Sul2, Sul3, sulfonamide-resistant FolP


Tetracyclines:


Mutant porin PIB (por) with reduced permeability


Tetracycline inactivation enzyme TetX


Tetracycline resistance major facilitator supeifamily


(MFS) efflux pumps


TetA, TetB, TetC, Tet30, Tet31, etc.


Tetracycline resistance ribosomal protection proteins


TetM, TetO, TetQ, Tet32, Tet36, etc.


Efflux pumps conferring antibiotic resistance:


ABC antibiotic efflux pump


MacAR-TolC, MsbA, MsrA, VgaB, etc.


MFS antibiotic efflux pump


EmrD, EmrAB-TolC, NorB, GepA, etc.


Multidrug and toxic compound extrusion (MATE)


transporter


MepA


Resistance-nodulation-cell division (RND) efflux pump


AdeABC, AcrD, MexAB-OprM, mtrCDE, etc.


Small multidrug resistance (SMR) antibiotic efflux pump


EmrE


Genes modulating antibiotic efflux:


adeR, acrR, baeSR, mexR, phoPQ, mtrR


Multidrug resistance:


plasmid plP1202


In certain aspects, the disclosed methods the sample is obtained from a subject and the method further comprises administering at least one antibiotic to the subject.


In one aspect, the at least one antibiotic is a fluoroquinolone. Non-limiting fluoroquinolones for use as described herein include levofloxacin, ofloxacin, ciprofloxacin, enoxacin, gatifloxacin, gemifloxacin, grepafloxacin, besifloxacin, lomefloxacin, moxifloxacin, norfloxacin, ofloxacin, pefloxacin, sparfloxacin, garenoxacin, trovafloxacin, sitafloxacin, and DX-619.


In another aspect, the at least one antibiotic is an aminoglycoside such as amikacin, gentamycin, kanamycin, neomycin, netilmicin, paromomycin, streptomycin, or tobramycin.


In another aspect, the at least one antibiotic is a carbapenem such as ertapenem, imipenem, meropenem, or chloramphenicol.


In another aspect, the at least one antibiotic is a glycopeptide such as vancomycin.


In another aspect, the at least one antibiotic is a lincosamide such as clindamycin.


In another aspect, the at least one antibiotic is a macrolide/ketolide such as azithromycin, clarithromycin, dirithromycin, erythromycin, or telithromycin.


In another aspect, the at least one antibiotic is a cephalosporin such as (1st generation) cefadroxil, cefazolin, cephalexin, cephalothin, cephapirin, and cephradine; or (2nd generation) cefaclor, cefamandole, cefonicid, cefotetan, cefoxitin, cefprozil, cefuroxime, and loracarbef, or (3rd generation) cefdinir, cefditoren, cefixime, cefoperazone, cefotaxime, cefpodoxime,ceftazidime, ceftibuten, ceftizoxime, and ceftriaxone, or (4th generation) cefepime.


In another aspect, the at least one antibiotic is a monobactam such as aztreonam.


In another aspect, the at least one antibiotic is a nitroimidazole such as metronidazole.


In another aspect, the at least one antibiotic is an oxazolidinone such as linezolid.


In another aspect, the at least one antibiotic is a penicillin such as amoxicillin, amoxicillin/clavulanate, ampicillin, ampicillin/sulbactam, bacampicillin, carbenicillin, cloxacillin, dicloxacillin, methicillin, mezlocillin, nafcillin, oxacillin, penicillin G, penicillin V, piperacillin, piperacillin/tazobactam, ticarcillin, or ticarcillin/clavulanate.


In another aspect, the at least one antibiotic is a streptogramin such as quinupristin/dalfopristin.


In another aspect, the at least one antibiotic is a tetracycline such as demeclocycline, doxycycline, minocycline, or tetracycline.


In another aspect, the at least one antibiotic is a β-lactam such as a penicillin, cephalosporin, carbapenem, or monobactam.


The at least one antibiotic may be a physiologically acceptable salt, prodrug, or combination of any one of the aforementioned antibiotics.


The following examples are given for purely illustrative and non-limiting purposes of the present invention.


EXAMPLES
Example 1
Detecting the Presence of Nucleic Acids from Burkholderia

This protocol describes procedures for: (1) PCR amplification of multiplexed Burkholderia targets; (2) Index extension PCR to prepare amplicons for MiSeq (ILLUMINA® sequencer); (3) SequelPrep™ Normalization Plate Kit (ThermoFisher); and (4) Agencourt AMPure XP bead cleanup for PCR purification (Beckman Coulter).


Universal-tailed gene-specific primers are pooled together in a “primer mix” in amounts relative to each other to help reduce PCR bias. Make the primer mixture by combining the primers and 1xTE (e.g., according to Table 8). Vortex and spin down each primer stock. The primer mixture can be stored at −20° C. Plan and arrange the layout of where the samples will go on a 96-well plate. If clinical samples are being processed, make sure to space the samples on the plate accordingly. Table 9 can be used as an example clinical plate layout. Black wells are samples. Combine the following volumes of reagents as described in Table 10, except IPSC to create the Burkholderia Multiplex Master Mix. Reagents should be thawed and mixed before use. Vortexing PCR mastermix should be avoided to prevent damaging the enzymes in the mixture.


To prepare Burkholderia Multiplex, on experimental day, thaw out an aliquot of Internal Plasmid Sequencing Control (IPSC) at 10{circumflex over ( )}6 copies per uL, dilute down to 10{circumflex over ( )}3 copies per uL by three serial dilutions of 1 to 10. Make dilutions in tubes for better vortexing & spinning. For single reaction no-template control (NTC) reaction, add 12.5 μL Q5 2x HotStart, 5μL 5M Betaine, and 4.5 μL Diluted Primer Mix. For single reaction, add 12.5 μL Q5 2x HotStart, 5 μL 5M Betaine, 1 μL IPSC 1000 copies per μL, and 4.5 μL Diluted Primer Mix. To prepare for Master Mix reaction, add 2475 μL Q5 2x HotStart, 990 μL 5M Betaine, 198 μL IPSC 1000 copies per μL, and 891 μL Diluted Primer.


Gently mix template DNA and spin down (Do not vortex genomic DNA). Add 2□L of template DNA to its appropriate well, along with 2□L H2O for IPSC, and 3□L H2O for NTC. Seal plate with a thermocycler seal. Spin down the plate. Using a heated lid, put plate on thermocycler and run the following parameters:


















Step
Repeats
Temperature (° C.)
Time






















initial denaturation
1
98
5
min



denaturation
35
98
30
sec



annealing

68
15
sec



extension

72
20
sec



final extension
1
72
2
min












cooling
1
10
forever










Spin plates (Burkholderia target plate and Bacillus, Yersinia, Francisella target plate) down once the thermocycler finishes.


Prepare AMPure Beads. Prepare 10 mM Tris-HCl 0.05% Tween-20 in H2O by adding 400 μL 10 mM Tris-HCl, 20 μL 0.05% Tween-20, and 39.580mL Molecular Grade H2O, and heat to 50° C. Equilibrate the bead to Room Temperature for 30 minutes. Add beads in a 1:1 ratio with reaction volume to each well (30 μL) and mix well by pipetting. Incubate the bead/reaction mixture for 5 minutes. Place the 96-well plate onto a magnetic stand, incubate for another 5 minutes. Aspirate supernatant out of wells without disturbing the beads. If beads were disturbed, let them incubate for another 2 minutes. Be sure to remove as much liquid as you can. Twice wash the beads by adding 80% EtOH (32 ml 100% Ethanol, and 8 ml Molecular Grade H2O) to completely cover beads (˜200 μL) and incubate for 30 seconds. Aspirate. Fully remove liquids after the wash. Move plate off magnetic stand and allow beads to dry. Be sure to keep a close watch on the beads. If the beads start to crack, the DNA will be difficult to elute out. Move plate off the magnetic stand and add 32.54 heated 10 mM Tris-HCl 0.05% Tween-20 in H2O to the wells, mix well. Incubate for 2 minutes. Move plate to magnetic stand and incubate for 2 minutes. Remove 304 of supernatant and transfer it to a new well, do not disturb or transfer any beads.



Burkholderia, Bacillus, Francisella, and Yersinia AmpSeq amplicons require two bead cleanups before Extension PCR. Repeat steps 12-21.


Detecting the Presence of Nucleic Acids from Bacillus anthracis, Yersinia, and Francisella UT-AmpSeq PCR and Bead Cleanup.


1. PCR amplification of multiplexed Bacillus, Yersinia, and Francisella targets. Universal-tailed gene-specific primers are pooled together in a “primer mix” in amounts relative to each other to help reduce PCR bias. These amounts have been previously optimized. Please follow the Primer Mix parameters to create the needed mix for the multiplex currently in use.


2. Index extension PCR to prepare amplicons for MiSeq (ILLUMINA® sequencer). Enter the total number of samples in the box below. Primer Mix Parameters, # of Samples


3. SequelPrepTm Normalization Plate Kit (ThermoFisher).


4. Agencourt AMPure XP bead cleanup for PCR purification (Beckman Coulter).


Protocol
SOP for Burkholderia UT-AmpSeq PCR and Bead Cleanup
This SOP Describes Procedures for the Following:

1. PCR amplification of multiplexed Burkholderia targets


2. Index extension PCR to prepare amplicons for MiSeq (ILLUMINA® sequencer)


3. SequelPrep™ Normalization Plate Kit (ThermoFisher)


4. Agencourt AMPure XP bead cleanup for PCR purification (Beckman Coulter)


Steps and Procedures

1. Universal-tailed gene-specific primers are pooled together in a “primer mix” in amounts relative to each other to help reduce PCR bias. These amounts have been previously optimized.


Please follow the Primer Mix parameters to create the needed mix for the multiplex currently in use


2. Enter the total number of samples in the box below.


Primer Mix Parameters


# of Samples


180


ensure that all values in column K “How much starting primer conc. to add in mix stock” are above 2.0u1 and not highlighted in red


3a. Make the primer mixture by combining the following primers.


3b. Vortex and spin down each primer stock.


3c. Using the “Start (uM)” concentration primer stock of each primer, add the volume from “Amount to add (uL)” into a 1.7 mL microcentrifuge tube, unless “Total (uL)” at bottom of table is above 1200, then split volume evenly across necessary tubes. Vortex to mix and spin. (Refer to Table 8)


4a. This mixture can be stored at −20° C. for future use. To use mixture, let thaw, vortex and spin down.


4b. If using mixture previously made, write down the initials of the person who made it and when: Initials______ Date______


5. Plan and arrange the layout of where your samples will go on a 96-well plate. If you are processing clinical samples make sure to space your samples on the plate accordingly.


Use the Plate Maps sheet for convenience and record keeping.


(Refer to Table 9)


6a. Reagents should be thawed and mixed before use. Avoid vortexing PCR mastermix as this can damage the enzymes in the mixture.


6b. Combine the following volumes of reagents as described in the following table except


IPSC to create the Burkholderia Multiplex Master Mix















Burkholderia Multiplex

uL for single
uL addition


Reagent
reaction
in Master Mix

















Q5 2x HotStart
12.5
2475


Betaine 5M
5
990


IPSC 1000 copies/uL
1
198


Diluted Primer Mix
4.5
891




4554









6c. Add 22 uL of Burkholderia Multiplex Master Mix without IPSC to any NTC reactions you are processing


7a. Thaw out an aliquot of Internal Plasmid Sequencing Control (IPSC) at 10{circumflex over ( )}6 copies per uL. Dilute this down to 10{circumflex over ( )}3 copies/uL by three serial dilutions of 1 to 10. Make dilutions in tubes for better vortexing & spinning


Make this fresh the day of.


7b. Add volume with the # of NTCs subtracted of 10{circumflex over ( )}3 copies/uL IPSC to master mix. For example, if you had 3 NTCs that you had aliquoted master mix for, and the above table indicated 9 uL of IPSC be added, you would add 6 instead.


7d. Mix well and spin down


7e. Add 23 uL of Master Mix to each appropriate well on your plate


8a. Gently mix template DNA and spin down (Do not vortex genomic DNA)


8b. Add 2 uL of template DNA to its appropriate well, along with 2 uL H2O for IPSC, and 3 uL H2O for NTC


8c. Seal plate with a thermocycler seal


8d. Spin down plate


9. Using a heated lid, put plate on thermocycler and run the following parameters


















Step:
Reps:
Temp:
Time:






















initial denaturation
1
98
5
min



denaturation
35
98
30
sec



annealing

68
15
sec



extension

72
20
sec



final extension
1
72
2
min












cooling
1
10
forever










10. During this time, take out AMPure Beads to equilibrate them to Room Temperature for 30 minutes and heat some 10 mM Tris-HCl 0.05% Tween-20 in H2O to 50 C.














10 mM Tris-HCl 0.05% Tween-20 in H2O Example Formula












10 mM Tris-HCl
400
uL


0.05% Tween-20
20
uL


Molecular Grade H2O
39.580
mL










80% Ethanol in H2O












100% Ethanol
32
mL


MBG H2O
8
mL









11. Spin plates (Burkholderia target plate and Bacillus, Yersinia, Francisella target plate) down once the thermocycler finishes


12. Combine 15 uL of Burkholderia target reaction with 15 uL of Bacillus, Yersinia, Francisella target reaction


13. Add beads in a 1:1 ratio with reaction volume to each well (30 uL) and mix well by pipette


14. Incubate the bead/reaction mixture for 5 minutes


15. Place 96-well plate onto a magnetic stand, incubate for another 5 minutes


16. Aspirate supernatant out of wells without disturbing the beads. If beads ARE disturbed, let them incubate for another 2 minutes. Be sure to remove as much liquid as you can


17a. Add 80% EtOH to completely cover beads (˜200 uL) and incubate for 30 seconds. Aspirate.


17b. Repeat 16a and remove as much liquid as you can (two washes total), following with a 20 uL pipette to ensure full removal


18. Move plate off magnetic stand and allow beads to dry. Be sure to keep a close watch on the beads. If the beads start to crack, the DNA will be harder to elute out.


19. Move plate off the magnetic stand and add 32.5 uL heated 10 mM Tris-HCl 0.05% Tween-20 in H2O to the wells, mix well


20. Incubate for 2 minutes


21. Move plate to magnetic stand and incubate for 2 minutes


22. Remove 30 uL of supernatant and transfer it to a new well, do not disturb or transfer any beads


22. Burkholderia, Bacillus, Francisella, and Yersinia AmpSeq amplicons require two bead cleanups before Extension PCR. Repeat steps 12-21


23. Store amplicons at −20 C


Index Extension PCR

24. Thaw, gently mix, and spin down the following reagents in the following amounts for the Index Extension of the Target Amplicons


*Amounts are in respect to number of samples entered in Step 2














Index Extension Master Mix




Reagent
uL
Lot#

















2x Kapa Hifi
2475



Betaine 5M
990



Molecular Grade H2O
693









25. Combine the above volumes together, mix gently, and spin down.


26a. Each reaction will require a unique pair of index primers (UT1 and UT2), prepare a chart of what indexes will be used and where


26b. Thaw, vortex, and spin down the stock 10uM aliquots of each index that will be used for this run


26c. If some tubes appear empty, create a new 10uM aliquot of that index. Dilute in TE.


27. Once all indexes are accounted for, add 21 uL of Index Extension Master Mix to each appropriate well in a 96-well plate


28. Add luL of each 10uM index to its appropriate well


29a. After all UT1 and UT2 indexes have been added to their wells add 2 uL of CLEANED AMPLICONS


29b. The following should now be in each reaction well


















12.5 uL
2x Kapa Hifi



 3.5 uL
H2O



  5 uL
5M Betaine



  2 uL
DNA



  1 uL
10 uM UT1



  1 uL
10 uM UT2



  25 uL










30. Seal the plate with a thermocycler seal


31. Spin down plate


32a. Using a heated lid, put plate on thermocycler and run the following parameters


















Step:
Reps:
Temp:
Time:






















initial denaturation
1
98
2
min



denaturation
8
98
30
sec



annealing

60
20
sec



extension

72
30
sec



final extension
1
72
2
min












cooling
1
10
forever










32b. After the PCR has completed, spin down plate


33a. Samples will be cleaned and normalized using the Invitrogen SequalPrep system


33b. In a new plate, add equal amounts of illext DNA template and SequalPrep Normalization Binding Buffer


33c. Mix completely by pipette mixing several times, take care not to etch the sides of the well with the pipette tip


33d. Incubate the plate for 1 hour at room temperature to allow binding of DNA to the plate surface (longer than lhr is acceptable but will not increase binding or final elution concentration, can be overnight)


33e. Aspirate the liquid from the wells


33f. Add 50 uL Sequal Prep Normalization Wash Buffer, mix by pipetting up and down twice


33g. Completely aspirate the buffer, a small amount of residual Wash Buffer (1-3 uL) is typical


33h. Add 20 uL SequalPrep Normalization Elution Buffer to each well of the plate, mix by pipette


33i. Incubate at room temperature for 5 minutes


33j. Transfer samples to a new plate


34a. Samples should all be normalized now so pool them together in equal volumes


34b. The final DNA concentration will be fairly low, so perform an AMPure XP bead cleanup on the pool at a 1:1 ratio of pool to beads (be sure to note total volume of pooled samples)


34c. However, when eluting the DNA off the beads with heated Tris-Tween use 1/10 the initial pool volume used


35. Store DNA at −20C


SOP for Bacillus, Yersinia, and Francisella UT-AmpSeq PCR and Bead Cleanup
This SOP Describes Procedures for the Following:

1. PCR amplification of multiplexed Bacillus, Yersinia, and Francisella targets


2. Index extension PCR to prepare amplicons for MiSeq (ILLUMINA® sequencer)


3. SequelPrep™ Normalization Plate Kit (ThermoFisher)


4. Agencourt AMPure XP bead cleanup for PCR purification (Beckman Coulter)


Steps and Procedures

1. Universal-tailed gene-specific primers are pooled together in a “primer mix” in amounts relative to each other to help reduce PCR bias. These amounts have been previously optimized.


Please Follow the Primer Mix Parameters to Create the Needed Mix for the Multiplex Currently in use

2. Enter the total number of samples in the box below.


Primer Mix Parameters


# of Samples


180


ensure that all values in column K “How much starting primer conc. to add in mix stock” are above 2.0u1 and not highlighted in red


3a. Make the primer mixture by combining the following primers.


3b. Vortex and spin down each primer stock.


3c. Using the “Start (uM)” concentration primer stock of each primer, add the volume from “Amount to add (uL)” into a 1.7 mL microcentrifuge tube, unless “Total (uL)” at bottom of table is above 1200, then split volume evenly across necessary tubes. Vortex to mix and spin. (Refer to Table 10)


4a. This mixture can be stored at −20° C. for future use. To use mixture, let thaw, vortex and spin down.


4b. If using mixture previously made, write down the initials of the person who made it and when: Initials______ Date______


5. Plan and arrange the layout of where your samples will go on a 96-well plate. If you are processing clinical samples make sure to space your samples on the plate accordingly.


6. Use the Plate Maps sheet for convenience and record keeping. (Refer to Table 9)


6a. Reagents should be thawed and mixed before use. Avoid vortexing PCR mastermix as this can damage the enzymes in the mixture.


6b. Combine the following volumes of reagents as described in the following table except IPSC to create the Bacillus, Francisella, and Yersinia Multiplex Master Mix
















uL



Bacillus, Francisella,


addition in



Yersinia Multiplex

uL for
Master


Reagent
single reaction
Mix

















Q5 2x HotStart
12.5
2475


H2O
5
990


IPSC 1000 copies/uL
1
198


Diluted Primer Mix
4.5
891




4554









6c. Add 22 uL of Burkholderia Multiplex Master Mix without IPSC to any NTC reactions you are processing


7a. Thaw out an aliquot of Internal Plasmid Sequencing Control (IPSC) at 10{circumflex over ( )}6 copies per uL. Dilute this down to 10{circumflex over ( )}2 copies/uL by three serial dilutions of 1 to 10. Make dilutions in tubes for better vortexing & spinning


Make this fresh the day of.


7b. Add volume with the # of NTCs subtracted of 10{circumflex over ( )}2 copies/uL IPSC to master mix. For example, if you had 3 NTCs that you had aliquoted master mix for, and the above table indicated 9 uL of IPSC be added, you would add 6 instead.


7d. Mix well and spin down


7e. Add 23 uL of Master Mix to each appropriate well on your plate


8a. Gently mix template DNA and spin down (Do not vortex genomic DNA)


8b. Add 2 uL of template DNA to its appropriate well, along with 2 uL H2O for IPSC, and 3 uL H2O for NTC


8c. Seal plate with a thermocycler seal


8d. Spin down plate


9. Using a heated lid, put plate on thermocycler and run the following parameters


















Step:
Reps:
Temp:
Time:






















initial denaturation
1
98
5
min



denaturation
35
98
30
sec



annealing

55
15
sec



extension

72
20
sec



final extension
1
72
2
min












cooling
1
10
forever










10. During this time, take out AMPure Beads to equilibrate them to Room Temperature for 30 minutes and heat some 10 mM Tris-HCl 0.05% Tween-20 in H2O to 50 C














10 mM Tris-HCl 0.05% Tween-20 in H2O Example Formula












10 mM Tris-HCl
400
uL


0.05% Tween-20
20
uL


Molecular Grade H2O
39.580
mL










80% Ethanol in H2O












100% Ethanol
32
mL


MBG H2O
8
mL









11. Spin plates (Burkholderia target plate and Bacillus, Yersinia, Francisella target plate) down once the thermocycler finishes


12. Combine 15 uL of Burkholderia target reaction with 15 uL of Bacillus, Yersinia, Francisella target reaction


13. Add beads in a 1:1 ratio with reaction volume to each well (30 uL) and mix well by pipette


14. Incubate the bead/reaction mixture for 5 minutes


15. Place 96-well plate onto a magnetic stand, incubate for another 5 minutes


16. Aspirate supernatant out of wells without disturbing the beads. If beads ARE disturbed, let them incubate for another 2 minutes. Be sure to remove as much liquid as you can


17a. Add 80% EtOH to completely cover beads (˜200 uL) and incubate for 30 seconds.


Aspirate.

17b. Repeat 16a and remove as much liquid as you can (two washes total), following with a 20 uL pipette to ensure full removal


18. Move plate off magnetic stand and allow beads to dry. Be sure to keep a close watch on the beads. If the beads start to crack, the DNA will be harder to elute out.


19. Move plate off the magnetic stand and add 32.5 uL heated 10 mM Tris-HCl 0.05% Tween-20 in H2O to the wells, mix well


20. Incubate for 2 minutes


21. Move plate to magnetic stand and incubate for 2 minutes


22. Remove 30 uL of supernatant and transfer it to a new well, do not disturb or transfer any beads


22. Burkholderia, Bacillus, Francisella, and Yersinia AmpSeq amplicons require two bead cleanups before Extension PCR. Repeat steps 12-21


23. Store amplicons at −20 C


Index Extension PCR

24. Thaw, gently mix, and spin down the following reagents in the following amounts for the Index Extension of the Target Amplicons


*Amounts are in respect to number of samples entered in Step 2
















Index Extension Master Mix




Reagent
uL



















2x Kapa Hifi
2475



Betaine 5M
990



Molecular Grade H2O
693




4158



Lot#











25. Combine the above volumes together, mix gently, and spin down.


26a. Each reaction will require a unique pair of index primers (UT1 and UT2), prepare a chart of what indexes will be used and where


26b. Thaw, vortex, and spin down the stock 10uM aliquots of each index that will be used for this run


26c. If some tubes appear empty, create a new 10uM aliquot of that index. Dilute in TE.


27. Once all indexes are accounted for, add 21 uL of Index Extension Master Mix to each appropriate well in a 96-well plate


28. Add luL of each 10uM index to its appropriate well


29a. After all UT1 and UT2 indexes have been added to their wells add 2 uL of CLEANED AMPLICONS


29b. The following should now be in each reaction well


















12.5 uL
2x Kapa Hifi



 3.5 uL
H2O



  5 uL
5M Betaine



  2 uL
DNA



  1 uL
10 uM UT1



  1 uL
10 uM UT2



  25 uL










30. Seal the plate with a thermocycler seal


31. Spin down plate


32. Using a heated lid, put plate on thermocycler and run the following parameters


















Step:
Reps:
Temp:
Time:






















initial denaturation
1
98
2
min



denaturation
8
98
30
sec



annealing

60
20
sec



extension

72
30
sec



final extension
1
72
2
min












cooling
1
10
forever










32b. After the PCR has completed, spin down plate


33a. Samples will be cleaned and normalized using the Invitrogen SequalPrep system


33b. In a new plate, add equal amounts of illext DNA template and SequalPrep Normalization Binding Buffer


33c. Mix completely by pipette mixing several times, take care not to etch the sides of the well with the pipette tip


33d. Incubate the plate for 1 hour at room temperature to allow binding of DNA to the plate surface (longer than lhr is acceptable but will not increase binding or final elution concentration, can be overnight)


33e. Aspirate the liquid from the wells


33f. Add 50 uL Sequal Prep Normalization Wash Buffer, mix by pipetting up and down twice


33g. Completely aspirate the buffer, a small amount of residual Wash Buffer (1-3 uL) is typical


33h. Add 20 uL SequalPrep Normalization Elution Buffer to each well of the plate, mix by pipette


33i. Incubate at room temperature for 5 minutes


33j. Transfer samples to a new plate


34a. Samples should all be normalized now so pool them together in equal volumes


34b. The final DNA concentration will be fairly low, so perform an AMPure XP bead cleanup on the pool at a 1:1 ratio of pool to beads (be sure to note total volume of pooled samples)


34c. However, when eluting the DNA off the beads with heated Tris-Tween use 1/10 the initial pool volume used


35. Store DNA at −20C

    • Burkholderia pseudomallei, Burkholderia mallei, Bacillus anthracis, Yersinia pestis and Francisella tularensis are all Tier 1 select agents, posing a potentially severe threat to public health. 1
    • Current surveillance methods rely upon single locus PCR techniques that allow for only presence/absence of SA results.
    • Has been known to lead to false positives, especially due to the complexity of environmental samples including huge numbers of microorganisms, many of which can be highly similar target pathogens.
    • Constantly working to develop technologies that significantly improve the identification of biological contaminants in varying sample types
    • Both sequencing costs and sequencing time are decreasing. 2
    • Targeted amplicon sequencing can provide the necessary information at a fraction of the cost of WGS.
    • Targeted amplicon sequencing can also provide a more manageable data set for researchers with less background in bioinformatics with an appropriate processing tool.


Summary





    • With the cost of sequencing decreasing and the ability to combine higher and higher numbers of samples on a single run, amplicon sequencing provides a cost effective alternative to individual PCR methods.

    • A screening panel of target organism strains as well as near neighbor strains allowed for differentiation with 100% sensitivity for all target agents and 91-100% specificity.





Future Directions





    • Limit of detection testing across a subset of target organisms in a pristine sample.

    • Limit of detection testing across a subset of target organisms in samples with environmental and human backgrounds.

    • Testing on other sequencing platforms.





References






    • 1 Select Agents and Toxins Regulations. 42 C.F.R. Part 73.3 HHS Select Agents and Toxins


    • 2 Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016












TABLE 1







BTseq Loci Summary














B. pseudo-







B.


mallei/


F.


Y





anthracis


mallei


tularensis


pestis















Target Species Loci PA
9
12*
3
3


NN Species Loci PA
4
 0
3
0


NN Species Loci SNP/SV
7
 9
7
7


AMR Loci
6
 4
0
3


Virulence/Plasmid Loci
4
 0
0
2


Total
30
25
13
15





*Five loci amplify both Bp and Bm













TABLE 2





SNPs for detecting the presence of nucleic acids from Bacillus anthracis.

















Ba_AmesAnc














LocusID
1069024::91
1712462::85
3668548::88
371913::77
388555::108
3981642::97
4001578::113





Reference
T
C
C
T
A
A
C


Ba_A0098_S45_L001
T
C
C
T
A
A
C


Ba_A0330_S46_L001
T
C
C
T
A
A
C


Ba_A0490_S47_L001
T
C
C
T
A
A
C


Ba_A0605_S48_L001
T
C
C
T
A
A
C


Ba_A0615_S49_L001
T
C
C
T
A
A
C


Ba_A0706_S50_L001
T
C
C
T
A
A
C


Ba_A071_S52_L001
T
C
C
T
A
A
C


Ba_A072_S58_L001
T
C
C
T
A
A
C


Ba_A073_S59_L001
T
C
C
T
A
A
C


Ba_A074_S60_L001
T
C
C
T
A
A
C


Ba_A0767_S51_L001
T
C
C
T
A
A
C


Ba_A0847_S53_L001
T
C
C
T
A
A
C


Ba_A1085_S54_L001
T
C
C
T
A
A
C


Ba_A2010_S55_L001
T
C
C
T
A
A
C


Ba_A2105_S56_L001
T
C
C
T
A
A
C


Ba_A2175_S57_L001
T
C
C
T
A
A
C


Ba_NN295171-
A
X
X
X
X
X
T


grainy_S63_L001


Ba_NN295171-
X
X
X
X
X
X
X


smooth_S70_L001


Ba_NN295618_S71_L001
X
X
X
X
X
X
X


Ba_NNAI-hakem-
X
X
X
X
X
X
X


grainy_S77_L001


Ba_NNAI-hakem-
A
X
X
C
G
G
T


smooth_S64_L001


Ba_NNATCC10792_S62_L001
A
X
X
C
G
G
T


Ba_NNATCC13402_S76_L001
X
X
X
X
X
X
X


Ba_NNATCC31293_S74_L001
X
X
X
X
X
X
T


Ba_NNBacillus-
X
X
X
X
X
X
X


cereus_S69_L001


Ba_NNBacillus-
A
X
X
X
X
X
T


megaterium_S75_L001


Ba_NNFRI33_S72_L001
X
X
X
X
X
X
X


Ba_NNFRI35_S73_L001
A
X
X
X
G
G
T


Ba_NNHD-
A
X
T
C
G
G
T


1011_S93_L001


Ba_NNHD-
A
X
X
C
X
X
T


1012_S94_L001


Ba_NNHD-
A
X
X
X
X
G
T


1015_S61_L001


Ba_NNHD-
A
X
X
C
G
G
T


288_S81_L001


Ba_NNHD-
X
X
X
X
X
X
T


34_S78_L001


Ba_NNHD-44-
X
X
X
C
X
G
T


grainy_S79_L001


Ba_NNHD-44-
X
X
X
X
X
X
X


smooth——S66_L001


Ba_NNHD-
A
X
X
C
G
X
T


47_S80_L001


Ba_NNHD-526-
A
X
X
T
X
G
T


grainy_S82_L001


Ba_NNHD-526-
A
T
X
C
G
G
T


smooth——S67_L001


Ba_NNHD-
X
X
X
X
X
X
T


557_S83_L001


Ba_NNHD-571-
A
X
T
C
G
G
T


grainy_S84_L001


Ba_NNHD-571-
A
X
T
C
G
G
T


smooth_S65_L001


Ba_NNHD-
X
X
X
X
X
X
T


621_S85_L001


Ba_NNHD-
A
X
X
X
G
X
T


681_S86_L001


Ba_NNHD-
X
X
X
X
X
X
X


682_S87_L001


Ba_NNHD-
X
X
X
X
X
X
X


711_S88_L001


Ba_NNHD-
A
X
X
X
X
X
T


754_S89_L001


Ba_NNHD-
X
X
X
X
X
X
X


789_S90_L001


Ba_NNHD-
A
X
X
X
G
X
T


930_S91_L001


Ba_NNHD-974-
A
X
X
X
G
G
T


grainy_S92_L001


Ba_NNHD-974-
A
X
X
X
G
G
T


smooth_S68_L001


Ba_NNNTC_Ba_1_S95_L001
X
X
X
X
X
X
X


Ba_NNNTC_Ba_2_S96_L001
X
X
X
X
X
X
X


F1057_S97_L001
X
X
X
X
X
X
X


F1062_S98_L001
X
X
X
X
X
X
X


NTC_Ft1_S99_L001
X
X
X
X
X
X
X


NTC_Ft2_S100_L001
X
X
X
X
X
X
X


NTC_Yp1_55_S104_L001
X
X
X
X
X
X
X


NTC_Yp2_55_S105_L001
X
X
X
X
X
X
C


NTC_Yp3_60_S109_L001
X
X
X
X
X
X
C


NTC_Yp4_60_S110_L001
X
X
X
X
X
X
C


NTC_Yp5_65_S114_L001
X
X
X
X
X
X
C


NTC_Yp6_65_S115_L001
X
X
X
X
X
X
C


Yp1763_55_S101_L001
X
X
X
X
X
X
X


Yp1763_60_S106_L00
X
X
X
X
X
X
X


Yp1763_65_S111_L001
X
X
X
X
X
X
X


Yp2051_55_S102_L001
X
X
X
X
X
X
X


Yp2051_60_S107_L001
X
X
X
X
X
X
X


Yp2051_65_S112_L001
X
X
X
X
X
X
X


Yp2126_55_S103_L001
X
X
X
X
X
X
X


Yp2126_60_S108_L001
X
X
X
X
X
X
X


Yp2126_65_S113_L001
X
X
X
X
X
X
X













Ba_AmesAnc















LocusID
4087624::116
4669915::40
734209::105
999035::79
plcR::147







Reference
G
T
T
G
A



Ba_A0098_S45_L001
G
T
T
G
A



Ba_A0330_S46_L001
G
T
T
G
A



Ba_A0490_S47_L001
G
T
T
G
A



Ba_A0605_S48_L001
G
T
T
G
A



Ba_A0615_S49_L001
G
T
T
G
A



Ba_A0706_S50_L001
G
T
T
G
A



Ba_A071_S52_L001
G
T
T
G
A



Ba_A072_S58_L001
G
T
T
G
A



Ba_A073_S59_L001
G
T
T
G
A



Ba_A074_S60_L001
G
T
T
G
A



Ba_A0767_S51_L001
G
T
T
G
A



Ba_A0847_S53_L001
G
T
T
G
A



Ba_A1085_S54_L001
G
T
T
G
A



Ba_A2010_S55_L001
G
T
T
G
A



Ba_A2105_S56_L001
G
T
T
G
A



Ba_A2175_S57_L001
G
T
T
G
A



Ba_NN295171-
X
X
X
A
X



grainy_S63_L001



Ba_NN295171-
X
X
X
X
X



smooth_S70_L001



Ba_NN295618_S71_L001
X
X
X
X
X



Ba_NNAI-hakem-
X
X
X
X
X



grainy_S77_L001



Ba_NNAI-hakem-
T
C
C
A
X



smooth_S64_L001



Ba_NNATCC10792_S62_L001
T
C
C
A
C



Ba_NNATCC13402_S76_L001
X
X
X
X
X



Ba_NNATCC31293_S74_L001
X
X
X
X
X



Ba_NNBacillus-
X
X
X
X
X



cereus_S69_L001



Ba_NNBacillus-
X
X
X
X
X



megaterium_S75_L001



Ba_NNFRI33_S72_L001
X
X
X
X
X



Ba_NNFRI35_S73_L001
T
C
X
A
C



Ba_NNHD-
T
C
C
A
C



1011_S93_L001



Ba_NNHD-
T
C
X
A
C



1012_S94_L001



Ba_NNHD-
X
C
X
A
X



1015_S61_L001



Ba_NNHD-
X
C
C
A
X



288_S81_L001



Ba_NNHD-
X
X
X
X
X



34_S78_L001



Ba_NNHD-44-
X
C
X
X
C



grainy_S79_L001



Ba_NNHD-44-
X
X
X
X
X



smooth——S66_L001



Ba_NNHD-
X
C
X
A
X



47_S80_L001



Ba_NNHD-526-
X
C
X
X
A



grainy_S82_L001



Ba_NNHD-526-
T
C
X
A
X



smooth——S67_L001



Ba_NNHD-
X
X
X
X
X



557_S83_L001



Ba_NNHD-571-
T
C
C
A
C



grainy_S84_L001



Ba_NNHD-571-
T
C
C
A
C



smooth_S65_L001



Ba_NNHD-
X
X
X
X
X



621_S85_L001



Ba_NNHD-
X
C
X
A
X



681_S86_L001



Ba_NNHD-
X
X
X
X
X



682_S87_L001



Ba_NNHD-
X
X
X
X
X



711_S88_L001



Ba_NNHD-
X
C
X
A
X



754_S89_L001



Ba_NNHD-
X
X
X
X
X



789_S90_L001



Ba_NNHD-
X
C
X
A
X



930_S91_L001



Ba_NNHD-974-
X
C
X
X
X



grainy_S92_L001



Ba_NNHD-974-
X
C
X
X
X



smooth_S68_L001



Ba_NNNTC_Ba_1_S95_L001
X
X
X
X
X



Ba_NNNTC_Ba_2_S96_L001
X
X
X
X
X



F1057_S97_L001
X
X
X
X
X



F1062_S98_L001
X
X
X
X
X



NTC_Ft1_S99_L001
X
X
X
X
X



NTC_Ft2_S100_L001
X
X
X
X
X



NTC_Yp1_55_S104_L001
X
X
X
X
X



NTC_Yp2_55_S105_L001
X
X
X
X
A



NTC_Yp3_60_S109_L001
X
X
X
X
X



NTC_Yp4_60_S110_L001
X
X
X
X
A



NTC_Yp5_65_S114_L001
X
X
X
X
X



NTC_Yp6_65_S115_L001
X
X
X
X
A



Yp1763_55_S101_L001
X
X
X
X
X



Yp1763_60_S106_L00
X
X
X
X
X



Yp1763_65_S111_L001
X
X
X
X
X



Yp2051_55_S102_L001
X
X
X
X
X



Yp2051_60_S107_L001
X
X
X
X
X



Yp2051_65_S112_L001
X
X
X
X
X



Yp2126_55_S103_L001
X
X
X
X
X



Yp2126_60_S108_L001
X
X
X
X
X



Yp2126_65_S113_L001
X
X
X
X
X

















TABLE 3







Primers for detecting the presence of nucleic acids from Bacillusanthracis.














Assay




SEQ


Assay name
Type
Target species/gene

primer name
sequence (5′ → 3′)
ID NO
















CP008853.1_5309
PA
B. anthracis
F
Ba-specific-3F_UT1
ACGTCAGGTGATTATTGGAC
1





R
Ba-specific-3R_UT2
CAACAATTATATCCGCCATT
2





CP008853.1_5316
PA
B. anthracis
F
Ba-specific-5F_UT1
GAAGATGTACGCTCGATAGG
3





R
Ba-specific-5R_UT2
GAAATTCTTTTTGCCATCAC
4





CP012725.1_3629
PA
B. anthracis
F
Ba-specific-6F_UT1
CACAATTGAATGAAAATGCT
5





R
Ba-specific-6R_UT2
CACGAAACCTGTTTACCTTT
6





CP012725.1_5103
PA
B. anthracis
F
Ba-specific-8F_UT1
GATATTCGACGAGCTTTCTG
7





R
Ba-specific-8R_UT2
TATTCATCGTCATCCTCCTC
8





CP012725.1_5107
PA
B. anthracis
F
Ba-specific-9F_UT1
TATTGAACGCATTGAATCAG
9





R
Ba-specific-9R_UT2
TATTGGTAAGCAAACCGTCT
10





JSZQ01000034.1_220
PA
B. anthracis
F
Ba-specific-11F_UT1
GGTTCAGGACAAAATGTAGC
11





R
Ba-specific-11R_UT2
TAACTTCTGAAGCGAAAACC
12





JSZS01000036.1_5
PA
B. anthracis
F
Ba-specific-12F_UT1
GCGAATTTTAGACGACAATC
13





R
Ba-specific-12R_UT2
TAACCGTGCTTAATTCGTTT
14





LGCC01000010.1_232
PA
B. anthracis
F
Ba-specific-14F_UT1
ATTAATAAGGCGACTGGTGA
15





R
Ba-specific-14R_UT2
TTACCCATCCAGAATGAGAC
16





LGCC01000048.1_280
PA
B. anthracis
F
Ba-specific-16F_UT1
ACAATTCTTAAAAGGCGACA
17





R
Ba-specific-16R_UT2 
TGTAGCGTCTCCGATATTTT
18


NN_LOMU01000090.1_49
PA
near neighbor 
F
Ba-specific-20F_UT1 
CATGGGGCTTTCTATTATGT
19




species
R
Ba-specific-20R_UT2 
TTCGTTCTTTCATAAGTTTCCT
20





NN_LOQC01000013.1_3
PA
near neighbor 
F
Ba-specific-22F_UT1 
TTGGAGTTTGTTTTGCTTTT
21




species
R
Ba-specific-22Rv2_
GTAACAATTAATCCACGTCCT
22






UT2







ChimpKiller_9-159
PA
B. cereus spp.
F
ChimpKiller_9F
TTATCGTCCATTCTTTCGTC
23




anthracis
R
ChimpKiller_159R
AAACCTAATGAAACGGGATT
24





ChimpKiller_91-320
SV
B. cereus spp.
F
ChimpKiller_91F
TATGAAAGGAGCCGTAAAAC
25




anthracis
R
ChimpKiller_320R
TGAATATGAAGCGGAAAACT
26





ChimpKiller_481-698
SV
B. cereus spp.
F
ChimpKiller_481F
TCGAACATACCTCCATTTCT
27




anthracis
R
ChimpKiller_698R
AAAGATAGCTTTGCACTTGG
28





plcR
PA
Virulence locus plcR
F
Ba-specific-1F_UT1
TTTTTCGTAAGCATCTTCAA
29





R
Ba-specific-1R_UT2
TTTGATGTGAAGGTGAGACA
30





pagA
PA
Virulence locus pagA
F
801F_pagAv3_UT1
GGTTACAGGACGGATTGATA
31





R
1042R_pagAv3_UT2
TCCCACCAATATCAAAGAAC
32





pX01
PA
Virulence plasmid
F
pX01_113F_UT1
TGAGCCTACCTAGTGATTGG
33


pX01


R
pX01-315Rv2_UT2
TTGGATAAATTCCACAAATTCC
34







TC






pX02
PA
Virulence plasmid
F
pX02_101F_UT1
CGCCAGCGTATTATATAGGT
35




pX02
R
pX02_269R_UT2
GCTAATTCTGGGTTGTGTTT
36





gyrA
SNP
Drug resistance SNP
F
gyrA_28Fv2_UT1
TCGGTAAGTATCACCCTCA
37




gyrA
R
gyrA_182Ry2_UT2
TGCTTCTGTATAACGCATT
38





parC
SNP
Drug resistance SNP
F
parC_1F_UT1
CAGTCGGTAACGTTATTGGT
39




parC
R
parC_197R_UT2
TAACTCAGATGCAATTGGTG
40





gyrB
SNP
Drug resistance SNP
F
gyrB_8F_UT1
ATTGTAGAGGGTGACTCTGC
41




gyrB
R
gyrB_194R_UT2
TATCAAAATCTCCGCCAAT
42





rpoB
SNP
Drug resistance SNP
F
rpoB_29F_UT1
TTCTTCGGAAGTTCTCAGTT
43




rpoB
R
rpoB_196R_UT2
CGGACACATACGACCATAG
44





AA_2502
SNP
Drug resistance SNP
F
AA_2502_UT1
AAGTTTGAGGTGTGGAAATG
45





R
AA_2502_UT2
TCGAAATGAGTTCCAATTTT
46





AA_2503
SNP
Drug resistance SNP
F
AA_2503v2_UT1
CAAAACTAATAGGGGAGGGTG
47





R
AA_2503_UT2
CCGAGAACCTACCTCGTTA
48





Ba_AmesAnc_4669915
SV
near neighbor species
F
Ba&NN32_F
AGGAGATGAGAGTTTTGCAC
49





R
Ba&NN32_R
ACCCCCATAATTACCATGA
50





Ba_AmesAnc_4001578
SV
near neighbor species
F
Ba&NN33_F
CGTTGCGTAAGTATGTGCTA
51





R
Ba&NN33_R
AGGTGGCGTAATTAACGTAG
52





Ba_AmesAnc_1069024
SV
near neighbor species
F
Ba&NN37_F
CGAAAAGTTGTCGACCTAAT
53





R
Ba&NN37_R
ACTGCGTTCACGAAGAATAG
54





Ba_AmesAnc_3668548
SV
near neighbor species
F
Ba&NN38_F
TCTCTTGATTCAACGTTTCC
55





R
Ba&NN38_R
GATGCAAAACCAATTCACTT
56





Ba_AmesAnc_371913
SV
near neighbor species
F
Ba&NN40_F
GTGAAACATCGCTTTTTAGG
57





R
Ba&NN40_R
TCCGCAATGATATACTTCAA
58





Ba_AmesAnc_999035
SV
near neighbor species
F
Ba&NN41_F
ATACGGTGAAAATGAAGCAG
59





R
Ba&NN41_R
CGTCTTTGGTAATCGTTCA
60
















TABLE 4







Primers for detecting the presence of nucleic acids from Burkholderia.















Target species/



SEQ ID


Assay name
Assay Type
gene

primer name
sequence (5′ → 3′)
NO:
















TTS1_BPSS1407
PA
TTS1
F
BpAmpSeq_1_F
TCGTCGTCACCGGGAT
61







GGTC






R
BpAmpSeq_1_R
GGCCTTTGCCCGCATA
62







CTCG






LXCC01000141.1_392
PA

B.pseudomallei

F
BpAmpSeq_3_F
TCGCAWGAAGTGCGT
63


96_39817




TGCCG






R
BpAmpSeq_3_R
GCCGCTTGCGAAGCGA
64







TGAT






LXBY01000087.1_757
PA

B.pseudomallei

F
BpAmpSeq_4_F
CGCGCTTGCCCAACTA
65


60_76751




CCAG






R
BpAmpSeq_4_R
GCGCAACGGTGCGAG
66







ACAAT






LXCD01000002.1_996
PA

B.pseudomallei

F
BpAmpSeq_5_F
AATCCATGCATGTCGY
67


52_100245




GCCC






R
BpAmpSeq_5_R
GCGATCGCTCAACGGG
68







CTTC






LXCE01000123.1_342
PA

B.pseudomallei

F
BpAmpSeq_6_F
TCGCATTTGCAYACGC
69


20_34747




TCCC






R
BpAmpSeq_6_R
AGTGCGCAAACTTGGC
70







GAGG






BpCEN586498
PA
pseudomallei
F
BpCEN586498_F102
CACCGAAAGATTTCAG
71







TTCCGCCTCATTCA






R
BpCEN586498_R388
GGCCGTCGATGGTTTC
72







GTCGGTTTTC






BpCEN617822
PA
pseudomallei
F
BpCEN617822_F43
TGCATTGAGCACGGCA
73







CGCAGATTC






R
BpCEN617822_R260
GAAAAATTTATCGGAT
74







CGAGCACCATGGTTTG






BpCEN972235
PA
pseudomallei
F
BpCEN972235_F107
ATACGCGGCGCGGCTC
75







ATTTCG






R
BpCEN972235_R305
GCGTCGCGCTCGTCGA
76







TACGGTCA






BpCEN70178
PA
pseudomallei
F
BpCEN70178-2F
TGCGCAGCGAGTGGTT
77







CAGGTTGTC






R
BpCEN70178-182R
CGACGATACGGATAC
78







GGCACGGAAGC






BpCEN508364
PA
pseudomallei
F
UT1-BpCEN508364_F37
CCGCGCCGGCCGCAG
79







ACC






R
UT2-BpCEN508364_R184
CGGGCGTGCCGGACTC
80







CTCGTC






LWWC01000187.1_18
PA

B.pseudomallei

F
BpAmpSeq_8_F
CCTTTGCGGCAAGCGT
81





mallei



CGAA






R
BpAmpSeq_8_R
GAGCCAACGCACATG
82







GACGG






LWWB01000125.1_17
PA

B.pseudomallei

F
BpAmpSeq_10_F
CCAGTCGGGCCGGGA
83


183_17602


mallei



AAAAC






R
BpAmpSeq_10_R
GGCGGCAAAAGCGTC
84







GATGA






LXAY01000367.1_0_6
PA

B.pseudomallei

F
BpAmpSeq_11_F
GCCGGAACCGTCGAG
85


40


mallei

R
BpAmpSeq_11_R
CATTG








TGGATTCGACTGCCTC
86







CGCT






LWVY01000190.1_17
PA

B.pseudomallei

F
BpAmpSeq_12_F
TCGATATCCGCCGTCT
87


226_17689


mallei



CGCC






R
BpAmpSeq_1_R
ATGTGTCGGTGGGCTT
88







CGGT






LXAD01000059.1_247
PA

B.pseudomallei

F
BpAmpSeq_13_F
GAAAGGCGATGTGCC
89


60_25075


mallei



GAGCG






R
BpAmpSeq_13_R
TTCGGAGAAGCGCCA
90







AACGC






BpmCEN322640
PA
pseudomallei/mallei
F
BpCEN322640_F2
CGCGGACAGCATCGAT
91







TACGTGAATC






R
BpCEN32264_R2
CCGCCGAATCCGATGC
92







TCAATTTC






BpmCEN1761486
PA
pseudomallei/mallei
F
BpmCEN1761486_F1
GACCTGCAGCAGGTAT
93







TCGACATTATCGTTC






R
BpCEN1761486_R1
AGCTTCGCATACAGCA
94







CTTCCGCCAG






BpmCEN1235988
PA
pseudomallei/mallei
F
BpmCEN1235988_F1
GCGCTGCCCGTTTCAC
95







CACTGG






R
BpmCEN1235988_R1
CGTGACGCCGTCGGGA
96







AAGATCATC






BpmCEN1565214
PA
pseudomallei/mallei
F
BpmCEN1565214_F1
CTGACCGAACGATGGC
97







TGGAGATACATGC






R
BpmCEN1565214_R1
CAAATGGGAAGCGAG
98







CTCCCTTCCGA






BpmCEN276339-1
PA
pseudomallei/mallei
F
BpmCEN276339-1_F1
CGGACGCCTGTCGCCC
99







GAAACCTAT






R
BpmCEN276339-1_R1
CGCGAGCACGCCGAG
100







CGACAT






BpmCEN276339-2
PA
pseudomallei/mallei
F
BpmCEN276339-2_F1
CGTCGACGCCCCGGGC
101







TTTCTG






R
BpmCEN276339-2_R1
CGCCGCGCACCGGTTT
102







CAATC






BpmCEN894337
PA
pseudomallei/mallei
F
BpmCEN894337_F_1
CGAAAATAATTTTCGG
103







CCGGCGCAC






R
BpmCEN894337_R1
CGACAGGCATCGGGC
104







GACTACTACCAG






BpmCEN1722622
PA
pseudomallei/mallei
F
UT2-Bpm_CEN1722622-f1
CAACGGGCGAGTTTGC
105







AACGGAATC






R
UT1-Bpm_CEN1722622-1-1
GCCGGCTTGGCTTCGT
106







CCTTGTC






BpmCEN357268
PA
pseudomallei/mallei
F
UT1-Bpm_CEN357268-fl
CGGCATGCGCGGCCG
107







AATC






R
UT2-Bpm_CEN357268-r1
ATCGCGCCCTGCAGCG
108







AGCAC






NC_006350_2289827
SV

B.pseudomallei

F
BpAmpSeq_16_F
GCCAGCGCATCCACCA
109




complex SNP


ACAT






R
BpAmpSeq_16_R
AGAGGAAGAAGGGCG
110







AGGCG






NC_006350_133027
SV

B.cepacia complex

F
BpAmpSeq_18_F
CGCGCARYTCGTCGTC
111




SNPs


CTCG






R
BpAmpSeq_18_R
CGAACCTSGTGCMGGT
112







RCAG






NC_006350_2248145-
SV

B. pseudomallei

F
BpAmpSeq_19_F
CACGTTGCCSGGRAAR
113


2248193

complex SNP


TACG






R
BpAmpSeq_19_R
CCGTCGACAAGATCGC
114







GCTS






NC_006350_988041-
SV

B. pseudomallei

F
BpAmpSeq_20_F
CAGAACGCGCTRTYCC
115


988089

complex SNP


ACG






R
BpAmpSeq_20_R
TGCCGCGTGATCCATT
116







GCAT






Bm_11589
PA

B.mallei

F
BpAmpSeq_21_F
AGGGGGTGGTTTCCTG
117







AGTGGCGTGAC






R
BpAmpSeq_21_R
AGCGGTGTCGACGGGT
118







GGAAAGGATG






Bm_11767
PA

B.mallei

F
BpAmpSeq_22_F
ACGGGCGCTTCACGAT
119







CTCGGTGTTC






R
BpAmpSeq_22_R
GCGCGGCAGTTCGATC
120







AGGCATTTG






Bm_11589
PA

B.mallei

F
Bm-11589-f1_UT1
GACGGCGGGCTTTGGG
121







GAGTCC






R
Bm-11589-r1_UT2
GCTCGCGGGCAGCGGT
122







GTCG






Bm_11767
PA

B.mallei

F
Bm-11767-f1_UT1
GACGGCCCCGGGCGG
123







CTTTAC






R
Bin-11767-r1_UT2
CGCGGCAGTTCGATCA
124







GGCATTTGAG






Bm_11767
PA

B.mallei

F
Bm-11767-f1_UT1
GACGGCCCCGGGCGG
125







CTTTAC






R
Bm-11767-r2_UT2
CGAGGGGCGAAATTC
126







CCCTTATAGATCAGTT








G






K9penA378-529
SNP
penA
F
BpAmpSeq_26_F
CGGTCGCCACAAATTC
127







GCACGCACTC






R
BpAmpSeq_26_R
AGCGAGCGGCGCAAC
128







GGAGAATGATT






K9penA575-761
SNP
penA
F
BpAmpSeq_27_F
GCTGCGCGGCCAAGC
129







GAAAAACG






R
BpAmpSeq_27_R
CGCGAGGACCGCAGC
130







GCAAAGC






K9penA949-1172
SNP
penA
F
BpAmpSeq_28_F
GGCCGCAGACCGTCAC
131







CGCGTATG






R
BpAmpSeq_28_R
GTCGCCCGTCTTGTTG
132







CCGAGCATC






penA_-78promoter
SNP
penA
F
K9penA281fUT1
GCCCGTCAATCCGATG
133







CMGTATCTGG






R
K9penA565rUT2
GCGCCGATCARTGGGG
134







TGGAAATG






penA_C69Y_S72F
SNP
penA
F
K9penA696fUT1
CATCGCGGCGACGAG
135







CGTTTCC






R
K9penA848rUT2
CTCGGTGATCGGCGAA
136







TAGCGGATGAGA






penA_P167S
SNP
penA
F
K9penA881fUT1
GCTGTGCGCGGCGACG
137







CTTCAGTA






R
K9penA1258rUT2
CCGATGTCGTTCGCCG
138







TTCCGTAGTC






PBP3-170f-505r
PA
penA
F
PBP3-170f3UT1
ATCCGCCGTCCCGCCC
139







AGCAATAG






R
PBP3-505r3UT2
GGGTTCGCCCAGATTT
140







CGTAGGTGGTGAG






pbp3-1
PA
pbp3
F
K9pbp336fUT1
TCGCCGTTTCACGCCC
141







CGCAAC






R
K9PBP3331rUT2
GCGCCGAACGCGAGG
142







AACACGA






pbp3-2
PA
pbp3
F
K9pbp31292fUT1
GCTCGCGAAGCTCGCG
143







CTGAACC






R
K9PBP31527rUT2
GGATCGTGCCGTCGCC
144







CGCATAC






V15G_R20
SV
folM pteredine
F
1026pter371fU
ACAAGCCCGGYGTCGTCG
145




reductase


AGATGGTGAC






R
1026pter636rUT2
CGCGTCGGCCGAAYG
146







GTCGTAGT






bpeT HTH
SV
bpeT HTH region
F
bpeT_-76fUT1
AATCGTCGGCTGCGTC
147







GCCTTCA






R
bpeT_596rUT2
CGGGTAGCGTGAGTG
148







GAATTCGCAGAG






bpeT substrate 
SV
bpeT substrate
F
bpeT_695fUT1
CCTCGAAGGCTTCGGG
149


binding

binding region


CTGATCCAG






R
bpeT_1014rUT2
GACTAACCGCTTACGC
150







CACCCACTCGTTC






bpeS HTH
SV
bpeS HTH region
F
bpeS_-83fUT1
AAAGCGAATAGTCGC
151







GAAGCGGCTTGA






R
bpeS_230rUT2
GCGATCTCGGTGATGA
152







TCTTGATGCAGTG






bpeS substrate 
SV
bpeS substrate
F
bpeS_648fUT1
AACGGCGGCGTGACC
153


binding

binding region


GTCAACG






R
bpeS_977rUT2
CGCTACGCGGCCACCT
154







GCCC






bimA
PA
bimA
F
Bpvir_bimA_407F
CGGAGCTTCAGAACA
155







ACCCGCGTGTAAC






R
Bpvir_bimA_654R
CCTTCGGACCTTTTCC
156







CGCAACTGGC






cheD
PA
cheD
F
Bpvir_cheD_29F
AATTCGGCCGGCAGGC
157







GGTACG






R
Bpvir_cheD_297R
CGCGCGCAGCCGGCAT
158







TTG






fhaB1long
PA
fhaB1long
F
Bpvir_fhaB1long_8410F
CCCTTCGGTCCCCACC
159







AGAAAAATTCG






R
Bpvir_fhaB1long_8599R
AGCCGTACAGGCCAAT
160







GCAGCCATCTATG






fhaB1short
PA
fhaB1short
F
Bpvir_fhaB1short_63F
GCGCCGCGTGTTCGTG
161







ACCTTGTC






R
Bpvir_fhaBlshort_316R
CGCTGATCGGCGCATC
162







GGACAC






fhaB2
PA
fhaB2
F
Bpvir_fhaB2_1812F
ATCGTGATATCGCCGG
163







TTCCTGGTTGTG






R
Bpvir_fhaB2_2100R
CACGTTTGGCGGCAGT
164







GCAAGGTGTAG






fhaB3
PA
fhaB3
F
Bpvir_fhaB3_3966F
TCTGCTGATCGGCCTT
165







CGCCAGATAYAC






R
Bpvir_fhaB3_4324R
GCGGATGAACAATTTC
166







CTGTCGAGCGACTATT








AC






LPSA
PA
LPSA
F
Bpvir_LPSA_1087F
GCAGGGCGCCTTGATA
167







TCCGCTATGAG






R
Bpvir_LPSA_1407R
CGGCGCAAGGTTCTCC
168







TGCCACATC






LPSb1
PA
LPSb1
F
Bpvir_LP_Sb1_65F
GTGTGATCGACKGCGT
169







CCTCCCTGAG






R
Bpvir_LPSb1_256R
CAAGCCGCTGATACCC
170







GTGTCGCTG






LPSb2
PA
LPSb2
F
Bpvir_LPSb2_88F
GCGCTTCTCGGTGGGT
171







ACGAAAAACAGC






R
Bpvir_LPSb2_400R
CGAGTCGGCCAAGATC
172







ATTCAGGACCAG






wcbj
PA
wcbj
F
Bpvir_wcbj_252F
CACCTTGACACTGATC
173







CGCGGCGTAG






R
Bpvir_wcbj_508R
CTTCCTTCGCACAACC
174







GAGCAAATACTGAGT








AAATC






ylf
PA
ylf
F
Bpvir_ylf_865F
GATCTTGCGACCGATG
175







CTCAGCGTGTG






R
Bpvir_ylf_1153R
TGGCGCGGGCCAAGG
176







ATATCAGTTC






thai_small_15666
PA
thailandensis (small
F
thai_small_15666_3F_UT1
GCCTTACGCCTTCGGG
177




clade)


ATCG






R
thai_small_15666_342R_UT2
GAATGCGCTCACCCGA
178







TGCT






thai_small_28301
PA
thailandensis (small
F
thai_small_28301_11F_UT1
AGCAAGCCATCCGCGT
179




clade)


CATC






R
thai_small_28301_297R_UT2
CAGGATGCCACCGTTG
180







GTGA






thai_large_48054
PA
thailandensis (large 
F
thai_large_48054_286F
GCCACAGGCATGGTG
181




clade)


AGCAA






R
thai_large_48054_534R
CGGCATTCCCTCAATC
182







ACGAA






thai_all_110625
PA
thailandensis
F
thai_all_110625_212F
CTGCGTCCCAAACCGA
183







CGA






R
thai_all_110625_512R
CCGTCGATGCCACGAA
184







TGAA






humpty_7099
PA
humptydooensis
F
humpty_7099_510F
CCCCAAAAATCCCGCT
185







CTGG






R
humpty_7099_762R
CGGCACAAAGCCGGT
186







GAAAG






humpty_45647
PA
humptydooensis
F
HUMPTY_45647_173F_UT1
TGCCGTTCAGTTGGGC
187







CTTT






R
HUMPTY_45647_390R_UT2
TGCCGCTTCCAACTGC
188







TTCA






humpty_7093
PA
humptydooensis
F
HUMPTY_7093_48F_UT1
GGGCGGGCCAATCTTT
189







TCTG






R
HUMPTY_7093_381R_UT2
TCCGCGATGTGACCAA
190







ACGA






humpty_38764
PA
humptydooensis
F
humpty_38764_44F
TCGGAGATTCCGACGG
191







ACCA






R
humpty_38764_390R
CCGCATATCGCCCTGA
192







CACA






okla_24632
PA
oklahomensis
F
OK_24632_724F_UT1
GGCACCGACGTGCAA
193







AAAGC






R
OK_24632_996R_UT2
GGCCGATCTCGGCACT
194







ACGA






okla_5812
PA
oklahomensis
F
okla_5812_382F
GCGGGGTACGGGCTA
195







ACCAA






R
okla_5812_700R
TCCGTACGCTCGCCAC
196







AACA






okla_3784
PA
oklahomensis
F
okla_3784_454F
GCAAAGGCGCCAGGA
197







AACAA






R
okla_3784_742R
ACCGCCCCGATTGACC
198







AAGT






okla_like_18345
PA
oklahomensis-like
F
OK_like_18345_56F_UT1
TCCAGGCGGTTCTCCG
199







ATTG






R
OK_like_18345_372R_UT2
GTTGCCGATGTCGAGG
200







CACA






okla_like_18342
PA
oklahomensis-like
F
OK_like_18342_361F_UT1
TCTTCGGCGAGCGTCT
201







ACGG






R
OK_like_18342_685R_UT2
CGCGTCGGACGAGTGT
202







CGTA






MSMB175_14005
PA
MSMB175 group
F
MSMB175_14005_422F
GGCTCACACGGCTGGG
203







TCAT






R
MSMB175_14005_746R
ACGGCGTTTTGGACCA
204







CGAG






MSMB175_1868
PA
MSMB175 group
F
MSMB175_1868_197F_UT1
CCGCCTACTGGTGGCA
205







GGTG






R
MSMB175_1868_480R_UT2
GCCAGTCCCGGGAAG
206







GAGTG






MSMB175_8900
PA
MSMB175 group
F
MSMB175_8900_29F_UT1
GCTCATCCTGCCAGGC
207







CAGT






R
MSMB175_8900_345R_UT2
GATACCCACCGCCGGA
208







ACCT






MSMB175_9798
PA
MSMB175 group
F
MSMB175_9798_517F_UT1
AGCGGCGGATTATGG
209







GCACT






R
MSMB175_9798_782R_UT2
ACGCTGGGGCTGTTTT
210







GCAG






MSMB264_34074
PA
MSMB264 group
F
MSMB264_34074_554F
CGCCCTTCGAGCTTGC
211







TTCC






R
MSMB264_34074_778R
CCGCAACAGGTGGCTT
212







CTGAC






MSMB264_4163
PA
MSMB264 group
F
MSMB264_4163_252F
CGTTGCCCCCGCCCAC
213







GTAG






R
MSMB264_4163_596R
CCGTGTGGCGCGTCCT
214







CCAT






vietnam_61292
PA
vietnamiensis
F
vietnam_61292_183F
TGGGCTCATCCTCGCA
215







AAGC






R
vietnam_61292_527R
ACGCGCTCGGTGGAA
216







AACAG






vietnam_98057
PA
vietnamiensis
F
vietnam_98057_111F
TCACACCATGGGCTCC
217







GAGA






R
vietnam_98057_460R
CGGGCGGGTAGACGA
218







GTTCC






vietnam_226017
PA
vietnamiensis
F
vietnam_226017_33F_UT1
ACCACGAGTGTGTGCG
219







GCATT






R
vietnam_226017_285R_UT2
GCGCTCGATGGTTCCC
220







GAAG






ubon_small_102920
PA
ubonensis (small
F
ubon_small_102920_511F
CTTGCCTTCCAGGCGC
221




clade)


ACAT






R
ubon_small_102920_802R
TGCCAAGCGGAAGCTC
222







CTTG






ubon_small_111449
PA
ubonensis (small
F
ubon_small_111449_167F_UT
GCCGTGTCCGCATGAT
223




clade)

1
CCTC






R
ubon_small_111449_431R_U
CGCTCCAGTGCGTTGT
224






T2
CGAG






ubon_large_1438777
PA
ubonensis (large
F
ubon_large_41F_1438777_BH
CACTGTTCGCATCGGT
225




clade)

_RP
ATTC






R
ubon_large_240R_1438777_B
CTYGCCGTGTCCGTCA
226






H_RP
CGACAAG






ubon_all_1328624
PA
ubonensis
F
ubon_all_1328624_220F
GGCGCCTTCTGGTGGT
227







CCTT






R
ubon_all_1328624_563R
TGGCTTTGCGACCAGT
228







CGTG






cepacia_1208120
PA
cepacia-complex
F
cepacia_1208120_1F
ATGGCAARGATTCTKG
229







TRG






R
cepacia_1208120_311R
TTCACGATCCAGCCCT
230







T
















TABLE 5







Primers for detecting the presence of nucleic acids from Yersinia.



















SEQ



Assay
Target species/



ID


Assay name
Type
gene

primer name
sequence (5′->3′)
NO:





Ypestis_
PA

Y. pestis

F
Yp & NN1_F
AACAAGCTAAAACCGAACAA
231


LPQY01000176.1_7


R
Yp & NN1_R
ATAGCCTCAACTGCTTTTTG
232





AGJT01000065.1_0_338
PA

Y. pestis

F
Yp & NN11_F
CAGTACCGACAAAACTTC
233





R
Yp & NN11_R
TTTACTACTCTGAAAACGAG
234





FAUR01000053.1_96407_
PA

Y. pestis

F
Yp & NN12_F
GCACTACAAATTTAAATCCC
235


96884


R
Yp & NN12_R
GTCGATTATCAACCTCTATG
236





Wagner_Yp_pla_Forward
PA

Y. pestis

F
Yp & NN2_F
GAAAGGAGTGCGGGTAATAGG
237







TT






R
Yp & NN2_R
GGCCTGCAAGTCCAATATATGG
238





YpPGM_8-158
PA

Virulence locus

F
YpPGM_8F
TTAATATCCCGGCACTCATA
239




PGM
R
YpPGM_158R
TCCTTAACTGAATAAGTGCTCA
240





YpPGM_31-205
PA

Virulence locus

F
YpPGM_31Fv2
TTTAATGAACGGTGCCTAG
241




PGM
R
YpPGM_205Rv2
GTCTGCGTTTCTCCAGTAT
242





Yp-p1202_42780-43194
PA
Drug Resistance
F
Yp-p1202_
TCTGGCCTGCTAAATAAAAACG
243




plasmid p1P1202

42780F-UT1
AACC






R
Yp-p1202_
CAGGCCTCAGCATTTTATTATG
244






43194R-UT2
GTGAT






Yp-p1202_126386-126750
PA
Drug Resistance
F
Yp-p1202_
GGGGCGGATACCTTCACCTATG
245




plasmid p1P1202

126386F-UT1







R
Yp-p1202_
CTGGGGTTCAGTCTGGACGAGA
246






126750R-UT2
T






Yp-p1202_156402-156711
PA
Drug Resistance
F
Yp-p1202_
ACCATCCGGCGCTAAATCGTC
247




plasmid p1P1202

156402F2-UT1







R
Yp-p1202_
GAAATGCGCCTGGTAAGCAGA
248






156711R-UT2
GT






YpCO92_NC_003143_113190
SV
near neighbor
F
Yp & NN4_F
ACTCGGGATACTCCATACTG
249




species
R
Yp & NN4_R
CGAAAGCAGTGGTCAATC
250





YpCO92_NC_003143_161621
SV
near neighbor
F
Yp & NN5_F
CATGCGCTTTACGTTATATG
251




species
R
Yp & NN5_R
GCGTTCTGCACTCTGTCT
252





YpCO92_NC_003143_152213
SV
near neighbor
F
Yp & NN6_F
AGCGACTTCCGTGATAAAG
253




species
R
Yp & NN6_R
ACTCAGGATACCGTGTGGT
254





YpCO92_NC_003143_129539
SV
near neighbor
F
Yp & NN7_F
TTCACGATAATCCCCTAATG
255




species
R
Yp & NN7_R
TTCTGTGCTCTGGCTGATA
256





YpCO92_NC_003143_91203
SV
near neighbor
F
Yp & NN8_F
ATTATCTGTGCCCCTTCTTT
257




species
R
Yp & NN8_R
GGAGTGGATGCCACTAAAC
258





YpCO92_NC_003143_121812
SV
near neighbor
F
Yp & NN9_F
CCTCACACAACAATTCACTG
259




species
R
Yp & NN9_R
TTTTTCCGACAAATTTAAGG
260





Yp_AL590842.1_RX_SNP
SV
near neighbor
F
Yp & NN10_F
AGCATGAAGGTTGCTAAAAG
261




species
R
Yp & NN10_R
GGTGACTTCAAAACCGTTAG
262





Yentero_FR729477.2_1623
PA

Y. 

F
Yp & NN3_F
GATGCTTCTGCTATCAGSTT
263





enterocoliticus

R
Yp & NN3_R
GTGTGRCTTTGAASTCTTGT
264
















TABLE 6







Primers for detecting the presence of nucleic


acids from Francisella.















Target



SEQ



Assay
species/

primer
sequence
ID


Assay name
Type
gene

name
(5′->3′)
NO:





Ftularensis_
PA

F.

F
Ft &
GAAGTGGCTC
265


CP000915.1_


tularensis


NN2_F
ATGTTAGAGG



1782


R
Ft &
AGCGAGCCTA
266






NN2_R
TATGTAACCA






Ftularensis_
PA

F.

F
Ft &
TTTAATGTCC
267


CP000915.1_


tularensis


NN3_F
GTCAACCTCT



731


R
Ft &
ACGAGTTTGT
268






NN3_R
GAGTCGCTAT






Ft_dup_
PA

F.

F
Ft &
TGTTACGTAC
269


CP000915.1_


tularensis


NN8_F
AGGCTGTCAA



197


R
Ft &
ATCATATCCC
270






NN8_R
GTAGCACAAG






FtA1
SNP
FtA1 Clade
F
9F_
CATAACCCAT
271






FtA1_
CGCAATATCT







UT1







R
246R_
AAATTATCTG
272






FtA1_
TAGCGGCAAA







UT2







FtA2
SNP
FtA2 Clade
F
34F_
GTGTCCAACG
273






FtA2_
AAACCATAAT







UT1







R
169R_
TTTGGTTGAT
274






FtA2_
TCTGTCAGTG







UT2







FtB
SNP
FtB Clade
F
28F_
AAGCTTAACT
275






FtB_
GGTGATTGGA







UT1







R
173R_
CGCCTAACAT
276






FtB_
CTTATCTGCT







UT2







FtA
SNP
FtA Clade
F
14F_
GGGTGATGCA
277






FtA_
GTAGAGAAAA







UT1







R
207R_
TACCAGATGA
278






FtA_
ACGAATAGCC







UT2







FtLVS_
SV
near
F
Ft &
ATCAAGCTCA
279


AM233362_

neighbor

NN9_F
TCTTCAAAGC



1646546

species
R
Ft &
AACCATGTTC
280






NN9_R
AGATCCAAAA






FtLVS_
SV
near
F
Ft &
TACCTCTGCC
281


AM233362_

neighbor

NN10_F
AAAAATTCAT



1643765

species
R
Ft &
GGCATACTCA
282






NN10_R
AGGTAGTGGT






FtLVS_
SV
near
F
Ft &
TCTTTGGTAG
283


AM233362_

neighbor

NN11_F
CTTGCTGACT



1562618

species
R
Ft &
CAGACGACAC
284






NN11_R
TTGGCTTATT






Ftnovicida_
PA

F.

F
Ft &
GGTAGGATAA
285


CP009607.1


tularensis


NN1_F
CTACCAAG





spp.
R
Ft &
GTCATGAGTT
286





Novicida


NN1_R
TTACCAATAC








TC






Fphilom_
PA

F.

F
Ft &
CTTATGCAGC
287


CP009444.1_


philomiragia


NN6_F
AAGAGGAACT



569


R
Ft &
ATACACCGGG
288






NN6_R
ATAGGTTTCT






Fphilom_
PA

F.

F
Ft &
CTGATGGAAG
289


CP009444.1_


philomiragia


NN7_F
AGAGTTCGAG



285


R
Ft &
GTAGATATAA
290






NN7_
TCAGCGCCAC







Rv2







Fnoatunensis_
PA

F.

F
Ft &
CGGTAAGAAT
291


CP003402.1_


noatunensis


NN4_F
ACGACCAGAG



1749


R
Ft &
AGAGGATTTC
292






NN4_R
TTCCTCCTTG






Fnoatunensis_
PA

F.

F
Ft &
AATTCTACAA
293


CP003402.1_


noatunensis


NN5_F
GCACCTGGAA



424


R
Ft &
TCCTATTAAA
294






NN5_R
AGCGCCATAG
















TABLE 7







Primers for Sequence Control.
















For-


Re-





Target
ward
Forward
SEQ
verse
Reverse
SEQ


Assay
species/
primer
sequence
ID
primer
sequence
ID


name
gene
name
(5′->3′)
NO
name
5′->3′)
NO





IPSC-
se-
UT1-
GGGCGGAC
295
UT2-
GCCGGGAT
298


1
quencing
IPSC-
GAAAACCC

IPSC-
GCCTTACC




control
f1
TTGAGCAC

r1
TAGACGCA






AG


ATGA






IPSC-
se-
UT1-
GCTCGGGC
296
UT2-
GCCGGGAT
299


1
quencing
IPSC-
GGACGAAA

IPSC-
GCCTTACC




control
f1v2
ACCCTTGA

r1
TAGACGCA









ATGA






IPSC-
se-
UT1-
GCGGCAGC
297
UT2-
CGAGTTCC
300


2
quencing
IPSC-
CGTTGAGG

IPSC-
GTCCGGTT




control
f2
CAAAAGTG

r2
AAGCGTGA






ATAC


CAGTC





Forward sequence w/UT: ACCCAACTGAATGGAGC (SEQ ID NO: 301) at 5′ of the forward sequence, e.g., UT1-IPSC-f1:


ACCCAACTGAATGGAGCGGGCGGACGAAAACCCTTGAGCACAG (SEQ ID NO: 302)


Reverse sequence w/UT: ACGCACTTGACTTGTCTTC (SEQ ID NO: 303) at 5′ of the reverse sequence, e.g., UT2-IPSC-r1:


ACGCACTTGACTTGTCTTCGCCGGGATGCCTTACCTAGACGCAATGA (SEQ ID NO: 304)













TABLE 8







Preparation of Primer Mixture for detecting the presence of nucleic acids from Burkholderia.




















uM in mix
Volume
starting







Desired
stock
needed
primer
Recalculated






final
(final
in Mix
conc. to
final conc. of





Start
uM
uM ×
stock
add in mix
primer in


Assay name
Primer
Target
(uM)
in rxn.
5.56)
(uL)
stock
a single rxn.


















TTS1_BPSS1407
BpAmpSeq_1_F
TTS1
100
0.10
0.56
0.03
5.0
0.10


TTS1_BPSS1407
BpAmpSeq_1_R
TTS1
100
0.10
0.56
0.03
5.0
0.10


LXCC01000141.1_39296_39817
BpAmpSeq_3_F

pseudomallei

100
0.20
1.11
0.05
9.9
0.20


LXCC01000141.1_39296_39817
BpAmpSeq_3_R

pseudomallei

100
0.20
1.11
0.05
9.9
0.20


LXBY01000087.1_75760_76751
BpAmpSeq_4_F

pseudomallei

100
0.20
1.11
0.05
9.9
0.20


LXBY01000087.1_75760_76751
BpAmpSeq_4_R

pseudomallei

100
0.20
1.11
0.05
9.9
0.20


LXCD01000002.1_99652_100245
BpAmpSeq_5_F

pseudomallei

100
0.40
2.22
0.10
19.8
0.40


LXCD01000002.1_99652_100245
BpAmpSeq_5_R

pseudomallei

100
0.40
2.22
0.10
19.8
0.40


LXCE01000123.1_34220_34747
BpAmpSeq_6_F

pseudomallei

100
0.40
2.22
0.10
19.8
0.40


LXCE01000123.1_34220_34747
BpAmpSeq_6_R

pseudomallei

100
0.40
2.22
0.10
19.8
0.40


LWWC01000187.1_18
BpAmpSeq_8_F

pseudomallei mallei

100
0.30
1.67
0.08
14.9
0.30


LWWC01000187.1_18
BpAmpSeq_8_R

pseudomallei mallei

100
0.30
1.67
0.08
14.9
0.30


LWWB01000125.1_17183_17602
BpAmpSeq_10_F

pseudomallei mallei

100
0.20
1.11
0.05
9.9
0.20


LWWB01000125.1_17183_17602
BpAmpSeq_10_R

pseudomallei mallei

100
0.20
1.11
0.05
9.9
0.20


LXAY1000367.1_0_640
BpAmpSeq_11_F

pseudomallei mallei

100
0.10
0.56
0.03
5.0
0.10


LXAY01000367.1_0_640
BpAmpSeq_11_R

pseudomallei mallei

100
0.10
0.56
0.03
5.0
0.10


LWVY01000190.1_17226_17689
BpAmpSeq_12_F

pseudomallei mallei

100
0.40
2.22
0.10
19.8
0.40


LWVY01000190.1_17226_17689
BpAmpSeq_12_R

pseudomallei mallei

100
0.40
2.22
0.10
19.8
0.40


LXAD01000059.1_24760_25075
BpAmpSeq_13_F

pseudomallei mallei

100
0.30
1.67
0.08
14.9
0.30


LXAD01000059.1_24760_25075
BpAmpSeq_13_R

pseudomallei mallei

100
0.30
1.67
0.08
14.9
0.30


NC_006350_2289827
BpAmpSeq_16_F

pseudomallei complex

100
0.40
2.22
0.10
19.8
0.40




SNP


NC_006350_2289827
BpAmpSeq_16_R

pseudomallei complex

100
0.40
2.22
0.10
19.8
0.40




SNP


NC_006350_133027
BpAmpSeq_18_F

cepacia complex

100
0.20
1.11
0.05
9.9
0.20




SNPs


NC_006350_133027
BpAmpSeq_18_R

cepacia complex

100
0.20
1.11
0.05
9.9
0.20




SNPs


NC_006350_2248145-2248193
BpAmpSeq_19_F
Bpc MSS
100
0.40
2.22
0.10
19.8
0.40


NC_006350_2248145-2248193
BpAmpSeq_19_R
Bpc MSS
100
0.40
2.22
0.10
19.8
0.40


NC_006350_988041-988089
BpAmpSeq_20_F
Bpc MSS
100
0.20
1.11
0.05
9.9
0.20


NC_006350_988041-988089
BpAmpSeq_20_R
Bpc MSS
100
0.20
1.11
0.05
9.9
0.20


Bm_11589
BpAmpSeq_21_F

mallei

100
0.40
2.22
0.10
19.8
0.40


Bm_11589
BpAmpSeq_21_R

mallei

100
0.40
2.22
0.10
19.8
0.40


Bm_11767
BpAmpSeq_22_F

mallei

100
0.40
2.22
0.10
19.8
0.40


Bm_11767
BpAmpSeq_22_R

mallei

100
0.40
2.22
0.10
19.8
0.40


PBP3-170-505
BpAmpSeq_24_F
pbp3
100
0.20
1.11
0.05
9.9
0.20


PBP3-170-505
BpAmpSeq_24_R
pbp3
100
0.20
1.11
0.05
9.9
0.20


K9penA378-529
BpAmpSeq_26_F
penA
100
0.10
0.56
0.03
5.0
0.10


K9penA378-529
BpAmpSeq_26_R
penA
100
0.10
0.56
0.03
5.0
0.10


K9penA575-761
BpAmpSeq_27_F
penA
100
0.10
0.56
0.03
5.0
0.10


K9penA575-761
BpAmpSeq_27_R
penA
100
0.10
0.56
0.03
5.0
0.10


K9penA949-1172
BpAmpSeq_28_F
penA
100
0.10
0.56
0.03
5.0
0.10


K9penA949-1172
BpAmpSeq_28_R
penA
100
0.10
0.56
0.03
5.0
0.10


IPSC
IPSC-f1v2
IPSC
20
0.05
0.28
0.06
12.4
0.05


IPSC
IPSC-r1
IPSC
20
0.05
0.28
0.06
12.4
0.05





Volume of primer mix in a single rxn: 4.5 uL.


Desired volume of primer mix stock: 891 uL.
















TABLE 10







Preparation of Primer Mixture for detecting the presence of nucleic acids from SOP


for Bacillus, Yersinia, and Francisella UT-AmpSeq PCR and Bead Cleanup



















Volume

uM in

Desired

Re-





of primer

mix
Volume
volume of
How much
calculated





mix in
Desired
stock
needed
Primer
starting
final conc.





a single
final
(final
in Mix
mix
primer conc.
Of primer




Start
rxn
uM in
uM ×
stock
stock
to add in mix
in a single


Primer name
Assay name
(uM)
(uL)
rxn.
5.56)
(uL)
(uL)
stock
rxn.



















Ba-specific-1F_UT1
plcR
100
4.5
0.1
0.56
0.03
891
5
0


Ba-specific-1R_UT2
plcR
100

0.1
0.56
0.03

5
0


Ba-specific-3F_UT1
CP008853.1_5309
500

0.2
1.11
0.01

2
0


Ba-specific-3R_UT2
CP008853.1_5309
500

0.2
1.11
0.01

2
0


Ba-specific-5F_UT1
CP008853.1_5316
500

0.2
1.11
0.01

2
0


Ba-specific-5R_UT2
CP008853.1_5316
500

0.2
1.11
0.01

2
0


Ba-specific-6F_UT1
CP012725.1_3629
500

1.6
8.9
0.08

15.9
0


Ba-specific-6R_UT2
CP012725.1_3629
500

1.6
8.9
0.08

15.9
0


Ba-specific-8F_UT1
CP012725.1_5103
100

0.1
0.56
0.03

5
0


Ba-specific-8R_UT2
CP012725.1_5103
100

0.1
0.56
0.03

5
0


Ba-specific-9F_UT1
CP012725.1_5107
100

0.1
0.56
0.03

5
0


Ba-specific-9R_UT2
CP012725.1_5107
100

0.1
0.56
0.03

5
0


Ba-specific-11F_UT1
JSZQ01000034.1_220
100

0.1
0.56
0.03

5
0


Ba-specific-11R_UT2
JSZQ01000034.1_220
100

0.1
0.56
0.03

5
0


Ba-specific-12F_UT1
JSZS01000036.15
100

0.1
0.56
0.03

5
0


Ba-specific-12R_UT2
JSZS01000036.15
100

0.1
0.56
0.03

5
0


Ba-specific-14F_UT1
LGCC01000010.1_232
500

0.4
2.22
0.02

4
0


Ba-specific-14R_UT2
LGCC01000010.1_232
500

0.4
2.22
0.02

4
0


Ba-specific-16F_UT1
LGCC01000048.1_280
100

0.1
0.56
0.03

5
0


Ba-specific-16R_UT2
LGCC01000048.1_280
100

0.1
0.56
0.03

5
0


Ba-specific-20F_UT1
NN_LOMU01000090.1_49
500

1
5.56
0.05

9.9
0


Ba-specific-20R_UT2
NN_LOMU01000090.1_49
500

1
5.56
0.05

9.9
0


Ba-specific-22F_UT1
NN_LOQC01000013.1_3
500

0.2
1.11
0.01

2
0


Ba-specific-22Rv2_UT2
NN_LOQC01000013.1_3
500

0.2
1.11
0.01

2
0


pX01_113F_UT1
pX01
500

0.8
4.45
0.04

7.9
0


pX01-315Rv2_UT2
pX01
500

0.8
4.45
0.04

7.9
0


pX02_101F_UT1
pX02
100

0.1
0.56
0.03

5
0


pX02_269R_UT2
pX02
100

0.1
0.56
0.03

5
0


gyrA_28Fv2_UT1
gyrA
50

0.05
0.28
0.03

5
0


gyrA_182Rv2_UT2
gyrA
50

0.05
0.28
0.03

5
0


parC_1F_UT1
parC
100

0.05
0.28
0.01

2.5
0


parC_197R_UT2
parC
100

0.05
0.28
0.01

2.5
0


gyrB_8F_UT1
gyrB
100

0.1
0.56
0.03

5
0


gyrB_194R_UT2
gyrB
100

0.1
0.56
0.03

5
0


801F_pagAv3_UT1
pagAv3
100

0.1
0.56
0.03

5
0


1042R_pagAv3_UT2
pagAv3
100

0.1
0.56
0.03

5
0


rpoB_29F_UT1
rpoB
50

0.05
0.28
0.03

5
0


rpoB_196R_UT2
rpoB
50

0.05
0.28
0.03

5
0


AA_2502_UT1
AA_2502
500

0.8
4.45
0.04

7.9
0


AA_2502_UT2
AA_2502
500

0.8
4.45
0.04

7.9
0


AA_2503v2_UT1
AA_2503
500

0.8
4.45
0.04

7.9
0


AA_2503_UT2
AA_2503
500

0.8
4.45
0.04

7.9
0


Ba&NN32_F
Ba_AmesAnc_4669915
100

0.1
0.56
0.03

5
0


Ba&NN32_R
Ba_AmesAnc_4669915
100

0.1
0.56
0.03

5
0


Ba&NN33_F
Ba_AmesAnc_4001578
100

0.05
0.28
0.01

2.5
0


Ba&NN33_R
Ba_AmesAnc_4001578
100

0.05
0.28
0.01

2.5
0


Ba&NN37_F
Ba_AmesAnc_1069024
500

0.2
1.11
0.01

2
0


Ba&NN37_R
Ba_AmesAnc_1069024
500

0.2
1.11
0.01

2
0


Ba&NN38_F
Ba_AmesAnc_3668548
500

0.2
1.11
0.01

2
0


Ba&NN38_R
Ba_AmesAnc_3668548
500

0.2
1.11
0.01

2
0


Ba&NN40_F
Ba_AmesAnc_371913
500

0.2
1.11
0.01

2
0


Ba&NN40_R
Ba_AmesAnc_371913
500

0.2
1.11
0.01

2
0


Ba&NN41_F
Ba_AmesAnc_999035
100

0.05
0.28
0.01

2.5
0


Ba&NN41_R
Ba_AmesAnc_999035
100

0.05
0.28
0.01

2.5
0


ChimpKiller_9F
ChimpKiller_9-159
100

0.1
0.56
0.03

5
0


ChimpKiller_159R
ChimpKiller_9-159
100

0.1
0.56
0.03

5
0


ChimpKiller_91F
ChimpKiller_91-320
500

0.8
4.45
0.04

7.9
0


ChimpKiller_320R
ChimpKiller_91-320
500

0.8
4.45
0.04

7.9
0


ChimpKiller_481F
ChimpKiller_481-698
500

0.8
4.45
0.04

7.9
0


ChimpKiller_698R
ChimpKiller_481-698
500

0.8
4.45
0.04

7.9
0


Yp&NN1_F
Ypestis_LPQY01000176.1_7
500

0.2
1.11
0.01

2
0


Yp&NN1_R
Ypestis_LPQY01000176.1_7
500

0.2
1.11
0.01

2
0


Yp&NN2_F
Wagner_Yp_pla_Forward
100

0.1
0.56
0.03

5
0


Yp&NN2_R
Wagner_Yp_pla_Forward
100

0.1
0.56
0.03

5
0


Yp&NN3_F
Yentero_FR729477.2_1623
500

0.2
1.11
0.01

2
0


Yp&NN3_R
Yentero_FR729477.2_1623
500

0.2
1.11
0.01

2
0


Yp&NN4_F
YpCO92_NC_003143_113190
500

0.4
2.22
0.02

4
0


Yp&NN4_R
YpCO92_NC_003143_113190
500

0.4
2.22
0.02

4
0


Yp&NN5_F
YpCO92_NC_003143_161621
100

0.05
0.28
0.01

2.5
0


Yp&NN5_R
YpCO92_NC_003143_161621
100

0.05
0.28
0.01

2.5
0


Yp&NN6_F
YpCO92_NC_003143_152213
100

0.05
0.28
0.01

2.5
0


Yp&NN6_R
YpCO92_NC_003143_152213
100

0.05
0.28
0.01

2.5
0


Yp&NN7_F
YpCO92_NC_003143_129539
100

0.1
0.56
0.03

5
0


Yp&NN7_R
YpCO92_NC_003143_129539
100

0.1
0.56
0.03

5
0


Yp&NN8_F
YpCO92_NC_003143_91203
100

0.05
0.28
0.01

2.5
0


Yp&NN8_R
YpCO92_NC_003143_91203
100

0.05
0.28
0.01

2.5
0


Yp&NN9_F
YpCO92_NC_003143_121812
100

0.1
0.56
0.03

5
0


Yp&NN9_R
YpCO92_NC_003143_121812
100

0.1
0.56
0.03

5
0


Yp&NN10_F
Yp_AL590842.1_RX_SNP
50

0.05
0.28
0.03

5
0


Yp&NN10_R
Yp_AL590842.1_RX_SNP
50

0.05
0.28
0.03

5
0


Yp&NN11_F
AGJT01000065.1_0_338
100

0.1
0.56
0.03

5
0


Yp&NN11_R
AGJT01000065.1_0_338
100

0.1
0.56
0.03

5
0


Yp&NN12_F
FAUR01000053.1_96407_96884
100

0.1
0.56
0.03

5
0


Yp&NN12_R
FAUR01000053.1_96407_96884
100

0.1
0.56
0.03

5
0


YpPGM_8F
YpPGM_8-158
500

0.8
4.45
0.04

7.9
0


YpPGM_158R
YpPGM_8-158
500

0.8
4.45
0.04

7.9
0


YpPGM_31Fv2
YpPGM_31-205
50

0.05
0.28
0.03

5
0


YpPGM_205Rv2
YpPGM_31-205
50

0.05
0.28
0.03

5
0


Yp-p1202_42780F-UT1
Yp-p1202_42780-43194
500

0.2
1.11
0.01

2
0


Yp-p1202_43194R-UT2
Yp-p1202_42780-43194
500

0.2
1.11
0.01

2
0


Yp-p1202_126386F-UT1
Yp-p1202_126386-126750
500

0.2
1.11
0.01

2
0


Yp-p1202_126750R-UT2
Yp-p1202_126386-126750
500

0.2
1.11
0.01

2
0


Yp-p1202_156402F2-UT1
Yp-p1202_156402-156711
500

0.2
1.11
0.01

2
0


Yp-p1202_156711R-UT2
Yp-p1202_156402-156711
500

0.2
1.11
0.01

2
0


Ft&NN1_F
Ftnovicida_CP009607.1
500

0.2
1.11
0.01

2
0


Ft&NN1_R
Ftnovicida_CP009607.1
500

0.2
1.11
0.01

2
0


Ft&NN2_F
Ftularensis_CP000915.1_1782
100

0.1
0.56
0.03

5
0


Ft&NN2_R
Ftularensis_CP000915.1_1782
100

0.1
0.56
0.03

5
0


Ft&NN3_F
Ftularensis_CP000915.1_731
500

1.6
8.9
0.08

15.9
0


Ft&NN3_R
Ftularensis_CP000915.1_731
500

1.6
8.9
0.08

15.9
0


Ft&NN4_F
Fnoatunensis_CP003402.1_1749
500

0.2
1.11
0.01

2
0


Ft&NN4_R
Fnoatunensis_CP003402.1_1749
500

0.2
1.11
0.01

2
0


Ft&NN5_F
Fnoatunensis_CP003402.1_424
500

0.2
1.11
0.01

2
0


Ft&NN5_R
Fnoatunensis_CP003402.1_424
500

0.2
1.11
0.01

2
0


Ft&NN6_F
Fphilom_CP009444.1_569
500

0.2
1.11
0.01

2
0


Ft&NN6_R
Fphilom_CP009444.1_569
500

0.2
1.11
0.01

2
0


Ft&NN7_F
Fphilom_CP009444.1_285
500

0.2
1.11
0.01

2
0


Ft&NN7_Rv2
Fphilom_CP009444.1_285
500

0.2
1.11
0.01

2
0


Ft&NN8_F
Ft_dup_CP000915.1_197
100

0.05
0.28
0.01

2.5
0


Ft&NN8_R
Ft_dup_CP000915.1_197
100

0.05
0.28
0.01

2.5
0


Ft&NN9_F
FtLVS_AM233362_1646546
100

0.05
0.28
0.01

2.5
0


Ft&NN9_R
FtLVS_AM233362_1646546
100

0.05
0.28
0.01

2.5
0


Ft&NN10_F
FtLVS_AM233362_1643765
100

0.1
0.56
0.03

5
0


Ft&NN10_R
FtLVS_AM233362_1643765
100

0.1
0.56
0.03

5
0


Ft&NN11_F
FtLVS_AM233362_1562618
100

0.1
0.56
0.03

5
0


Ft&NN11_R
FtLVS_AM233362_1562618
100

0.1
0.56
0.03

5
0


9F_FtA1_UT1
FtA1
100

0.1
0.56
0.03

5
0


246R_FtA1_UT2
FtA1
100

0.1
0.56
0.03

5
0


34F_FtA2_UT1
FtA2
100

0.1
0.56
0.03

5
0


169R_FtA2_UT2
FtA2
100

0.1
0.56
0.03

5
0


28F_FtB_UT1
FtB
100

0.1
0.56
0.03

5
0


173R_FtB_UT2
FtB
100

0.1
0.56
0.03

5
0


14F_FtA_UT1
FtA
100

0.1
0.56
0.03

5
0


207R_FtA_UT2
FtA
100

0.1
0.56
0.03

5
0


IPSC-f2
IPSC
20

0.03
0.14
0.03

6.2
0


IPSC-r2
IPSC
20

0.03
0.14
0.03

6.2
0





580.6 uL total volume of primers


310.4 uL of 1x TE to add to bring up to desired volume of primer mix stock


891.0 Total (uL)













TABLE 11








Burkholderia primers and primers with Universal Tail (UT).



The UT sequence is underlined.














Target


SEQ

SEQ


Assay
species/


ID

ID


name
gene


NO:

NO:







Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



TTS1_
TTS1
BpAmpSeq_1
TCGTCGTCACCGGGATGGTC
 61

ACCCAACTGAATGGAGCTCGTCG

307


BPSS1

_F


TCACCGGGATGGTC



407

Reverse
Reverse sequence







primer name
(5′->3′)

Reverse sequence w/UT





BpAmpSeq_1
GGCCTTTGCCCGCATACTCG
 62

ACGCACTTGACTTGTCTTCGGCC

308




_R


TTTGCCCGCATACTCG








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



LXCCO

pseudomallei

BpAmpSeq_3
TCGCAWGAAGTGCGTTGCC
 63

ACCCAACTGAATGGAGCTCGCA

309


100014

_F
G

WGAAGTGCGTTGCCG



1.1_392

Reverse
Reverse sequence





96_398

primer name
(5′->3′)

Reverse sequence w/UT



17

BpAmpSeq_3
GCCGCTTGCGAAGCGATGAT
 64

ACGCACTTGACTTGTCTTCGCCG

310




_R


CTTGCGAAGCGATGAT








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



LXBY0

pseudomallei

BpAmpSeq_4
CGCGCTTGCCCAACTACCAG
 65

ACCCAACTGAATGGAGCCGCGCT

311


100008

_F


TGCCCAACTACCAG



7.1_757

Reverse
Reverse sequence





60_767

primer name
(5′->3′)

Reverse sequence w/UT



51

BpAmpSeq_4
GCGCAACGGTGCGAGACAA
 66

ACGCACTTGACTTGTCTTCGCGC

312




_R
T

AACGGTGCGAGACAAT








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



LXCD0

pseudomallei

BpAmpSeq_5
AATCCATGCATGTCGYGCCC
 67

ACCCAACTGAATGGAGCAATCCA

313


100000

_F


TGCATGTCGYGCCC



2.1_996

Reverse
Reverse sequence





52_100

primer name
(5′->3′)

Reverse sequence w/UT



245

BpAmpSeq_5
GCGATCGCTCAACGGGCTTC
 68

ACGCACTTGACTTGTCTTCGCGA

314




_R


TCGCTCAACGGGCTTC








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



LXCE0

pseudomallei

BpAmpSeq_6
TCGCATTTGCAYACGCTCCC
 69

ACCCAACTGAATGGAGCTCGCAT

315


100012

_F


TTGCAYACGCTCCC



3.1_342

Reverse
Reverse sequence





20_347

primer name
(5′->3′)

Reverse sequence w/UT



47

BpAmpSeq_6
AGTGCGCAAACTTGGCGAG
 70

ACGCACTTGACTTGTCTTCAGTG

316




_R
G

CGCAAACTTGGCGAGG








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



LWWC

pseudomallei

BpAmpSeq_8
CCTTTGCGGCAAGCGTCGAA
 81

ACCCAACTGAATGGAGCCCTTTG

317


010001

mallei

_F


CGGCAAGCGTCGAA



87.1 18

Reverse
Reverse sequence







primer name
(5′->3′)

Reverse sequence w/UT





BpAmpSeq_8
GAGCCAACGCACATGGACG
 82

ACGCACTTGACTTGTCTTCGAGC

318




_R
G

CAACGCACATGGACGG








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



LWWB

pseudomallei

BpAmpSeq_1
CCAGTCGGGCCGGGAAAAA
 83

ACCCAACTGAATGGAGCCCAGTC

319


010001

mallei

0_F
C

GGGCCGGGAAAAAC



25.1_17

Reverse
Reverse sequence





183_17

primer name
(5′->3′)

Reverse sequence w/UT



602

BpAmpSeq_1
GGCGGCAAAAGCGTCGATG
 84

ACGCACTTGACTTGTCTTCGGCG

320




0_R
A

GCAAAAGCGTCGATGA








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



LXAY0

pseudomallei

BpAmpSeq_1
GCCGGAACCGTCGAGCATT
 85

ACCCAACTGAATGGAGCGCCGG

321


100036

mallei

1_F
G

AACCGTCGAGCATTG



7.1_0_6

Reverse
Reverse sequence





40

primer name
(5′->3′)

Reverse sequence w/UT





BpAmpSeq_1
TGGATTCGACTGCCTCCGCT
 86

ACGCACTTGACTTGTCTTCTGGA

322




1_R


TTCGACTGCCTCCGCT








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



LWVY

pseudomallei

BpAmpSeq_1
TCGATATCCGCCGTCTCGCC
 87

ACCCAACTGAATGGAGCTCGATA

323


010001

mallei

2_F


TCCGCCGTCTCGCC



90.1_17

Reverse
Reverse sequence





226_17

primer name
(5′->3′)

Reverse sequence w/UT



689

BpAmpSeq_1
ATGTGTCGGTGGGCTTCGGT
 88

ACGCACTTGACTTGTCTTCATGT

324




2_R


GTCGGTGGGCTTCGGT








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



LXAD0

pseudomallei

BpAmpSeq_1
GAAAGGCGATGTGCCGAGC
 89

ACCCAACTGAATGGAGCGAAAG

325


100005

mallei

3_F
G

GCGATGTGCCGAGCG



9.1_247

Reverse
Reverse sequence





60_250

primer name
(5′->3′)

Reverse sequence w/UT



75

BpAmpSeq_1
TTCGGAGAAGCGCCAAACG
 90

ACGCACTTGACTTGTCTTCTTCGG

326




3_R
C

AGAAGCGCCAAACGC








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



NC_00

pseudomallei

BpAmpSeq_1
GCCAGCGCATCCACCAACAT
109

ACCCAACTGAATGGAGCGCCAGC

327


6350_2
complex SNP
6_F


GCATCCACCAACAT



289827

Reverse
Reverse sequence







primer name
(5′->3′)

Reverse sequence w/UT





BpAmpSeq_1
AGAGGAAGAAGGGCGAGGC
110

ACGCACTTGACTTGTCTTCAGAG

328




6_R
G

GAAGAAGGGCGAGGCG








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



NC_00

cepacia

BpAmpSeq_1
CGCGCARYTCGTCGTCCTCG
111

ACCCAACTGAATGGAGCCGCGCA

329


6350_1
complex
8_F


RYTCGTCGTCCTCG



33027
SNPs
Reverse
Reverse sequence







primer name
(5′->3′)

Reverse sequence w/UT





BpAmpSeq_1
CGAACCTSGTGCMGGTRCA
112

ACGCACTTGACTTGTCTTCCGAA

330




8_R
G

CCTSGTGCMGGTRCAG








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



NC_00
Bpc MSS
BpAmpSeq_1
CACGTTGCCSGGRAARTACG
113

ACCCAACTGAATGGAGCCACGTT

331


6350_2

9_F


GCCSGGRAARTACG



248145-

Reverse
Reverse sequence





224819

primer name
(5′->3′)

Reverse sequence w/UT



3

BpAmpSeq_1
CCGTCGACAAGATCGCGCTS
114

ACGCACTTGACTTGTCTTCCCGTC

332




9_R


GACAAGATCGCGCTS








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



NC_00
Bpc MSS
BpAmpSeq_2
CAGAACGCGCTRTYCCACG
115

ACCCAACTGAATGGAGCCAGAA

333


6350_9

0_F


CGCGCTRTYCCACG



88041-

Reverse
Reverse sequence





988089

primer name
(5′->3′)

Reverse sequence w/UT





BpAmpSeq_2
TGCCGCGTGATCCATTGCAT
116

ACGCACTTGACTTGTCTTCTGCC

334




0_R


GCGTGATCCATTGCAT








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



Bm_11

mallei

BpAmpSeq_2
AGGGGGTGGTTTCCTGAGTG
117

ACCCAACTGAATGGAGCAGGGG

335


589

1_F
GCGTGAC

GTGGTTTCCTGAGTGGCGTGAC





Reverse
Reverse sequence







primer name
(5′->3′)

Reverse sequence w/UT





BpAmpSeq_2
AGCGGTGTCGACGGGTGGA
118

ACGCACTTGACTTGTCTTCAGCG

336




1_R
AAGGATG

GTGTCGACGGGTGGAAAGGATG








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



Bm_11

mallei

BpAmpSeq_2
ACGGGCGCTTCACGATCTCG
119

ACCCAACTGAATGGAGCACGGG

337


767

2_F
GTGTTC

CGCTTCACGATCTCGGTGTTC





Reverse
Reverse sequence







primer name
(5′->3′)

Reverse sequence w/UT





BpAmpSeq_2
GCGCGGCAGTTCGATCAGG
120

ACGCACTTGACTTGTCTTCGCGC

338




2_R
CATTTG

GGCAGTTCGATCAGGCATTTG








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



PBP3-
pbp3
BpAmpSeq_2
ATCCGCCGTCCCGCCCAGCA
305

ACCCAACTGAATGGAGCATCCGC

339


170-

4_F
ATAG

CGTCCCGCCCAGCAATAG



505

Reverse
Reverse sequence







primer name
(5′->3′)

Reverse sequence w/UT





BpAmpSeq_2
GGGTTCGCCCAGATTTCGTA
306

ACGCACTTGACTTGTCTTCGGGT

340




4_R
GGTGGTGAG

TCGCCCAGATTTCGTAGGTGGTG








AG








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



K9pen
penA
BpAmpSeq_2
CGGTCGCCACAAATTCGCAC
127

ACCCAACTGAATGGAGCCGGTCG

341


A378-

6_F
GCACTC

CCACAAATTCGCACGCACTC



529

Reverse
Reverse sequence







primer name
(5′->3′)

Reverse sequence w/UT





BpAmpSeq_2
AGCGAGCGGCGCAACGGAG
128

ACGCACTTGACTTGTCTTCAGCG

342




6_R
AATGATT

AGCGGCGCAACGGAGAATGATT








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



K9pen
penA
BpAmpSeq_2
GCTGCGCGGCCAAGCGAAA
129

ACGCACTTGACTTGTCTTCGCTG

343


A575-

7_F
AACG

CGCGGCCAAGCGAAAAACG



761

Reverse
Reverse sequence







primer name
(5′->3′)

Reverse sequence w/UT





BpAmpSeq_2
CGCGAGGACCGCAGCGCAA
130

ACCCAACTGAATGGAGCCGCGA

344




7_R
AGC

GGACCGCAGCGCAAAGC








Forward
Forward sequence







primer name
(5′->3′)

Forward sequence w/UT



K9pen
penA
BpAmpSeq_2
GGCCGCAGACCGTCACCGC
131

ACCCAACTGAATGGAGCGGCCGC

345


A949-

8_F
GTATG

AGACCGTCACCGCGTATG



1172

Reverse
Reverse sequence







primer name
(5′->3′)

Reverse sequence w/UT





BpAmpSeq_2
GTCGCCCGTCTTGTTGCCGA
132

ACGCACTTGACTTGTCTTCGTCG

346




8_R
GCATC

CCCGTCTTGTTGCCGAGCATC
















TABLE 12








Bacillus primers and primers with Universal Tail (UT). The UT sequence is underlined.


















SEQ

SEQ






ID

ID






NO:

NO:

















Target
Forward
Forward

Forward



Assay
species/
primer
sequence

sequence



name
gene
name
(5′ -> 3′)

w/UT





plcR
pIcR
Ba-
TTTTTCGTAAGCATCTTCAA
29

ACCCAACTGAATGGAGCTTTTTC

347




specific-


GTAAGCATCTTCAA





1F_UT1







Reverse
Reverse

Reverse





primer
sequence

sequence





name
(5′ -> 3′)

w/UT







Ba-
TTTGATGTGAAGGTGAGACA
30

ACGCACTTGACTTGTCTTCTTTGA

348




specific-


TGTGAAGGTGAGACA





IRUT2






Target
Forward
Forward

Forward



Assay
species/
primer
sequence

sequence



name
gene
name
(5′ -> 3′)

w/UT





CP0088

Ba-
ACGTCAGGTGATTATTGGAC
1

ACCCAACTGAATGGAGCACGTCA

349


53.1_

specific-


GGTGATTATTGGAC



5309

3F_UT1







Reverse
Reverse

Reverse





primer
sequence

sequence







name
(5′ -> 3′)

w/UT





Ba-
CAACAATTATATCCGCCATT
2

ACGCACTTGACTTGTCTTCCAAC

350




specific-


AATTATATCCGCCATT





3RUT2






Target
Forward
Forward

Forward



Assay
species/
primer
sequence

sequence



name
gene
name
(5′ -> 3′)

w/UT





CP(K)88

Ba-
GAAGATGTACGCTCGATAG
3

ACCCAACTGAATGGAGCGAAGA

351


53.1_

specific-
G

TGTACGCTCGATAGG



5316

5FUT1







Reverse
Reverse

Reverse





primer
sequence

sequence





name
(5′ -> 3′)

w/UT







Ba-
GAAATTCTTTTTGCCATCAC
4

ACGCACTTGACTTGTCTTCGAAA

352




specific-


TTCTTTTTGCCATCAC





5RUT2






Target
Forward
Forward

Forward



Assay
species/
primer
sequence

sequence



name
gene
name
(5′ -> 3′)

w/UT





CP0127

Ba-
CACAATTGAATGAAAATGCT
5

ACCCAACTGAATGGAGCCACAAT

353


25.1_

specific-


TGAATGAAAATGCT



3629

6F_UT1







Reverse
Reverse

Reverse





primer
sequence

sequence





name
(5′ -> 3′)

w/UT







Ba-
CACGAAACCTGTTTACCTTT
6

ACGCACTTGACTTGTCTTCCACG

354




specific-


AAACCTGTTTACCTTT





6RUT2






Target
Forward
Forward

Forward



Assay
species/
primer
sequence

sequence



name
gene
name
(5′ -> 3′)

w/UT





CP0127

Ba-
GATATTCGACGAGCTTTCTG
7

ACCCAACTGAATGGAGCGATATT

355


25.1_

specific-


CGACGAGCTTTCTG



5103

8F_UT1







Reverse
Reverse

Reverse





primer
sequence

sequence





name
(5′ -> 3′)

w/UT







Ba-
TATTCATCGTCATCCTCCTC
8

ACGCACTTGACTTGTCTTCTATT

356




specific-


CATCGTCATCCTCCTC





8R_UT2






Target
Forward
Forward

Forward



Assay
species/
primer
sequence

sequence



name
gene
name
(5′ -> 3′)

w/UT





CP0127

Ba-
TATTGAACGCATTGAATCAG
9

ACCCAACTGAATGGAGCTATTGA

357


25.1_

specific-


ACGCATTGAATCAG



5107

9F_UT1







Reverse
Reverse

Reverse





primer
sequence

sequence





name
(5′ -> 3′)

w/UT







Ba-
TATTGGTAAGCAAACCGTCT
10

ACGCACTTGACTTGTCTTCTATTG

358




specific-


GTAAGCAAACCGTCT





9RUT2






Target
Forward
Forward

Forward



Assay
species/
primer
sequence

sequence



name
gene
name
(5′ -> 3′)

w/UT





JSZQ01

Ba-
GGTTCAGGACAAAATGTAG
11

ACCCAACTGAATGGAGCGGTTCA

359


000034.

specific-
C

GGACAAAATGTAGC



1_220

11F_UT1







Reverse
Reverse

Reverse





primer
sequence

sequence





name
(5′-> 3′)

w/UT







Ba-
TAACTTCTGAAGCGAAAACC
12

ACGCACTTGACTTGTCTTCTAACT

360




specific-


TCTGAAGCGAAAACC





11R_UT2






Target
Forward
Forward

Forward



Assay
species/
primer
sequence

sequence



name
gene
name
(5′ -> 3′)

w/UT





JSZS010

Ba-
GCGAATTTTAGACGACAATC
13

ACCCAACTGAATGGAGCGCGAAT

361


00036.1_5

specific-


TTTAGACGACAATC





12F_UT1







Reverse
Reverse

Reverse





primer
sequence

Sequence





name
(5′ -> 3′)

w/UT







Ba-
TAACCGTGCTTAATTCGTTT
14

ACGCACTTGACTTGTCTTCT

362




specific-


AACCGTGCTTAATTCGTTT





12RUT2






Target
Forward
Forward

Forward



Assay
species/
primer
sequence

Sequence



name
gene
name
(5′ -> 3′)

w/UT





LGCC0

Ba-
ATTAATAAGGCGACTGGTGA
15

ACCCAACTGAATGGAGCATT

363


1000010.1_

specific-


AATAAGGCGACTGGTGA



232

14F_UT1







Reverse
Reverse

Reverse





primer
sequence

Sequence





name
(5′ -> 3′)

w/UT







Ba-
TTACCCATCCAGAATGAGAC
16

ACGCACTTGACTTGTCTTCT

364




specific-


TACCCATCCAGAATGAGAC





14RUT2






Target
Forward
Forward

Forward



Assay
species/
primer
sequence

Sequence



name
gene
name
(5′ -> 3′)

w/UT





LGCC0

Ba-
ACAATTCTTAAAAGGCGACA
17

ACCCAACTGAATGGAGCACA

365


1000048.1_

specific-


ATTCTrAAAAGGCGACA



280

16F_UT1







Reverse
Reverse

Reverse





primer
sequence

Sequence





name
(5′ -> 3′)

w/UT







Ba-
TGTAGCGTCTCCGATATTTT
18

ACGCACTTGACTTGTCTTCT

366




specific-


GTAGCGTCTCCGATATTTT





16R_UT2





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/ UT





NNLO

Ba-
CATGGGGCTTTCTATTATGT
19

ACCCAACTGAATGGAGCCATGGG

367


MU010000

specific-


GCTTTCTATTATGT



90.1_49

20FUT1







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/ UT







Ba-
TTCGTTCTTTCATAAGTTTCC
20

ACGCACTTGACTTGTCTTCTTCGT

368




specific-
T

TCTTTCATAAGIF1CCT





20R_UT2





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





NN_LO

Ba-
TTGGAGTITGTTITGCTTTT
21

ACCCAACTGAATGGAGCTTGGAG

369


QC 0100

specific-


TTTGTTTTGCTTTT



0013.1_3

22F_UT1







Reverse
Reverse sequence

Reverse sequence w/UT





primer name
(5′ -> 3′)







Ba-specific-
GTAACAATTAATCCACGTCC
22

ACGCACTTGACTTGTCTTCGTAA

370




22Rv2_UT2
T

CAATTAATCCACGTCCT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





pX01
pX01
pX01_
TGAGCCTACCTAGTGATTGG
33

ACCCAACTGAATGGAGCTGAGCC

371




113F_UT1


TACCTAGTGATTGG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/ UT







pX01-
TTGGATAAATTCCACAAATT
34

ACGCACTTGACTTGTCTTCTTGG

372




315Rv2_UT2
CCTC

ATAAATTCCACAAATTCCTC





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





pX02
pX02
pX02_101F_
CGCCAGCGTATTATATAGGT
35

ACCCAACTGAATGGAGCCGCCAG

373




UT1


CGTATTATATAGGT







Reverse








primer
Reverse sequence

Reverse sequence w/UT





name
(5′ -> 3′)







pX02 269R
GCTAATTCTGGGTTGTGTTT
36

ACGCACTTGACTTGTCTTCGCTA

374




UT2


ATTCTGGGTTGTGTTT





Assay
Target
Forward
Forward sequence





name
species/gene
primer name
(5′ -> 3′)

Forward sequence w/UT





gyrA
gyrA
gyrA_28Fv2_
TCGGTAAGTATCACCCTCA
37

ACCCAACTGAATGGAGCTCGGTA

375




UT1


AGTATCACCCTCA







Reverse








primer
Reverse sequence







name
(5′ -> 3′)

Reverse sequence w/ UT







gyrA_182Rv2
TGCTTCTGTATAACGCATT
38

ACGCACTTGACTTGTCTTCTGCTT

376




_UT2


CTGTATAACGCATT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





parC
parC
parC_1F_UTl
CAGTCGGTAACGTTATTGGT
39

ACCCAACTGAATGGAGCCAGTCG

377







GTAACGTTATTGGT







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







parC_197R_U
TAACTCAGATGCAATTGGTG
40

ACGCACTTGACTTGTCTTCTAACT

378




T2


CAGATGCAATTGGTG





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





gyrB
gyrB
gyrB_8F_UT
ATTGTAGAGGGTGACTCTGC
41

ACCCAACTGAATGGAGCATTGTA

379




1


GAGGGTGACTCTGC







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







gyrB_194R_
TATCAAAATCTCCGCCAAT
42

ACGCACTTGACTTGTCTTCTATCA

380




UT2


AAATCTCCGCCAAT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





pagA
pagA
801F_pagAv3_
GGTTACAGGACGGATTGAT
31

ACCCAACTGAATGGAGCGGTTAC

381




UT1
A

AGGACGGATTGATA







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







1042R_pagAv
TCCCACCAATATCAAAGAAC
32

ACGCACTTGACTTGTCTTCTCCCA

382




3UT2


CCAATATCAAAGAAC





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





rpoB
rpoB
rpoB_29F_U
TTCTTCGGAAGTTCTCAGTT
43

ACCCAACTGAATGGAGCTTCTTC

383




T1


GGAAGTTCTCAGTT







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







rpoB_196R_
CGGACACATACGACCATAG
44

ACGCACTTGACTTGTCTTCCGGA

384




UT2


CACATACGACCATAG





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





AA_2502

AA_2502_UT
AAGTTTGAGGTGTGGAAAT
45

ACCCAACTGAATGGAGCAAGTTT

385




1
G

GAGGTGTGGAAATG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







AA_2502_UT
TCGAAATGAGTTCCAATTTT
46

ACGCACTTGACTTGTCTTCTCGA

386




2


AATGAGTTCCAATTTT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





AA_2503

AA_2503v2_
CAAAACTAATAGGGGAGGG
47

ACCCAACTGAATGGAGCCAAAA

387




UT1
TG

CTAATAGGGGAGGGTG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







AA_2503_UT
CCGAGAACCTACCTCGTTA
48

ACGCACTTGACTTGTCTTCCCGA

388




2


GAACCTACCTCGTTA





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Ba_AmesAnc_

Ba&NN32_F
AGGAGATGAGAGTTTTGCA
49

ACCCAACTGAATGGAGCAGGAG

389


4669915


C

ATGAGAGTTTTGCAC







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ba&NN32_R
ACCCCCATAATTACCATGA
50

ACGCACTTGACTTGTCTTCACCC

390







CCATAATTACCATGA





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Ba_AmesAnc_

Ba&NN33_F
CGTTGCGTAAGTATGTGCTA
51

ACCCAACTGAATGGAGCCGTTGC

391


4001578




GTAAGTATGTGCTA







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ba&NN33_R
AGGTGGCGTAATTAACGTA
52

ACGCACTTGACTTGTCTTCAGGT

392





G

GGCGTAATTAACGTAG





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Ba_AmesAnc_

Ba&NN37_F
CGAAAAGTTGTCGACCTAAT
53

ACCCAACTGAATGGAGCCGAAA

393


1069024




AGTTGTCGACCTAAT







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ba&NN37_R
ACTGCGTTCACGAAGAATA
54

ACGCACTTGACTTGTCTTCACTG

394





G

CGTTCACGAAGAATAG





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Ba_AmesAnc_

Ba&NN38_F
TCTCTTGATTCAACGTTTCC
55

ACCCAACTGAATGGAGCTCTCTT

395


3668548




GATTCAACGTTTCC







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ba&NN38_R
GATGCAAAACCAATTCACTT
56

ACGCACTTGACTTGTCTTCGATG

396







CAAAACCAATTCACTT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Ba_AmesAnc_

Ba&NN40_F
GTGAAACATCGCTTTTTAGG
57

ACCCAACTGAATGGAGCGTGAA

397


371913




ACATCGCTTTTTAGG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ba&NN40_R
TCCGCAATGATATACTTCAA
58

ACGCACTTGACTTGTCTTCTCCGC

398







AATGATATACTTCAA





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





BaA_mesAnc_

Ba&NN41_F
ATACGGTGAAAATGAAGCA
59

ACCCAACTGAATGGAGCATACGG

399


999035


G

TGAAAATGAAGCAG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ba&NN41 R
CGTCTTTGGTAATCGTTCA
60

ACGCACTTGACTTGTCTTCCGTCT

400







TTGGTAATCGTTCA





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





ChimpKiller_

ChimpKiller_
TTATCGTCCATTCTTTCGTC
23

ACCCAACTGAATGGAGCTTATCG

401


9-159

9F


TCCATTCTTTCGTC







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







ChimpKiller_
AAACCTAATGAAACGGGAT
24

ACGCACTTGACTTGTCTTCAAAC

402




159R
T

CTAATGAAACGGGATT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





ChimpKiller_

ChimpKiller_
TATGAAAGGAGCCGTAAAA
25

ACCCAACTGAATGGAGCTATGAA

403


91-320

91F
C

AGGAGCCGTAAAAC







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







ChimpKiller_
TGAATATGAAGCGGAAAAC
26

ACGCACTTGACTTGTCTTCTGAA

404




320R
T

TATGAAGCGGAAAACT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





ChimpKiller_

ChimpKiller_
TCGAACATACCTCCATTTCT
27

ACCCAACTGAATGGAGCTCGAAC

405


481-698

481F


ATACCTCCATTTCT







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







ChimpKiller_
AAAGATAGCTTTGCACTTGG
28

ACGCACTTGACTTGTCTTCAAAG

406




698R


ATAGCTTTGCACTTGG
















TABLE 13








Yersinia primers and primers with Universal Tail (UT). The UT sequence is underlined.


















SEQ

SEQ






ID

ID






NO:

NO:





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Ypestis_LPQY

Yp&NNl_F
AACAAGCTAAAACCGAACA
231

ACCCAACTGAATGGAGCAACAA

407


01000176.1_7


A

GCTAAAACCGAACAA







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp&NN1_R
ATAGCCTCAACTGCTTTTTG
232

ACGCACTTGACTTGTCTTCATAG

408







CCTCAACTGCTTTTTG





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Wagner_Yp_

Yp&NN2_F
GAAAGGAGTGCGGGTAATA
237

ACCCAACTGAATGGAGCGAAAG

409


pla_Forward


GGTT

GAGTGCGGGTAATAGGTT







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp&NN2_R
GGCCTGCAAGTCCAATATA
238

ACGCACTTGACTTGTCTTCGGCC

410





TGG

TGCAAGTCCAATATATGG





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





YenteroFR72

Yp&NN3_F
GATGCTTCTGCTATCAGSTT
263

ACCCAACTGAATGGAGCGATGCT

411


9477.2_623




TCTGCTATCAGSTT







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp&NN3_R
GTGTGRCTTTGAASTCTTGT
264

ACGCACTTGACTTGTCTTCGTGT

412







GRCTTTGAASTCTTGT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





YPCO92_NC_00

Yp&NN4_F
ACTCGGGATACTCCATACT
249

ACCCAACTGAATGGAGCACTCGG

413


3143_113190


G

GATACTCCATACTG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp&NN4_R
CGAAAGCAGTGGTCAATC
250

ACGCACTTGACTTGTCTTCCGAA

414







AGCAGTGGTCAATC





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





YPCO92_NC_00

Yp&NN5_F
CATGCGCTTTACGTTATATG
251

ACCCAACTGAATGGAGCCATGCG

415


3143_161621




CTTTACGTTATATG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp&NN5_R
GCGTTCTGCACTCTGTCT
252

ACGCACTTGACTTGTCTTCGCGTT

416







CTGCACTCTGTCT





Assay
Target
Forward
Forward sequence

Forward sequence






(5′ -> 3′)

w/UT





name
species/gene
primer name






YPCO92_NC_00

Yp&NN6_F
AGCGACTTCCGTGATAAAG
253
ACCC’AACTGAATGGAGCAGCGA
417


3143_152213




CTTCCGTGATAAAG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp&NN6_R
ACTCAGGATACCGTGTGGT
254

ACGCACTTGACTTGTCTTCACTC

418







AGGATACCGTGTGGT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





YPCO92_NC_00

Yp&NN7_F
TTCACGATAATCCCCTAAT
255

ACCCAACTGAATGGAGCTTCACG

419


3143_129539


G

ATAATCCCCTAATG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp&NN7_R
TTCTGTGCTCTGGCTGATA
256

ACGCACTTGACTTGTCTTCTTCTG

420







TGCTCTGGCTGATA





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





YPCO92_NC_00

Yp&NN8_F
ATTATCTGTGCCCCTTCTTT
257

ACCCAACTGAATGGAGCATTATC

421


3143_91203




TGTGCCCCTTCTTT







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp&NN8_R
GGAGTGGATGCCACTAAAC
258

ACGCACTTGACTTGTCTTCGGAG

422







TGGATGCCACTAAAC





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





YpC092_NC_00

Yp&NN9_F
CCTCACACAACAATTCACT
259

ACCCAACTGAATGGAGCCCTCAC

423


3143 121812


G

ACAACAATTCACTG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp&NN9_R
TTTTTCCGACAAATTTAAG
260

ACGCACTTGACTTGTCTTCTTTTT

424





G

CCGACAAATTTAAGG





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Yp_AL590842.1_

Yp&NN10_F
AGCATGAAGGTTGCTAAAA
261

ACCCAACTGAATGGAGCAGCATG

425


RX_SNP


G

AAGGTTGCTAAAAG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp&NN10_R
GGTGACTTCAAAACCGTTA
262

ACGCACTTGACTTGTCTTCGGTG

426





G

ACTTCAAAACCGTTAG





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





AGJT01000065.

Yp&NN11_F
CAGTACCGACAAAACTTC
233

ACCCAACTGAATGGAGCCAGTAC

427


1_0_338




CGACAAAACTTC







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp&NN11_R
TTTACTACTCTGAAAACGA
234

ACGCACTTGACTTGTCTTCTTTAC

428





G

TACTCTGAAAACGAG





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





FAURO1000053.1_

Yp&NN12_F
GCACTACAAATTTAAATCC
235

ACCCAACTGAATGGAGCGCACTA

429


9640_796884


C

CAAATTTAAATCCC







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp&NN12_R
GTCGATTATCAACCTCTAT
236

ACGCACTTGACTTGTCTTCGTCG

430





G

ATTATCAACCTCTATG





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





YpPGM_
PGM
YpPGM_8F
TTAATATCCCGGCACTCAT
239

ACCCAACTGAATGGAGCTTAATA

431


8-158


A

TCCCGGCACTCATA







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







YpPGM_158
TCCTTAACTGAATAAGTGC
240

ACGCACTTGACTTGTCTTCTCCTT

432




R
TCA

AACTGAATAAGTGCTCA





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





YpPGM_
PGM
YpPGM_31F
TTTAATGAACGGTGCCTAG
241

ACCCAACTGAATGGAGCTTTAAT

433


31-205

v2


GAACGGTGCCTAG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







YpPGM_205
GTCTGCGTTTCTCCAGTAT
242

ACGCACTTGACTTGTCTTCGTCTG

434




Rv2


CGTTTCTCCAGTAT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Yp-p1202_
plP1202
Yp-
TCTGGCCTGCTAAATAAAA
243
ACCCAACTGAAIGGAGCTCTGGC
435


42780-

P1202_42780
ACGAACC

CTGCTAAATAAAAACGAACC



43194

F-UT1







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp-
CAGGCCTCAGCATTTTATT
244

ACGCACTTGACTTGTCTTCCAGG

436




p1202_
ATGGTGAT

CCTCAGCATTTTATTATGGTGAT





43194








R-UT2





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Yp-
plP1202
Yp-
GGGGCGGATACCTTCACCT
245

ACCCAACTGAATGGAGCGGGGC

437


p1202_1

P1202_
ATG

GGATACCTTCACCTATG



26386-

12638






126750

6F-UT1







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp-
CTGGGGTTCAGTCTGGACG
246

ACGCACTTGACTTGTCTTCCTGG

438




p1202_
AGAT

GGTTCAGTCTGGACGAGAT





126750R-








UT2





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Yp-p1202_
plP1202
Yp-
ACCATCCGGCGCTAAATCG
247

ACCCAACTGAATGGAGCACCATC

439


156402-

p1202_
TC

CGGCGCTAAATCGTC



156711

15640








2F2-UT1







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Yp-
GAAATGCGCCTGGTAAGCA
248

ACGCACTTGACTTGTCTTCGAAA

440




pl202_15671
GAGT

TGCGCCTGGTAAGCAGAGT





1R-UT2
















TABLE 14







Francisella primers and primers with Universal Tail (UT). The UT sequence is underlined.

















SEQ

SEQ






ID

ID






NO:

NO:





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Ftnovicida_

Ft&NN1_F
GGTAGGATAACTACCAAG
285

ACCCAACTGAATGGAGCGGTAG

441


CP009607.1




GATAACTACCAAG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ft&NN1_R
GTCATGAGTTTTACCAATA
286

ACGCACTTGACTTGTCTTCGTCAT

442





CTC

GAGTTTTACCAATACTC





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Ftularensis_CP0

Ft&NN2_F
GAAGTGGCTCATGTTAGAG
265

ACCCAACTGAATGGAGCGAAGT

443


00915.1_1782


G

GGCTCATGTTAGAGG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ft&NN2_R
AGCGAGCCTATATGTAACC
266

ACGCACTTGACTTGTCTTCAGCG

444





A

AGCCTATATGTAACCA





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Ftularensis_

Ft&NN3_F
TTTAATGTCCGTCAACCTCT
267

ACCCAACTGAATGGAGCTTTAAT

445


CP000915.1_731




GTCCGTCAACCTCT







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ft&NN3_R
ACGAGTTTGTGAGTCGCTA
268

ACGCACTTGACTTGTCTTCACGA

446





T

GTTTGTGAGTCGCTAT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Fnoatunensis_CP

Ft&NN4_F
CGGTAAGAATACGACCAGA
291

ACCCAACTGAATGGAGCCGGTAA

447


003402.1_1749


G

GAATACGACCAGAG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ft&NN4_R
AGAGGATTTCTTCCTCCTTG
292

ACGCACTTGACTTGTCTTCAGAG

448







GATTTCTTCCTCCTTG





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Fnoatunensis_

Ft&NN5_F
AATTCTACAAGCACCTGGA
293

ACCCAACTGAATGGAGCAATTCT

449


CP003402.1_424


A

ACAAGCACCTGGAA







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ft&NN5R
TCCTATTAAAAGCGCCATA
294

ACGCACTTGACTTGTCTTCTCCTA

450





G

TTAAAAGCGCCATAG





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Fphilom_CP009

Ft&NN6F
CTTATGCAGCAAGAGGAAC
287

ACCCAACTGAATGGAGCCTTATG

451


444.1_569


T

CAGCAAGAGGAACT







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ft&NN6_R
ATACACCGGGATAGGTTTC
288

ACGCACTTGACTTGTCTTCATAC

452





T

ACCGGGATAGGTTTCT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Fphilom_CP009

Ft&NN7_F
CTGATGGAAGAGAGTTCGA
289

ACCCAACTGAATGGAGCCTGATG

453


444.1_285


G

GAAGAGAGTTCGAG







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ft&NN7_Rv2
GTAGATATAATCAGCGCCA
290

ACGCACTTGACTTGTCTTCGTAG

454





C

ATATAATCAGCGCCAC





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





Ft_dup_CP0009

Ft&NN8_F
TGTTACGTACAGGCTGTCA
269

ACCCAACTGAATGGAGCTGTTAC

455


15.1_197


A

GTACAGGCTGTCAA







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ft&NN8_R
ATCATATCCCGTAGCACAA
270

ACGCACTTGACTTGTCTTCATCAT

456





G

ATCCCGTAGCACAAG





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





FtLVS_AM2333

Ft&NN9_F
ATCAAGCTCATCTTCAAAG
279

ACCCAACTGAATGGAGCATCAAG

457


62_1646546


C

CTCATCTTCAAAGC







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ft&NN9_R
AACCATGTTCAGATCCAAA
280

ACGCACTTGACTTGTCTTCAACC

458





A

ATGTTCAGATCCAAAA





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





FtLVS_AM2333

Ft&NN10_F
TACCTCTGCCAAAAATTCA
281

ACCCAACTGAATGGAGCTACCTC

459


62_1643765


T

TGCCAAAAATTCAT







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ft&NN10_R
GGCATACTCAAGGTAGTGG
282

ACGCACTTGACTTGTCTTCGGCA

460





T

TACTCAAGGTAGTGGT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





FtLVS_AM2333

Ft&NN11_F
TCTTTGGTAGCTTGCTGACT
283

ACCCAACTGAATGGAGCTCTTTG

461


62_1562618




GTAGCTTGCTGACT







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







Ft&NN11_R
CAGACGACACTTGGCTTAT
284

ACGCACTTGACTTGTCTTCCAGA

462





T

CGACACTTGGCTTATT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(S′-> 3′)

w/UT





FtA1
FtA1
9F_FtA1_UT
CATAACCCATCGCAATATC
271

ACCCAACTGAATGGAGCCATAAC

463




1
T

CCATCGCAATATCT







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







246R_FtA1_
AAATTATCTGTAGCGGCAA
272

ACGCACTTGACTTGTCTTCAAAT

464




UT2
A

TATCTGTAGCGGCAAA





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





FtA2
FtA2
34F_FtA2_U
GTGTCCAACGAAACCATAA
273

ACCCAACTGAATGGAGCGTGTCC

465




T1
T

AACGAAACCATAAT







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







169R_FtA2_
TTTGGTTGATTCTGTCAGTG
274

ACGCACTTGACTTGTCTTCTTTGG

466




UT2


TTGATTCTGTCAGTG





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





FtB
FtB
28F_FtB_UT
AAGCTTAACTGGTGATTGG
275

ACCCAACTGAATGGAGCAAGCTT

467




1
A

AACTGGTGATTGGA







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







173R_FtB_U
CGCCTAACATCTTATCTGCT
276

ACGCACTTGACTTGTCTTCCGCCT

468




T2


AACATCTTATCTGCT





Assay
Target
Forward
Forward sequence

Forward sequence



name
species/gene
primer name
(5′ -> 3′)

w/UT





FtA
FtA
14F_FtA_UT
GGGTGATGCAGTAGAGAAA
277

ACCCAACTGAATGGAGCGGGTG

469




1
A

ATGCAGTAGAGAAAA







Reverse
Reverse sequence

Reverse sequence





primer name
(5′ -> 3′)

w/UT







207R_FtA_U
TACCAGATGAACGAATAGC
278

ACGCACTTGACTTGTCTTCTACC

470




T2
C

AGATGAACGAATAGCC










All headings are for the convenience of the reader and should not be used to limit the meaning of the text that follows the heading, unless so specified.


Unless defined otherwise, all technical and scientific terms herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials, similar or equivalent to those described herein, can be used in the practice or testing of the present invention, the preferred methods and materials are described herein. All publications, patents, and patent publications cited are incorporated by reference herein in their entirety for all purposes.


The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.


While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth and as follows in the scope of the appended claims.

Claims
  • 1. A method of detecting Bacillus anthracis in a sample, comprising detecting at least one B. anthracis-specific amplicon in the sample using at least one primer pair selected from the group consisting of: SEQ ID NO: 1 and SEQ ID NO: 2;SEQ ID NO: 3 and SEQ ID NO: 4;SEQ ID NO: 5 and SEQ ID NO: 6;SEQ ID NO: 7 and SEQ ID NO: 8;SEQ ID NO: 9 and SEQ ID NO: 10;SEQ ID NO: 11 and SEQ ID NO: 12;SEQ ID NO: 13 and SEQ ID NO: 14;SEQ ID NO: 15 and SEQ ID NO: 16;SEQ ID NO: 17 and SEQ ID NO: 18;a pair of sequences which are at least 85% identical thereto; andRNA equivalents;wherein the presence of the B. anthracis-specific amplicon indicates the presence of B. anthracis in the sample, and the absence of the B. anthracis-specific amplicon indicates the absence of B. anthracis from the sample.
  • 2. The method of claim 1, further comprising confirming the absence of B. anthracis by detecting at least one B. anthracis Near Neighbor-specific amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 19 and SEQ ID NO: 20;SEQ ID NO: 21 and SEQ ID NO: 22;SEQ ID NO: 23 and SEQ ID NO: 24;a pair of sequences which are at least 85% identical thereto; andRNA equivalents;wherein detecting the B. anthracis Near Neighbor-specific amplicon in the sample confirms the absence of B. anthracis.
  • 3. The method of claim 1, further comprising confirming the absence of B. anthracis by detecting at least one B. anthracis Near Neighbor-specific sequence variant (SV) or single nucleotide polymorphism (SNP) using at least one primer pair selected from the group consisting of: SEQ ID NO: 25 and SEQ ID NO: 26;SEQ ID NO: 27 and SEQ ID NO: 28;SEQ ID NO: 49 and SEQ ID NO: 50;SEQ ID NO: 51 and SEQ ID NO: 52;SEQ ID NO: 53 and SEQ ID NO: 54;SEQ ID NO: 55 and SEQ ID NO: 56;SEQ ID NO: 57 and SEQ ID NO: 58;SEQ ID NO: 59 and SEQ ID NO: 60;a pair of sequences which are at least 85% identical thereto; andRNA equivalents;wherein detecting the B. anthracis Near Neighbor-specific SV in the sample confirms the absence of B. anthracis.
  • 4. The method of claim 1, further comprising detecting a virulence locus or virulence plasmid in the sample by detecting a virulence-specific amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 29 and SEQ ID NO: 30;SEQ ID NO: 31 and SEQ ID NO: 32;SEQ ID NO: 33 and SEQ ID NO: 34;SEQ ID NO: 35 and SEQ ID NO: 36;a pair of sequences which are at least 85% identical thereto; andRNA equivalents;wherein the presence of the virulence-specific amplicon indicates the presence of the virulence locus or virulence plasmid in the sample.
  • 5. The method of claim 1, to further comprising detecting at least one drug resistance single nucleotide polymorphism (SNP) from B. anthracis in the sample using at least one primer pair selected from the group consisting of: SEQ ID NO: 37 and SEQ ID NO: 38;SEQ ID NO: 39 and SEQ ID NO: 40;SEQ ID NO: 41 and SEQ ID NO: 42;SEQ ID NO: 43 and SEQ ID NO: 44;SEQ ID NO: 45 and SEQ ID NO: 46;SEQ ID NO: 47 and SEQ ID NO: 48;a pair of sequences which are at least 85% identical thereto; andRNA equivalents.
  • 6. The method of claim 1, further comprising detecting Burkholderia pseudomallei and/or Burkholderia mallei in the sample by detecting at least one B. pseudomallei or B. mallei-specific amplicon uses at least one primer pair selected from the group consisting of: SEQ ID NO: 61 and SEQ ID NO: 62;SEQ ID NO: 63 and SEQ ID NO: 64;SEQ ID NO: 65 and SEQ ID NO: 66;SEQ ID NO: 67 and SEQ ID NO: 68;SEQ ID NO: 69 and SEQ ID NO: 70;SEQ ID NO: 71 and SEQ ID NO: 72;SEQ ID NO: 73 and SEQ ID NO: 74;SEQ ID NO: 75 and SEQ ID NO: 76;SEQ ID NO: 77 and SEQ ID NO: 78;SEQ ID NO: 79 and SEQ ID NO: 80;SEQ ID NO: 81 and SEQ ID NO: 82;SEQ ID NO: 83 and SEQ ID NO: 84;SEQ ID NO: 85 and SEQ ID NO: 86;SEQ ID NO: 87 and SEQ ID NO: 88;SEQ ID NO: 89 and SEQ ID NO: 90;SEQ ID NO: 91 and SEQ ID NO: 92;SEQ ID NO: 93 and SEQ ID NO: 94;SEQ ID NO: 95 and SEQ ID NO: 96;SEQ ID NO: 97 and SEQ ID NO: 98;SEQ ID NO: 99 and SEQ ID NO: 100;SEQ ID NO: 101 and SEQ ID NO: 102;SEQ ID NO: 103 and SEQ ID NO: 104;SEQ ID NO: 103 and SEQ ID NO: 104;SEQ ID NO: 105 and SEQ ID NO: 106;SEQ ID NO: 107 and SEQ ID NO: 108;SEQ ID NO: 117 and SEQ ID NO: 118;SEQ ID NO: 119 and SEQ ID NO: 120;SEQ ID NO: 121 and SEQ ID NO: 122;SEQ ID NO: 123 and SEQ ID NO: 124;SEQ ID NO: 125 and SEQ ID NO: 126;a pair of sequences which are at least 85% identical thereto; andRNA equivalentswherein the presence of the B. pseudomallei or B. mallei-specific amplicon indicates the presence of B. pseudomallei and/or B. mallei in the sample, and an absence of the B. pseudomallei or B. mallei-specific amplicon indicates an absence of B. pseudomallei and B. mallei in the sample.
  • 7. The method of claim 6, further comprising confirming the absence of B. pseudomallei and B. mallei by detecting at least one B. pseudomallei or B. mallei Near Neighbor-specific amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 177 and SEQ ID NO: 178;SEQ ID NO: 179 and SEQ ID NO: 180;SEQ ID NO: 181 and SEQ ID NO: 182;SEQ ID NO: 183 and SEQ ID NO: 184;SEQ ID NO: 185 and SEQ ID NO: 186;SEQ ID NO: 187 and SEQ ID NO: 188;SEQ ID NO: 189 and SEQ ID NO: 190;SEQ ID NO: 191 and SEQ ID NO: 192;SEQ ID NO: 193 and SEQ ID NO: 194;SEQ ID NO: 195 and SEQ ID NO: 196;SEQ ID NO: 197 and SEQ ID NO: 198;SEQ ID NO: 199 and SEQ ID NO: 200;SEQ ID NO: 201 and SEQ ID NO: 202;SEQ ID NO: 203 and SEQ ID NO: 204;SEQ ID NO: 205 and SEQ ID NO: 206;SEQ ID NO: 207 and SEQ ID NO: 208;SEQ ID NO: 207 and SEQ ID NO: 208;SEQ ID NO: 209 and SEQ ID NO: 210;SEQ ID NO: 211 and SEQ ID NO: 212;SEQ ID NO: 213 and SEQ ID NO: 214;SEQ ID NO: 215 and SEQ ID NO: 216;SEQ ID NO: 217 and SEQ ID NO: 218;SEQ ID NO: 219 and SEQ ID NO: 220;SEQ ID NO: 221 and SEQ ID NO: 222;SEQ ID NO: 223 and SEQ ID NO: 224;SEQ ID NO: 225 and SEQ ID NO: 226;SEQ ID NO: 227 and SEQ ID NO: 228;SEQ ID NO: 229 and SEQ ID NO: 230;a pair of sequences which are at least 85% identical thereto; andRNA equivalents;wherein detecting the B. pseudomallei or B. mallei Near Neighbor-specific amplicon in the sample confirms the absence of B. pseudomallei and B. mallei.
  • 8. The method of claim 6, further comprising confirming the absence of B. pseudomallei and B. mallei by detecting at least one B. pseudomallei or B. mallei Near Neighbor-specific SNP or SV using at least one primer pair selected from the group consisting of: SEQ ID NO: 109 and SEQ ID NO: 110;SEQ ID NO: 111 and SEQ ID NO: 112;SEQ ID NO: 113 and SEQ ID NO: 114;SEQ ID NO: 115 and SEQ ID NO: 116;a pair of sequences which are at least 85% identical thereto; andRNA equivalents;wherein detecting the B. pseudomallei or B. mallei Near Neighbor-specific SNP or SV in the sample confirms the absence of B. pseudomallei and B. mallei.
  • 9. The method of claim 6, further comprising detecting at least one drug resistance SNP or SV from Burkholderia spp. in the sample using at least one primer pair selected from the group consisting of: SEQ ID NO: 127 and SEQ ID NO: 128;SEQ ID NO: 129 and SEQ ID NO: 130;SEQ ID NO: 131 and SEQ ID NO: 132;SEQ ID NO: 133 and SEQ ID NO: 134;SEQ ID NO: 135 and SEQ ID NO: 136;SEQ ID NO: 137 and SEQ ID NO: 138;SEQ ID NO: 145 and SEQ ID NO: 146;SEQ ID NO: 147 and SEQ ID NO: 148;SEQ ID NO: 149 and SEQ ID NO: 150;SEQ ID NO: 151 and SEQ ID NO: 152;SEQ ID NO: 153 and SEQ ID NO: 154;a pair of sequences which are at least 85% identical thereto; andRNA equivalents.
  • 10. The method of claim 1, further comprising detecting Francisella tularensis in the sample by detecting at least one F. tularensis-specific amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 265 and SEQ ID NO: 266;SEQ ID NO: 267 and SEQ ID NO: 268;SEQ ID NO: 269 and SEQ ID NO: 270;a pair of sequences which are at least 85% identical thereto; andRNA equivalents;wherein the presence of the F. tularensis-specific amplicon indicates that F. tularensis is present in the sample, and an absence of the F. tularensis-specific amplicon indicates that F. tularensis is absent in the sample.
  • 11. The method of claim 10, further comprising confirming the absence of F. tularensis by detecting at least one F. tularensis Near Neighbor-specific amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 285 and SEQ ID NO: 286;SEQ ID NO: 287 and SEQ ID NO: 288;SEQ ID NO: 289 and SEQ ID NO: 290;SEQ ID NO: 291 and SEQ ID NO: 292;SEQ ID NO: 293 and SEQ ID NO: 294;a pair of sequences which are at least 85% identical thereto; andRNA equivalents;wherein detecting the F. tularensis Near Neighbor-specific amplicon in the sample confirms the absence of F. tularensis.
  • 12. The method of claim 10, further comprising confirming the absence of F. tularensis by detecting at least one F. tularensis Near Neighbor-specific SNP or SV using at least one primer pair selected from the group consisting of: SEQ ID NO: 271 and SEQ ID NO: 272;SEQ ID NO: 273 and SEQ ID NO: 274;SEQ ID NO: 275 and SEQ ID NO: 276;SEQ ID NO: 277 and SEQ ID NO: 278;SEQ ID NO: 279 and SEQ ID NO: 280;SEQ ID NO: 281 and SEQ ID NO: 282;SEQ ID NO: 283 and SEQ ID NO: 284;a pair of sequences which are at least 85% identical thereto; andRNA equivalents;wherein detecting the F. tularensis Near Neighbor-specific SNP or SV in the sample confirms the absence of F. tularensis.
  • 13. The method of claim 1, further comprising detecting Yersinia pestis in the sample by detecting at least one Y. pestis-specific amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 231 and SEQ ID NO: 232;SEQ ID NO: 233 and SEQ ID NO: 234;SEQ ID NO: 235 and SEQ ID NO: 236;SEQ ID NO: 237 and SEQ ID NO: 238;a pair of sequences which are at least 85% identical thereto; andRNA equivalents;wherein the presence of the Y. pestis-specific amplicon indicates the presence of Y. pestis in the sample, and an absence of the Y. pestis-specific amplicon indicates an absence of Y. pestis in the sample.
  • 14. The method of claim 13, further comprising confirming the absence of Y. pestis by detecting at least one Y. pestis Near Neighbor-specific SNP or SV using at least one primer pair selected from the group consisting of: SEQ ID NO: 249 and SEQ ID NO: 250;SEQ ID NO: 251 and SEQ ID NO: 252;SEQ ID NO: 253 and SEQ ID NO: 254;SEQ ID NO: 255 and SEQ ID NO: 256;SEQ ID NO: 257 and SEQ ID NO: 258;SEQ ID NO: 259 and SEQ ID NO: 260;SEQ ID NO: 261 and SEQ ID NO: 262;a pair of sequences which are at least 85% identical thereto; andRNA equivalents;wherein detecting the Y. pestis Near Neighbor-specific SNP or SV confirms the absence of Y. pestis.
  • 15. The method of claim 13 or H, further comprising confirming the absence of Y. pestis by detecting at least one Y. pestis Near Neighbor-specific amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 263 and SEQ ID NO: 264;a pair of sequences which are at least 85% identical thereto; andRNA equivalents;wherein detecting the Y. pestis Near Neighbor-specific amplicon confirms the absence of Y. pestis.
  • 16. The method of claim 13, further comprising characterizing and/or subtyping Y. pestis in the sample by detecting at least one amplicon using at least one primer pair selected from the group consisting of: SEQ ID NO: 239 and SEQ ID NO: 240;SEQ ID NO: 241 and SEQ ID NO: 242;SEQ ID NO: 243 and SEQ ID NO: 244;SEQ ID NO: 245 and SEQ ID NO: 246;SEQ ID NO: 247 and SEQ ID NO: 248;a pair of sequences which are at least 85% identical thereto; andRNA equivalents.
  • 17. The method of claim 1, wherein the amplicons are generated with at least one multiplex amplification reaction; the amplicon, SNP or SV is determined using next-generation sequencing; each primer in the at least one primer pair comprises a universal tail sequence; and the target species is Bacillus anthracis, Burkholderia pseudomallei, Burkholderia mallei, Francisella tularensis, or Yersinia pestis.
  • 18. (canceled)
  • 19. (canceled)
  • 20. (canceled)
  • 21. The method of claim 17, wherein the amplicon is present when a locus read count of the amplicon is at least 10 sequence reads covering at least 75% of a corresponding amplicon reference sequence and the universal tail sequence comprises SEQ ID NO: 301 or SEQ ID NO: 303.
  • 22. (canceled)
  • 23. (canceled)
  • 24. (canceled)
  • 25. The method of claim 1, wherein the sample is a biological sample obtained from a subject and further comprising administering an effective amount of at least one antibiotic to the subject, wherein the at least one antibiotic is selected from the group consisting of a fluoroquinolone, an aminoglycoside, a glycopeptide, a lincosamide, a macrolide/ketolide, a cephalosporin, a monobactam, a nitroimidazole, a penicillin, a streptogramin, a tetracycline, and a physiologically acceptable salt, prodrug, or combination thereof.
  • 26. The method of 25, wherein the at least one antibiotic is not a fluoroquinolone if a gyrA drug resistance SNP is detected; and/orthe at least one antibiotic is not a fluoroquinolone if a parC drug resistance SNP is detected; and/orthe at least one antibiotic is not a fluoroquinolone or an aminocoumarin if a gyrB drug resistance SNP is detected; and/orthe at least one antibiotic is not a rifamycin if a rpoB drug resistance SNP is detected; and/orthe at least one antibiotic is not a f3-lactam if a penA drug resistance SNP is detected; and/orthe at least one antibiotic is not a trimethoprim and sulfamethoxazole combination, co-trimoxazole, if a folM drug resistance SV is detected; and/orthe at least one antibiotic is not a trimethoprim and sulfamethoxazole combination, co-trimoxazole, if a bpeT drug resistance SV is detected; and/orthe at least one antibiotic is not a trimethoprim and sulfamethoxazole combination, co-trimoxazole, if a bpeS drug resistance SV is detected.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 62/798,463, filed on Jan. 29, 2019, the contents of which are incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/015395 1/28/2020 WO 00
Provisional Applications (1)
Number Date Country
62798463 Jan 2019 US